用抽屉原理解决问题
三年级奥数之抽屉原理

抽屉原理是在集合中对元素分配的原则和方法之一,它在数学中有着重要的应用。
下面将从什么是抽屉原理、抽屉原理的应用以及抽屉原理的实例等方面进行介绍。
一、什么是抽屉原理抽屉原理(也称为鸽巢原理)是指当把若干个物品放入若干个抽屉中时,无论如何放,总有一个抽屉中要放至少两个物品。
这是因为如果有n+1个物品放入n个抽屉中,那么至少有一个抽屉里面放了两个物品。
抽屉原理的数学概念是一种常用的思考方法,它的核心是基于“物品数大于抽屉数”。
二、抽屉原理的应用抽屉原理在数学中有广泛的应用,特别是在组合数学、概率论和数论等领域。
它常常用来解决组合问题、分配问题以及概率问题等。
1.解决组合问题:例如,若有n+1个元素放入n个抽屉中,那么必然存在至少一个抽屉中有至少两个元素,这对于解决组合问题非常有用。
2.解决分配问题:例如,如果有n+1个待分配的任务和n个人来分配任务,那么必然存在至少一个人分配到了两个任务。
这对于资源的合理分配具有指导意义。
3.解决概率问题:例如,当从一个有限的集合中随机选择元素时,当元素的数目大于选择次数时,抽屉原理可以帮助我们理解为什么在多次实验中,一些结果出现的概率较高。
三、抽屉原理的实例以下是一些经典的抽屉原理的实例,以帮助大家更好地理解抽屉原理的应用。
1.生日原理:假设一个教室里有365个学生,那么他们中间有至少两个人的生日相同的概率是多少?根据抽屉原理,我们可以知道只要有366个学生,那么必然存在至少两个人的生日是相同的。
2.快乐数:快乐数是指一个正整数,将该数的每个数位上的数字的平方相加,再对得到的结果重复进行相同的操作,最终结果为1、根据抽屉原理,如果不是快乐数,那么一定存在循环的结果。
3.鸽巢原理:在一群鸽子和若干个鸽巢之间进行配对,如果鸽子的个数大于鸽巢的个数,那么至少有一个鸽巢中有两只以上的鸽子。
这个例子非常形象地展示了抽屉原理。
总之,抽屉原理作为一种思考方法和解决问题的原则,可以在数学问题中发挥重要的作用。
抽屉原理与最不利原则学生版

抽屉原理与最不利原则学生版一、抽屉原理:抽屉原理也称为鸽巢原理,是一种用来证明或解决一些问题的方法。
它的基本思想是:如果n+1个物体分到n个盒子中,那么至少有一个盒子中会有两个或更多的物体。
在学生生活中,我们可以用抽屉原理来解决一些有关分类和分组的问题。
比如说,假设我们有7个苹果,要把它们放进5个相同大小的篮子中。
根据抽屉原理,至少有一个篮子中会有两个或更多的苹果。
因为如果每个篮子中最多只能放一个苹果,那么最多只能放进5个苹果,无法满足7个苹果的要求。
除了物体的数目和盒子的数量,抽屉原理还可以用来解决其他类型的问题。
比如说,如果我们有8个球,每个球只能涂成红色或蓝色,并且要求有至少3个球的颜色相同。
根据抽屉原理,我们可以将这8个球分成两组,至少有一组有3个球的颜色相同。
总之,抽屉原理告诉我们,在一些情况下,我们可以利用物体和盒子的数量来判断是否存在其中一种情况或解决一些问题。
二、最不利原则:最不利原则也称为最坏情况原则,是一种在决策或解决问题时常常采用的方法。
它的基本思想是:在做出决策或解决问题时,我们应该假设最坏的情况会发生,然后选择对这种情况最有利的方法或策略。
在学生生活中,最不利原则可以帮助我们制定合理的学习计划。
比如说,假设我们要在一周内准备3门考试,每门考试的内容都很多。
根据最不利原则,我们应该预估最坏的情况是每门考试内容都很难,然后制定学习计划,确保在考试前充分复习每门课程。
除了学习计划,最不利原则还可以应用在其他方面的决策中。
比如说,我们要出去玩,但是天气预报说可能会下雨。
根据最不利原则,我们应该假设最坏的情况是会下雨,然后带上雨伞或选择室内活动,以免被雨水淋湿。
总之,最不利原则教会我们在面对各种决策或问题时,要充分考虑最坏的情况,并选择最有利的方法来解决问题或应对情况。
抽屉原理应用的方法

抽屉原理应用的方法1. 什么是抽屉原理抽屉原理是一种常见的数学原理,也被称为鸽巢原理。
简而言之,它指的是将n+1个物体放入n个抽屉中,那么至少有一个抽屉中会放有两个或更多物体。
2. 抽屉原理的应用抽屉原理有着广泛的应用领域,下面将介绍几种常见的应用方法。
2.1. 生活中的应用在日常生活中,我们经常会遇到抽屉原理的应用。
•衣柜抽屉:当我们将衣物放入抽屉时,由于抽屉的数量有限,就会出现某个抽屉放有更多的衣物,而其他抽屉放得比较少的情况。
•书架抽屉:将书籍放入书架的抽屉中时,同样会发生抽屉的数量有限而书籍数量较多的情况。
2.2. 计算机科学中的应用抽屉原理在计算机科学中也有着重要的应用。
•哈希函数:在哈希函数中,抽屉原理被用来解决哈希碰撞的问题。
当哈希函数的输入域比输出域大得多时,必然会出现多个输入值得到相同的输出值的情况。
•数据库索引:数据库索引是一种常见的数据结构,通过使用抽屉原理,可以将数据存储在不同的索引抽屉中,以提高数据库的查询效率。
2.3. 数学中的应用抽屉原理在数学中也有着广泛的应用。
•需要凑出一个数:当需要凑出一个数时,抽屉原理可以帮助我们找到可能的组合。
例如,我们需要凑出一个数为10的组合,可以使用抽屉原理得知,至少有一个组合中有两个或两个以上的数字。
•证明问题的存在性:在数学证明中,一些存在性问题可以通过抽屉原理来进行解决。
例如,若有8只猴子放入6个笼子中,至少有一个笼子中会有两只猴子。
•鸽巢原理:鸽巢原理是抽屉原理的推广,它指的是将n个物体放入m个抽屉中,如果n > m,那么至少有一个抽屉中会放有两个或更多的物体。
3. 总结抽屉原理是一种常见的数学原理,在生活中、计算机科学和数学等领域中都有着广泛的应用。
通过使用抽屉原理,我们可以更好地理解和解决一些问题,同时也为我们提供了一种思考问题的新方法。
希望本文对你有所帮助,谢谢阅读!。
抽屉原理在数学中的应用

抽屉原理在数学中的应用什么是抽屉原理?抽屉原理是数学中一个重要的概念,也称为鸽笼原理。
它是由欧拉在18世纪提出的,用于解决一类集合问题,也是许多数学证明和推理的基础。
抽屉原理的一般表述是:如果有n个物体放到m个抽屉中(n>m),那么至少有一个抽屉中会放置多于一个物体。
抽屉原理的应用应用一:鸽巢原理鸽巢原理是抽屉原理的一个具体应用,它在各个领域中都有广泛的应用。
例子一:假设有十二只苹果,但只有十个篮子可以放置这些苹果。
根据抽屉原理,至少有一个篮子里会有两个苹果。
例子二:考虑一个教室里有30个学生和30个桌子。
根据抽屉原理,至少有一个桌子上会坐两个学生。
应用二:数学问题的证明抽屉原理在解决一些数学问题时,可以提供重要的证明依据。
例子三:证明一个字母表中的任意五个字母所组成的串中,至少会有一个包含了重复的字母。
我们可以用抽屉原理来解决这个问题。
假设有26个抽屉(代表26个字母),而我们要放入的五个字母作为物体。
根据抽屉原理,至少有一个抽屉里会放置多于一个字母,即至少会有一个字母重复。
应用三:计算机算法抽屉原理在计算机算法设计中也有着广泛的应用。
例子四:在计算机程序设计中,假设有n个元素要放入m个数据结构中(n>m),那么至少有一个数据结构中会包含多于一个元素。
这种情况通常被称为“哈希冲突”,我们可以利用抽屉原理来解决冲突,提高算法的效率。
例子五:在图论中,抽屉原理可以用来解决某些图的染色问题。
假设有n个颜色要给m个节点染色,根据抽屉原理,至少有一个颜色会被多个节点使用。
总结抽屉原理在数学中有着广泛的应用,无论是在解决具体问题,还是在证明数学命题,抽屉原理都能提供有效的方法和依据。
它在鸽巢原理、数学问题的证明和计算机算法设计中发挥着重要的作用。
掌握抽屉原理的概念和应用,有助于我们更好地理解和解决各种数学问题。
通过以上的介绍,我们可以清楚地看到抽屉原理在数学中的应用。
它不仅帮助我们解决数学问题和证明数学命题,还能在计算机算法设计中提供方法和依据。
抽屉原理在生活中的应用

抽屉原理在生活中的应用1. 什么是抽屉原理?抽屉原理是一种简单而重要的数学原理,也被称为鸽笼原理,它描述了一个简单的观察结果:如果有m个物体放入n个抽屉,并且m大于n,那么至少有一个抽屉里面必然有超过一个物体。
2. 抽屉原理在实践中的例子2.1. 生活中的常见例子•衣柜抽屉:在我们的衣柜里,通常有多个抽屉用来存放不同种类的衣物。
根据抽屉原理,如果我们有更多的衣物超过了抽屉的数量,那么就会出现至少一个抽屉里面有超过一个衣物的情况。
•书架抽屉:相比于衣柜,书架也是一个很好的例子。
我们通常在书架上安排抽屉来存放书籍或文件夹。
如果我们有更多的书籍超过了抽屉的数量,那么至少有一个抽屉里面会放置多本书籍。
•餐馆服务员:在一个餐馆里,可能会有多名服务员。
根据抽屉原理,在某个时刻,总会有至少一个服务员同时为多桌客人提供服务。
2.2. 数学和计算机科学中的例子•哈希函数和哈希冲突:在计算机科学中,哈希函数用于将一个大的输入空间映射到一个有限的输出空间。
根据抽屉原理,如果我们有更多的输入超过了哈希函数的输出空间大小,那么就会出现至少一个哈希冲突,即多个输入被映射到同一个输出。
•时间复杂度和空间复杂度:在算法分析中,我们经常研究算法的时间复杂度和空间复杂度。
根据抽屉原理,在处理大规模问题时,总会有至少一个抽屉(即复杂度)变得相当大或超过了一定阈值。
3. 抽屉原理的重要性抽屉原理在生活和工作中都有重要的应用,尤其在计算机科学和数学领域更加突出。
通过理解和应用抽屉原理,我们能够更好地处理问题,找到解决方案,提高效率。
•避免资源浪费:抽屉原理提醒我们,当我们面临超过资源限制的情况时,我们需要寻找其他的解决方案,以避免资源的浪费。
•提高问题解决能力:通过抽屉原理,我们能够更加深入地理解问题,并采取相应的策略和方法来解决。
•优化算法和程序设计:在计算机科学中,抽屉原理可以帮助我们优化算法和程序设计,避免冲突和浪费,提高性能和效率。
行测抽屉原理

行测抽屉原理在行政能力测验(行测)中,抽屉原理是一种常见的问题解题方法。
抽屉原理是指:如果有m个物体要放进n个抽屉,那么至少有一个抽屉里至少放了⌈m/n⌉个物体,其中⌈⌉表示向上取整。
这个原理大多用于解决排列组合、概率统计等与分布相关的问题。
在行测中,抽屉原理经常被考察,因此掌握抽屉原理对于应对行测算术和逻辑推理题是非常重要的。
抽屉原理的应用可以帮助我们更好地理解一些与分布和排列组合有关的问题。
举个例子,假设有10枚硬币,其中有一个是假币,而且与其他硬币的重量不同。
现在要用一台天平找出这枚假币。
假设只能使用天平三次,那么我们可以将硬币按照以下方式分配:第一次,将硬币均匀分成3组,每组放入天平进行称重。
此时,会有两种可能的结果:如果天平平衡,说明假币在未称重的剩余硬币中,我们进行如下操作:将剩下的硬币分成3组,这样我们就可以使用第二次;如果天平不平衡,假设左端比右端重,那么说明假币在左端的硬币组中。
在这组硬币中,可以继续使用相同的方法进行下一轮的称重;第二次,将天平不平衡的那组硬币分成3组,同样放入天平进行称重。
如果天平平衡,则意味着剩余硬币中有假币,可以进行第三次操作;如果天平不平衡,假设左端比右端重,说明假币在左端的硬币组中。
在这组硬币中,继续使用相同的方法进行第三次用天平称重;第三次,将天平不平衡的那组硬币分成2组进行称重。
如果天平平衡,则剩下的一个硬币就是假币;如果天平不平衡,假设左端比右端重,那表明左端的硬币为假币;在这个问题中,我们有10枚硬币,可以放在3个抽屉中,其中的“抽屉”可以看作是天平称重的每一次。
通过抽屉原理,我们可以在不超过3次的情况下找到假币。
抽屉原理的应用

抽屉原理的应用什么是抽屉原理抽屉原理,也被称为鸽笼原理或鸽巢原理,是离散数学中的一条基本原理。
它的基本思想是,如果n+1个对象被放入n个抽屉中,那么至少有一个抽屉中会有两个或更多的对象。
抽屉原理的应用案例抽屉原理在许多领域都有着广泛的应用。
下面是一些抽屉原理的典型应用案例:1.生日悖论:假设有一个房间里有23个人,那么至少有两个人生日相同的概率超过50%。
这是因为每个人的生日可以看作是一个抽屉,而一年只有365天,所以当人数超过365时,必然会有两个人生日相同。
2.信箱原理:假设有101封信要放进100个信箱中,那么至少有一个信箱会收到两封以上的信。
这是因为当信箱数量小于信件数量时,必然会有信箱会收到两封以上的信。
3.鸽巢问题:假设有7只鸽子要进入5个鸽巢,那么至少有一个鸽巢中会有两只鸽子。
这是因为当鸽子数量大于鸽巢数量时,必然会有鸽巢中会有两只鸽子。
4.密码学中的应用:在密码学中,抽屉原理常被用于解决哈希碰撞问题。
当要将大量的数据映射到有限数量的桶中时,由于数据的数量过多,必然会存在多个数据映射到同一个桶的情况。
5.计算机科学中的应用:在计算机科学中,抽屉原理被广泛应用于算法设计和数据结构。
例如,在散列表中,当要将大量的关键字映射到有限数量的散列桶中时,通过抽屉原理可以推断出在一些桶中会有多个关键字,从而影响散列性能。
总结抽屉原理是离散数学中的一条基本原理,它在许多领域都有着广泛的应用。
通过抽屉原理,我们可以推断出在一些有限数量的容器中,当要容纳超过容器数量的对象时,必然会存在一些容器中有两个或更多的对象。
这个原理的应用涵盖了概率论、密码学、计算机科学等多个领域。
抽屉原理的重要性在于它提醒我们,在处理数量关系和容器问题时,需要考虑到容量的限制和多重映射的可能性。
它为我们解决各种问题提供了思考的方向和方法。
希望通过本文的介绍,读者能够更好地理解抽屉原理以及它的应用,同时能够在实际问题中灵活运用这个原理,提高问题的解决能力和思维的拓展性。
应用抽屉原理的难题及解答

应用抽屉原理的难题及解答引言在日常生活和工作中,我们经常会遇到一些问题,而解决这些问题往往需要应用抽屉原理。
抽屉原理,也称为鸽巢原理,是一种数学原理,它指的是当若干个物体被分配到若干个抽屉中,如果物体的数量大于抽屉的数量,那么至少有一个抽屉中的物体数量必定大于1。
然而,应用抽屉原理并不容易,有时我们会遇到一些难题。
本文将介绍一些常见的应用抽屉原理的难题,并给出解答。
难题一:生日问题假设有365个人参加一个派对,他们中至少有两个人生日是同一天。
如何证明这个结论?•解答:根据抽屉原理,我们知道如果有365个物体(人)被分配到365个抽屉(日子)中,那么至少有一个抽屉中的物体数量必定大于1。
在这个问题中,抽屉就是365个日子,而物体就是365个人的生日。
因此,根据抽屉原理,至少有一个日子会有两个人的生日。
难题二:撞车问题假设有10辆汽车在同一条直路上行驶,每辆汽车都以不同的速度行驶,且不能变速。
证明存在至少两辆汽车在某一时间点发生碰撞。
•解答:假设每辆汽车都代表一个抽屉,汽车的速度代表物体的数量。
根据抽屉原理,如果有10个物体(汽车)被分配到10个抽屉中,那么至少有一个抽屉中的物体数量必定大于1。
在这个问题中,抽屉就是10辆汽车,而物体就是汽车的速度。
因此,根据抽屉原理,至少有两辆汽车的速度相同,它们在某一时间点会发生碰撞。
难题三:抽屉排序问题有1到N的N个整数排列成一列,其中至少有一个整数重复。
如何找出重复的整数?•解答:假设这N个整数分别代表N个抽屉,每个整数在对应的抽屉中。
根据抽屉原理,如果有N个物体(整数)被分配到N个抽屉中,那么至少有一个抽屉中的物体数量必定大于1。
因此,我们只需要遍历每个抽屉,找到其中的物体数量大于1的抽屉,即可找到重复的整数。
难题四:相同数字求和问题给定一个包含n个整数的数组,其中每个数字都出现了偶数次,只有一个数字出现了奇数次,如何找到这个数字?•解答:假设这个数组中的数字是物体,每个数字在对应的抽屉中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省农村中小学现代远程教育工程资源建设多媒体教学课件
数学广角:用抽屉原理解决问题
使用范围:小学数学(人教版)六年级下册第五单元第72页
作者:高牡丹
单位:仙居县安洲小学
撰稿时间:2011年7月
●教学目标:
1.进一步掌握抽屉原理,掌握抽屉原理的反向求法,会用“抽屉原理”解决简单的实际问题。
2.通过操作发展学生的类推能力,培养学生的发散性思维,形成比较抽象的数学思维。
3.通过“抽屉原理”的灵活应用感受数学的魅力,培学生大胆发表自己的见解和倾听他人意见,了解他人思维的好习惯。
●教学重点:
用抽屉原理的逆向思维解决问题。
●教学难点:
理解抽屉原理的反向求法并能灵活地运用抽屉原理解决问题。
●教学准备:
多媒体课件、投影仪。
●教学过程:
一、复习旧知
1、关于抽屉原理,我们已经知道了什么?
小结:把一些物体放进几个抽屉中,不管怎么放,有一个抽屉里至少有物体个数÷抽屉个数“所得的商+1”个物体。
2、抽屉原理中的抽屉一定是指真正的抽屉吗?还可以指什么?
3.增加复习题:如:13人中至少有2个人的生肖是相同的,为什么?
二、学习例3
1.出示例题,分析题意:盒子里有同样大小的红球和蓝球各4个。
要想摸出的球一定有2个同色的,至少要摸出几个球?
(1)通读题目,你知道了什么?和咱们前两节课学的抽屉原理一样吗?怎么不一样?
小结比较结果:已经知道了一个抽屉里至少有2个物体,求至少要摸出几个球。
这节课我们是根据抽屉原理来解决问题的。
板书课题:用抽屉原理解决问题。
(2)解决这个问题的关键是什么呢?是的,要先找到抽屉。
抽屉是指什么?对啊,就是指红球和蓝球。
(3)有几个抽屉呢?你是怎么知道的?
预设1:4个,因为题目中说红球和蓝球各4个。
预设2:2个,因为就只有两种球,红球和蓝球。
师:到底谁的说法是对的呢?请大家先在小组里讨论一下。
反馈:红球4个,蓝球4个,有种颜色,所以应该是2个抽屉。
2.解决问题:要想摸出的球一定有2个同色的,最少要摸出几个球?
(1)如果把这句话说完整:在2个抽屉里,最少摸出几个球就能保证一定有2个同色的?请大家思考一下。
(2)反馈:
生1:2个,摸两个球都是红色的,或者摸两个球都是蓝色的。
生2:不行,摸2个万一一个红球一个蓝球呢?应该是3个。
生3:摸出5个球,肯定有2个是同色的。
因为红球和蓝球各4个。
(3)到底哪种说法是正确的呢?请大家在小组里讨论一下。
只摸2个球肯定是不行的,因为可能是一个红球、一个蓝球。
(有可能但不能保证)
根据5÷2=2……1,可以知道,摸出5个球时至少有3个球同色。
因此,摸出5个球是没有必要的。
(能保证但不是最少的)
得出结论:要想摸出的球一定有两个同色的,只要摸出的球比颜色种数多1,也就是比2多1,因此是3次。
(先保证每种颜色都有1个,再任意摸出一个,肯定有2个同色。
)
反过来,我们也可以用3÷2=1…… 1,1+1=2,也就是在3个球中,如果只有2种颜色,至少会有2个球是同色的。
意图:还是利用前面的平均分思想,要保证有2个,先保证各有1个。
3.做一做
(1)出示做一做第1题,说说为什么?
向东小学六年级一共有370名学生,其中六(2)班有49名学生。
六年级一定有两人的生日是同一天。
六(2)班中至少有5人是同一个月出生的。
指名回答。
这是为什么?
问题1:因为一年最多有366天,也就是有366个抽屉,370÷366=1…… 4,用1+1=2(人),所以一定有两人的生日是同一天。
问题2:因为一年有12个月,相当于12个抽屉,49÷12=4…… 1,用4+1=5(人),所以至少有5人是同一个月出生的。
(2)做一做第2题
把红、黄、蓝、白四种颜色的球各10个放到一个袋子里。
至少取多少个球,可以保证取到两个颜色相同的球?
你是怎么想的?
因为是四种颜色,相当于4个抽屉,所以至少取出比颜色种数多1也就是比4多1,就是5个球,可以保证取到两个颜色相同的球。
师:解决这个问题时,你发现了什么?
生:当把颜色的种数看作是抽屉时,就与球的个数是没有关系的。
不管是各4个还是各10个。
师:你们发现了吗?你们觉得他说的怎么样?观察例题和这道题,我们真的可以发现这个现象。
(3)改题:如果改一改做一做第2题的问题:至少取多少个球,可以保证取到两个颜色不同的球?
你觉得抽屉还是指颜色的种数吗?那是指什么呢?
因为要保证取到两个颜色不同的球,所以同一种颜色球的个数就是抽屉的个数,因为有四种颜色的球各10个,所以抽屉是10个,因此至少要取出比抽屉个数多1的个数,也就是11个,就可以保证取到两个颜色不同的球。
三、巩固练习
1.义务教育课程标准实验教材配套作业本第29页第1题:抽屉里有白色和灰色的袜子各4只,晨晨至少摸出几只袜子就一定可以配成一双(2只同色)?
(1)学生独立思考,并把自己的想法与同桌交流。
(2)反馈:两种颜色的袜子可以看成是2个抽屉,比抽屉个数多1就是3只,所以晨晨至少摸出3只袜子就一定可以配成一双(2只同色)。
2.义务教育课程标准实验教材配套作业本第29页第4题:用红、黄两种颜色在下面的长方形格子中随意涂色,每个格子涂一种颜色。
青青发现无论怎么涂,至少有两列涂法完全相同。
请你先试一试,再说明理由。
(1)让学生尝试涂一涂,体会是否有同样的发现。
(2)说一说,为什么至少有两列涂法完全相同?
理由:一共只有4种不同的涂法,分别是红红、红黄、黄黄、黄红,即相当于4个抽屉,而这里的表格有5列,5÷4=1…… 1,1+1=2,所以无论怎么涂,至少有两列涂法完全相同。
3.给一个正方体木块的6个面分别涂上蓝、黄两种颜色。
不论怎么涂至少有3个面涂地颜色相同。
为什么?
6÷2=3,所以不论怎么涂至少有3个面涂地颜色相同。
四、课堂小结
今天我们一起学习了什么?用抽屉原理解决问题的关键是什么呢?对啊,要学会正确的寻找把什么看成是抽屉。
希望同学们能够利用抽屉原理去解决生活中一些有趣的问题。
使用注意点:
“抽屉原理”本身或许并不复杂,但它的应用广泛且灵活多变,因此,用“抽
屉原理”来解决实际问题时,经常会遇到一些困难。
例如,有时要找到实际问题与“抽屉问题”之间的联系并不容易,即使找到了,也很难确定用什么作为“抽屉”,要用几个“抽屉”。
因此,教学时,不必过于追求学生“说理”的严密性,只要能结合具体问题把大致意思说出来就可以了,更要允许学生借助实物操作等直观方式进行猜测、验证。
资源引用:
人民教育出版社
国家基础教育资源网。