2.2.1.1 对数

合集下载

高中数学 2.2.1.1对数课件 新人教A版必修1

高中数学 2.2.1.1对数课件 新人教A版必修1

提示:①a<0,N取某些值时,logaN不存在,如根据指数的运算性质可知,不存在实数x使(-12)x=2成
立,所以log(-
1 2
)2不存在,所以a不能小于0.②a=0,N≠0时,不存在实数x使ax=N,无法定义logaN;N
=0时,任意非零实数x,有ax=N成立,logaN不确定.③a=1,N≠1时,logaN不存在;N=1,loga1有无 数个值,不能确定.
1
30
思考 1 对数恒等式 a logaN=N 成立的条件是什么? 提示:成立的条件是a>0,a≠1且N>0.
思考 2 用 a logaN (a>0 且 a≠1,N>0)化简求值的关键是什么?
提示:用 a logaN (a>0 且 a≠1,N>0)化简求值的关键是凑准公式的结构,尤其是对数的底数和幂底数 要一致,为此要灵活应用幂的运算性质.
思考 根据对数的定义以及对数与指数的关系,你能求出loga1=?logaa=?
提示: ∵对任意a>0且a≠1,都有a0=1, ∴化成对数式为loga1=0; ∵a1=a,∴化成对数式为logaa=1.
1
24
[典例示法] 例3 求下列各式中x的值. (1)logx27=32;(2)log2x=-23; (3)x=log2719;(4)log3(lgx)=1.
题目(1)(2)中的对数式化为指数式是怎样的?题目(3)(4)呢?
3
提示:(1)化为指数式x2
=27,(2)化为指数式2-23
=x,(3)化为指数式27x=19,(4)化为指数式31=lgx.
1
25
[解]
(1)由logx27=32可得x32 =27,
2

对数总结知识点

对数总结知识点

对数总结知识点一、对数的定义1.1 对数的基本概念对数是指数的倒数,它描述了某个数在底数为固定值时的指数。

设a和b是两个实数,并且a>0且a≠1,若a的x次幂等于b,即a^x=b,则称x是以a为底b的对数,记作x=loga(b)。

其中,a称为对数的底数,b称为真数,x称为指数。

对数的底数a通常取2、e或者10。

1.2 对数的特性对数有几个重要的特性:(1)当b=a^1时,对数的值为1,即loga(a)=1;(2)当b=1时,对数的值为0,即loga(1)=0;(3)当b=a^0时,对数的值不存在,即loga(0)是无意义的,因为0没有对数;(4)当b=a^(-1)时,对数的值等于-1,即loga(a^(-1))=-1;(5)当a=1时,对数不存在,因为1的任何次幂都是1,没有唯一的对数。

以上就是对数的基本概念和特性,通过这些概念,我们可以初步了解对数的意义和性质。

接下来,我们将介绍对数的性质和运算规则。

二、对数的性质和运算规则2.1 对数的性质对数具有一些重要的性质,这些性质在对数的运算中起着重要的作用。

下面我们来介绍对数的性质:(1)对数的反函数性质:指数函数和对数函数是互为反函数的,即a^loga(x)=x,loga(a^x)=x;(2)对数的除法性质:loga(x/y)=loga(x)-loga(y),即对数的商等于对数的差;(3)对数的乘法性质:loga(xy)=loga(x)+loga(y),即对数的积等于对数的和;(4)对数的幂性质:loga(x^k)=k*loga(x),即对数的幂等于指数与对数的乘积。

通过以上性质,我们可以在对数的运算中简化表达式,更方便地进行计算和推导。

接下来,我们来介绍对数的运算规则。

2.2 对数的运算规则对数的运算规则主要包括:换底公式、对数的乘除法、对数的幂运算等。

(1)换底公式:当底数相同时,不同的对数可以相互转化,即loga(b)=logc(b)/logc(a),其中a、b、c为正数,且a≠1,c≠1。

初中数学知识点指数函数与对数函数的概念与性质

初中数学知识点指数函数与对数函数的概念与性质

初中数学知识点指数函数与对数函数的概念与性质初中数学知识点:指数函数与对数函数的概念与性质指数函数与对数函数是数学中重要的函数形式。

它们在数学、科学和工程领域中都有广泛的应用。

本文将详细介绍指数函数与对数函数的概念与性质。

一、指数函数的概念与性质指数函数是以正实数为底数的幂函数,它的定义域为实数集,值域为正实数集。

形式上,指数函数可以表示为:\[ y = a^x \]其中,a代表底数,x代表指数,y代表函数值。

1.1 指数函数的定义域和值域指数函数中的底数a必须是正实数而不能为零或负数,因为负数和零没有实数次幂的定义。

指数函数的定义域为实数集,即一切实数。

值域为正实数集,即大于零的实数。

1.2 指数函数的特点指数函数具有以下几个特点:(1)指数函数在底数不变的情况下,随着指数增大而增大,随着指数减小而减小。

(2)当指数为0时,指数函数的值为1。

(3)指数函数在不同的底数下,增长的速度不同,底数越大,增长的速度越快。

1.3 指数函数的图象指数函数的图象一般呈现为一个逐渐上升或下降的曲线,具体的形状取决于底数的大小和正负。

二、对数函数的概念与性质对数函数是指数函数的逆运算,它的定义域为正实数集,值域为实数集。

形式上,对数函数可以表示为:\[ y = \log_a{x} \]其中,a代表底数,x代表函数值,y代表指数。

2.1 对数函数的定义域和值域对数函数中的底数a必须是正实数且不等于1,因为负数和1没有实数对数的定义。

对数函数的定义域为正实数集,即大于零的实数。

值域为实数集。

2.2 对数函数的特点对数函数具有以下几个特点:(1)对数函数在底数不变的情况下,随着函数值的增大而指数增大,随着函数值的减小而指数减小。

(2)当函数值为1时,对数函数的指数为0。

(3)对数函数在不同的底数下,增长的速度不同,底数越大,增长的速度越慢。

2.3 对数函数的图象对数函数的图象一般呈现为一个先上升后趋于平缓的曲线,具体的形状取决于底数的大小。

人教A版必修一2.2.1.1对数与对数运算

人教A版必修一2.2.1.1对数与对数运算
2.2 对数函数
2.2.1 对数与对数运算 第1课时 对 数
1. 定义:一般地,如果 ax=N ( a>0 ,且 a≠1 ),那么数 x 叫做 以a为底N的对数,记作 x loga N ,其中a叫做对数的底数,N 叫做真数. 2.对数loga N(a>0,且a≠1)具有下列简单性质 (1)负数和零没有对数,即N>0; (2)1的对数为零,即loga1=0; (3)底的对数等于1,即logaa=1.
3.常用对数:通常我们将以10为底的对数叫做常用对数.记作 lg N .
4.自然对数:以e为底的对数称为自然对数.记作ln N.
5.对数与指数间的关系:当a>0,a≠1时,
1.logaN=b化为指数式是( C )
(A)aN=b (C)ab=N 解析:根据定义可知,logaN=bab=N,故选C. 2.logab=1成立的条件是( D ) (A)a=b (C)a>0,且a≠1 (D)a>0,a=b≠1 (B)a=b,且b>0 (B)ba=N (D)bN=a
规律方法:利用对数与指数间的互化关系时,要注意各
字母位置的对应关系,其中两式中的底数是相同的.
思路点拨:解答本题可利用对数的基本性质,合理运 用提供的信息求解.
规律方法:有关真数为“底数”和“1”的对数,可以利用对数的性 质直接得出其值为“1”和“0”,但有时需要底数变形后才可以利用 此规律.
解析:logab有意义,则a>0,a≠1,且b>0;
又由logab=1知a=b.故a>0,a=b≠1.
3.有下列说法 ①零和负数没有对数;
②任何一个指数式都可以化成对数式;
③以10为底的对数叫做常用对数; ④以e为底的对数叫做自然对数.

高中数学的技巧大揭秘掌握指数与对数的运算法则

高中数学的技巧大揭秘掌握指数与对数的运算法则

高中数学的技巧大揭秘掌握指数与对数的运算法则高中数学的技巧大揭秘:掌握指数与对数的运算法则数学作为一门学科,对于很多高中生来说是一项具有挑战性的学科。

尤其是指数与对数的运算,常常被认为是数学中较为复杂和晦涩的内容。

然而,一旦掌握了指数与对数的运算法则,我们就能够轻松解决许多与指数和对数相关的问题。

本文将揭示一些高中数学中关于指数与对数运算的技巧和方法,希望对同学们有所帮助。

一、指数的基本运算法则指数运算法则是指对于指数的加、减、乘、除等基本运算规则。

我们先来看一下指数的加减法。

1.1 指数的加减法当指数相同且底数相同时,我们可以直接对底数进行相应的运算,指数保持不变。

举个例子:2² + 3² = 4 + 9 = 13当指数相同时,底数不同的情况下,我们可以将不同底数的指数用同一个底数表示,并对底数进行计算。

例如:2³ + 3³ = 8 + 27 = 351.2 指数的乘法当进行指数的乘法时,我们可以相应地将底数进行乘法运算,指数相加。

例如:2² × 2³ = 4 × 8 = 32这意味着对同一个底数进行指数乘法时,只需要将指数相加即可达到相应的计算结果。

1.3 指数的除法对于指数的除法,我们可以将底数进行除法运算,指数相减。

举个例子:2⁴ ÷ 2² = 16 ÷ 4 = 4同样地,对于同一个底数进行指数除法时,只需要将指数相减即可得到相应的计算结果。

二、对数的基本运算法则在掌握了指数的基本运算法则后,我们继续探讨对数的运算法则。

对数运算法则包括对数的相加、相减、乘法和除法。

2.1 对数的相加法则当有两个对数进行相加时,我们可以使用对应的指数的乘法。

具体而言,可以将两个对数对应的指数相加来获得新的指数,并使用相同的底数表示。

举个例子:log a + log b = log (a × b)2.2 对数的相减法则与对数的相加法则相反,当有两个对数进行相减时,我们可以使用对应的指数的除法。

高一数学人教版必修1 第二章《基本初等函数》同步课件2.2.1.1

高一数学人教版必修1 第二章《基本初等函数》同步课件2.2.1.1

其中错误说法的个数为( )
A.1
B.2
C.3
D.4
数学 必修1
第二章 基本初等函数(Ⅰ)
学案·新知自解
教案·课堂探究
练案·学业达标
解析: 只有符合 a>0,且 a≠1,N>0,才有 ax=N⇔x=logaN,故(2)错误.由 定义可知(3)(4)均错误.只有(1)正确.
答案: C
数学 必修1
第二章 基本初等函数(Ⅰ)
教案·课堂探究
练案·学业达标
解析: 因为 lg 10=1,所以 lg(lg 10)=lg 1=0,①正确; 因为 ln e=1,所以 lg(ln e)=lg 1=0,②正确; 若 10=lg x,则 x=1010,③错误; 由 log25x=12,得 x=2512=5,④错误. 答案: ①②
数学 必修1
提示: 设ab=N,则b=logaN. ∴ab=alogaN=N.
数学 必修1
第二章 基本初等函数(Ⅰ)
学案·新知自解
教案·课堂探究
练案·学业达标
1.对于下列说法:
(1)零和负数没有对数;
(2)任何一个指数式都可以化成对数式;
(3)以 10 为底的对数叫做自然对数;
(4)以 e 为底的对数叫做常用对数.
数学 必修1
第二章 基本初等函数(Ⅰ)
学案·新知自解
教案·课堂探究
练案·学业达标
1.将下列指数式化为对数式,对数式化为指数式: (1)3-2=19;(2)43=64; (3)log1327=-3;(4)log x64=-6.
数学 必修1
第二章 基本初等函数(Ⅰ)
学案·新知自解
教案·课堂探究
练案·学业达标

高中数学公式大全指数与对数的幂运算与对数运算公式

高中数学公式大全指数与对数的幂运算与对数运算公式

高中数学公式大全指数与对数的幂运算与对数运算公式数学是一门具有广泛应用的学科,不论是在学术研究还是实际生活中,数学公式都扮演着重要的角色。

在高中数学中,指数与对数是两个重要的概念,它们的公式在解题过程中经常被用到。

本文将为您提供高中数学公式大全,重点介绍指数与对数的幂运算与对数运算公式。

1. 指数与幂运算公式指数与幂运算是指数函数的基本运算法则,它包括以下几个公式:1.1 指数幂运算法则(1)指数相同,底数相乘:a^m × a^n = a^(m+n)。

例子:2^3 × 2^4 = 2^(3+4) = 2^7。

(2)幂相同,底数相乘:a^m × b^m = (a × b)^m。

例子:2^3 × 3^3 = (2 × 3)^3 = 6^3。

(3)指数的乘方:(a^m)^n = a^(m×n)。

例子:(2^3)^4 = 2^(3×4) = 2^12。

(4)幂的乘方:(a × b)^m = a^m × b^m。

例子:(2 × 3)^4 = 2^4 × 3^4 = 16 × 81。

1.2 指数的乘法法则(1)指数相加:a^m × a^n = a^(m+n)。

例子:2^3 × 2^4 = 2^(3+4) = 2^7。

(2)底数相乘:(a × b)^m = a^m × b^m。

例子:(2 × 3)^4 = 2^4 × 3^4 = 16 × 81。

2. 对数运算公式对数是指数的逆运算,它有以下几个重要的运算公式:2.1 对数幂运算法则(1)底数相同,幂相加:loga(x × y) = loga(x) + loga(y)。

例子:log2(4 × 8) = log2(4) + log2(8)。

(2)幂的乘方:loga(x^m) = m × loga(x)。

高中数学第二章基本初等函数(Ⅰ)2.2.1.1对数练习(含解析)新人教A版必修1

高中数学第二章基本初等函数(Ⅰ)2.2.1.1对数练习(含解析)新人教A版必修1

课时21 对数对数的意义①若M =N ,则log a M =log a N ; ②若log a M =log a N ,则M =N ; ③若log a M 2=log a N 2,则M =N ; ④若M =N ,则log a M 2=log a N 2. A .①与② B .②与④ C .② D .①②③④ 答案 C解析 对于①,当M =N ≤0时,log a M 与log a N 无意义,因此①不正确;对于②,对数值相等,底数相同,因此,真数相等,所以②正确;对于③,有M 2=N 2,即|M |=|N |,但不一定有M =N ,③错误;对于④,当M =N =0时,log a M 2与log a N 2无意义,所以④错误,由以上可知,只有②正确.2.求下列各式中x 的取值范围: (1)lg (x -10); (2)log (x -1)(x +2); (3)log (x +1)(x -1)2.解 (1)由题意有x -10>0,即x >10,即为所求; (2)由题意有⎩⎪⎨⎪⎧ x +2>0,x -1>0且x -1≠1,即⎩⎪⎨⎪⎧x >-2,x >1且x ≠2,∴x >1且x ≠2;(3)由题意有⎩⎪⎨⎪⎧x -2>0,x +1>0且x +1≠1,解得x >-1且x ≠0,x ≠1.3答案507解析 因为m =log 37,所以3m =7,则3m +3-m =7+7-1=507.4.将下列指数式化成对数式,对数式化成指数式: (1)35=243;(2)2-5=132;(3)log 1381=-4;(4)log 2128=7.解 (1)log 3243=5;(2)log 2132=-5;(3)13-4=81;(4)27=128.对数性质的应用(1)log 8x =-23;(2)log x 27=34;(3)log 3(2x +2)=1.解 (1)由log 8x =-23,得x =8-23=(23)-23=23×⎝ ⎛⎭⎪⎫-23=2-2=14;(2)由log x 27=34,得x 34=27.∴x =2743=(33)43=34=81;(3)由log 3(2x +2)=1,得2x +2=3, 所以x =12.对数恒等式的应用(2)计算23+log23+35-log39.解(1)令t=10x,则x=lg t,∴f(t)=lg t,即f(x)=lg x,∴f(3)=lg 3;(2)23+log23+35-log39=23·2log23+353log39=23×3+359=24+27=51.一、选择题1.下列四个命题,其中正确的是( )①对数的真数是非负数;②若a>0且a≠1,则log a1=0;③若a>0且a≠1,则log a a=1;④若a>0且a≠1,则a log a2=2.A.①②③ B.②③④C.①③ D.①②③④答案 B解析①对数的真数为正数,①错误;②∵a0=1,∴log a1=0,②正确;③∵a1=a,∴log a a=1,③正确;④由对数恒等式a log a N=N,得a log a2=2,④正确.2.2x=3化为对数式是( )A.x=log32 B.x=log23C.2=log3x D.2=log x3答案 B解析由2x=3得x=log23,选B.3.化简:0.7log 0.78等于( ) A .2 2 B .8 C.18 D .2答案 B解析 由对数恒等式a log aN =N ,得0.7log 0.78=8.∴选B. 4.若log 2(log x 9)=1,则x =( ) A .3 B .±3 C.9 D .2 答案 A解析 ∵log 2(log x 9)=1,∴log x 9=2,即x 2=9, 又∵x >0,∴x =3.5.若log a 3=m ,log a 2=n ,则a m +2n的值是( )A .15B .75C .12D .18 答案 C解析 由log a 3=m ,得a m=3,由log a 2=n ,得a n=2, ∴am +2n=a m ·(a n )2=3×22=12.二、填空题6.已知log 2x =2,则x -12=________.答案 12解析 ∵log 2x =2,∴x =22=4, 4-12=⎝ ⎛⎭⎪⎫1412=12.7.若lg (ln x )=0,则x =________. 答案 e解析 ∵lg (ln x )=0,∴ln x =1,∴x =e.8.若集合{x ,xy ,lg xy }={0,|x |,y },则log 8(x 2+y 2)=________. 答案 13解析 ∵x ≠0,y ≠0,∴lg xy =0,∴xy =1, 则{x,1,0}={0,|x |,y },∴x =y =-1, log 8 (x 2+y 2)=log 82=log 8813=13.三、解答题9.(1)已知log 189=a ,log 1854=b ,求182a -b的值;(2)已知log x 27=31+log 32,求x 的值.解 (1)18a =9,18b=54,182a -b=a218b=9254=8154=32; (2)∵log x 27=31×3log 32=31×2=6, ∴x 6=27,∴x =2716=(33)16= 3.10.求下列各式中x 的值:(1)log 4(log 3x )=0;(2)lg (log 2x )=1; (3)log 2[log 12(log 2x )]=0.解 (1)∵log 4(log 3x )=0,∴log 3x =40=1, ∴x =31=3;(2)∵lg (log 2x )=1,∴log 2x =10,∴x =210=1024;(3)由log 2[log 12(log 2x )]=0,得log 12(log 2x )=1,log 2x =12,x = 2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(3)令log3 81 =x,则3x=81 x=4
(4)令log0.41=x,则0.4x=1 x=0
课堂检测————限时5分钟
1. 若 log 2 x 3 ,则x=( A. 4 B. 6 C. 8 ). D. 9
2. log ( 3 2 ) ( 3 2 ) = ( ). A. 1 B. -1 C. 2 D. -2 3.对数式中 log( a2) (5 a) b ,实数a的取值范围是 ( ). (,5) B.(2,5) A. C.(2, ) D. (2,3) (3,5) 4. 计算:(1)log5625 (2)lg0.001.
log a N x a x N
(a>0,a≠1)
3.会由指数运算求简单的对数值
进步是从看到自己的落后开始的;高明是 从解剖自己的弱点开始的。
loga a ,
N
. ( 0,
)

b

R
2 loga 1 0
loga a 1
对数式要注意的事项: (1)a、N的范围:a>0且a≠1和N>0. 注意:负数与零没有对数 (2)对数符号是一个完整的符号.
对数与指数的区别与联系?
a N log a N x
x
(a>0,a≠1)
a x N
名称 式子
指数式ax=N
底数
指数

对数式logaN=x
底数
对数
真数
常用对数与自然对数的定义
(1)以10为底的对数叫做常用对数. 为了方便,N的常用对数log10N简记为:lgN. (2)以e为底的对数叫做自然对数. 为了方便,N的自然对数logeN简记为:lnN.
例1.把下列指数式化成对数式,对数式化为指数式
若 2 =4
若3 =
x
x
则x= 2 则x= -1
则x=
1 3
若2x=3

对数的定义
如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,
记作
x log. a N源自其中a叫做对数的底数,N叫做真数。
反思: 1.对数logaN=b中的a,N, b的取值范围是什 么 ?为什么? 2. loga 1 答案 : 1. a>0 a≠1
(1) 5 625
4
(3) log 1 16 4
解 (1) log
(3)
5 625 4
4
1 m (2) ( ) 5.73 3 (4) ln 10 2.303
5.73 m
3
2
(2) log 1
1 2
16
(4)
e
2.303
10
练习 把下列指数式化成对数式,对数式化为指数式
2.2
2.2.1
对数函数
对数与对数运算
对数
第1课时
(1)理解对数的概念,掌握对数的基本性质
(2)掌握对数式与指数式的互化.
1. x=logaN 底数 真数 2. b=logaN 3. 10为底 lg lg3.5 4. e为底 ln ln10 预习自测 1.B 2.D 3. 1 1 4. 2 2
口答:
1 (1) 2 64
6
(2) lg 0.01 2
解(1
1 2 log 2 6 (2)10 0.01 64
例2.求下列各式中x的值
2 2 (2) ln e x (1) log 64 x 3

1 (1) x 64 (4 ) 4 16 2 2 x (2) ln e x, e e x 2
2
2 3
2 3 3
练习: (1) logx 8 6 ; (3) log3 81 ;
lg100 x (2) (4) log 0.4 1
1 6 1 2
解 (1)
x 6 8, x 0 x 8
1 6
(23 )
2
2

2
,10 100 (2) 10 100
x
x 2
1. C 4 (1) 4 2. B (2) -3 3. D
请同学们结合本节课的学习,说出你有什么收获?
1.对数的定义
一般地,如果a(a>0,a≠1)的 x 次幂等于N, 即ax=N,
那么数x叫做以a为底N的对数, 记作 logaN=x (式中的a叫做对数的底数,N叫做真数).
2.掌握指数式与对数式的互化
相关文档
最新文档