六年级销售问题应用题及答案
二次函数有关的应用题---营销问题(含详细答案)

二次函数有关的应用---营销问题1、某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由.2、某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?3、鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?4、某工艺厂设计了一款成本为10元/件的工艺品投放市场进行试销. 经调查有如下数据:销售单价x (元/件) … 20 30 40 50 60 …每天销量y (件) … 500 400 300 200 100 …(1)判断y 与x 的之间的函数关系,并求出函数关系式;(2)市物价部门规定:该工艺品销售单价最高不能超过35元/件,那么销售单价定为多少时,工艺品厂每天获得的利润最大?最大利润是多少元?5、某大学毕业生响应国家“自主创业”的号召,投资开办了一个装饰品商店.该店采购进一种今年新上市的饰品进行了30天的试销售,购进价格为20元/件.销售结束后,得知日销售量P(件)与销售时间x(天)之间有如下关系:P=-2x+80(1≤x≤30,且x 为整数);又知前20天的销售价格1Q (元/件)与销售时间x(天)之间有如下关系:11Q 302x =+ (1≤x≤20,且x 为整数),后10天的销售价格2Q (元/件)与销售时间x(天)之间有如下关系:2Q =45(21≤x≤30,且x 为整数).(1)试写出该商店前20天的日销售利润1R (元)和后l0天的日销售利润2R (元)分别与销售时间x(天)之间的函数关系式;(2)请问在这30天的试销售中,哪一天的日销售利润最大?并求出这个最大利润.注:销售利润=销售收入一购进成本.6、某企业接到一批粽子生产任务,按要求在15天内完成,约定这批粽子的出厂价为每只6元,为按时完成任务,该企业招收了新工人,设新工人李明第x 天生产的粽子数量为y 只,y 与x 满足下列关系式:54(05)30120(515)x x y x x ≤≤⎧=⎨+<≤⎩(1)李明第几天生产的粽子数量为420只?(2)如图,设第x 天每只粽子的成本是p 元,p 与x 之间的关系可用图中的函数图象来刻画.若李明第x 天创造的利润为w 元,求w与x 之间的函数表达式,并求出第几天的利润最大,最大利润是多少元?(利润=出厂价-成本)参考答案:1.某商场要经营一种新上市的文具,进价为20元/件.试营销阶段发现:当销售单价是25元时,每天的销售量为250件;销售单价每上涨1元,每天的销售量就减少10件.(1)写出商场销售这种文具,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;(2)求销售单价为多少元时,该文具每天的销售利润最大;(3)商场的营销部结合上述情况,提出了A、B两种营销方案:方案A:该文具的销售单价高于进价且不超过30元;方案B:每天销售量不少于10件,且每件文具的利润至少为25元请比较哪种方案的最大利润更高,并说明理由.【解答】解:(1)由题意得,销售量=250﹣10(x﹣25)=﹣10x+500,则w=(x﹣20)(﹣10x+500)=﹣10x2+700x﹣10000;(2)w=﹣10x2+700x﹣10000=﹣10(x﹣35)2+2250.∵﹣10<0,∴函数图象开口向下,w有最大值,当x=35时,w最大=2250,故当单价为35元时,该文具每天的利润最大;(3)A方案利润高.理由如下:A方案中:20<x≤30,故当x=30时,w有最大值,此时w A=2000;B方案中:,故x的取值范围为:45≤x≤49,∵函数w=﹣10(x﹣35)2+2250,对称轴为直线x=35,∴当x=45时,w有最大值,此时w B=1250,∵w A>w B,∴A方案利润更高.2.某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?【解答】解:(1),∴y=﹣4x+480(x≥60);(2)根据题意可得,x(﹣4x+480)=14000,解得,x1=70,x2=50(不合题意舍去),∴当销售价为70元时,月销售额为14000元.(3)设一个月内获得的利润为w元,根据题意,得w=(x﹣40)(﹣4x+480),=﹣4x2+640x﹣19200,=﹣4(x﹣80)2+6400,当x=80时,w的最大值为6400∴当销售单价为80元时,才能在一个月内获得最大利润,最大利润是6400元.3、鄂州市化工材料经销公司购进一种化工原料若干千克,价格为每千克30元.物价部门规定其销售单价不高于每千克60元,不低于每千克30元.经市场调查发现:日销售量y(千克)是销售单价x(元)的一次函数,且当x=60时,y=80;x=50时,y=100.在销售过程中,每天还要支付其他费用450元.(1)求出y与x的函数关系式,并写出自变量x的取值范围.(2)求该公司销售该原料日获利w(元)与销售单价x(元)之间的函数关系式.(3)当销售单价为多少元时,该公司日获利最大?最大获利是多少元?【解答】解:(1)设y=kx+b,根据题意得,解得:k=﹣2,b=200,∴y=﹣2x+200(30≤x≤60);(2)W=(x﹣30)(﹣2x+200)﹣450=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000;(3)W=﹣2(x﹣65)2+2000,∵30≤x≤60,∴x=60时,w有最大值为1950元,∴当销售单价为60元时,该公司日获利最大,为1950元.4、(1)猜想y是x的一次函数.设这个一次函数为(0)y kx b k=+≠,∵假设这个一次函数的图象经过(20,500),(30,400)这两点,∴5002040030k b k b=+⎧∴⎨=+⎩,解得10700kb=-⎧⎨=⎩,∴10700y x=-+.……………………………………3分经验证,其他几个点也在该函数图象上,所求函数式是一次函数10700y x =-+.………………………………………4分(2)设工艺厂试销该工艺品每天获得的利润是W 元,依题意得:22(10)(10700)10800700010(40)+9000W x x x x x =--+=-+-=--,………6分 100-<,∴抛物线开口向下,当35x ≤时,W 的值随着x 值的增大而增大,∴销售单价定为35元∕件时,工艺厂试销该工艺品每天获得的利润最大.7分此时,8750=最大W (元)……………………………………8分5、(1)根据题意,得R1=P (Q1-20)=(-2x+80)[( x+30)-20],=-x2+20x+800(1≤x ≤20,且x 为整数),R2=P (Q2-20)=(-2x+80)(45-20),=-50x+2000(21≤≤30,且x 为整数);(2)在1≤x ≤20,且x 为整数时,∵R1=-(x-10)2+900,∴当x=10时,R1的最大值为900,在21≤x ≤30,且x 为整数时,∵R2=-50x+2000,-50<0,R2随x 的增大而减小,∴当x=21时,R2的最大值为950,∵950>900,∴当x=21即在第21天时,日销售利润最大,最大值为950元.点评:本题需要反复读懂题意,根据营销问题中的基本等量关系建立函数关系式,根据时间段列出分段函数,再结合自变量取值范围分别求出两个函数的最大值,并进行比较,得出结论6、(1)设李明第n 天生产的粽子数量为420只,由题意可知:30n+120=420,解得n=10.答:第10天生产的粽子数量为420只.(2)由图象得,当0≤x ≤9时,p=4.1;当9≤x ≤15时,设P=kx+b ,把点(9,4.1),(15,4.7)代入得,, 解得,∴p=0.1x+3.2,①0≤x ≤5时,w=(6﹣4.1)×54x=102.6x ,当x=5时,w 最大=513(元);②5<x≤9时,w=(6﹣4.1)×(30x+120)=57x+228,∵x是整数,∴当x=9时,w最大=714(元);③9<x≤15时,w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,∵a=﹣3<0,∴当x=﹣=12时,w最大=768(元);综上,当x=12时,w有最大值,最大值为768.。
分式应用题(销售问题)

分式方程应用题
一、销售类问题
例1某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料0.5kg少3元,比乙种原料0.5kg多1元,问混合后的单价0.5kg是多少元?
分析:遇到营销类应用性问题,与价格有关的是:单价、总价、平均价等,要了解它们的意义,建立它们之间的关系式.
例2.某商场销售某种商品,一月份销售了若干件,共获得利润30000元;二月份把这种商品的单价降低了 0.4元,但是销售量比一月份增加了5000件,从而获得利润比一月份多2000元,调价前每件商品的利润为多少元?
分析:可以列出三个等量关系
1.2月份销售量一1月份销售量=5000
2.2月份销售量×2月份利润=2月份总利润
3.1月份利润一2月份利润=0.4
对应练习
1、某煤矿现在平均每天比原计划多采330吨,已知现在采煤33000吨煤所需的时间和原计划采23100吨煤的时间相同,问现在平均每天采煤多少吨。
2、A、B两位采购员同去一家饲料公司购买同一种饲料两次,两次饲料的价格有变化,但两位采购员的购货方式不同.其中,采购员A每次购买1000千克,采购员B每次用去800元,而不管购买饲料多少,问选用谁的购货方式合算?
3、某校办工厂将总价值为2000元的甲种原料与总价值为4800元的乙种原料混合后,其平均价比原甲种原料每千克少3元,比乙种原料每千克多1元,问混合后的单价每千克是多少元?。
六年级数学售价成本利润应用题

六年级数学售价成本利润应用题全文共四篇示例,供读者参考第一篇示例:在学校的数学课上,老师通知学生们需要完成一份关于售价、成本和利润的应用题作业。
这个任务对于六年级学生来说可能会有些挑战,但是通过认真思考和努力学习,他们一定能够成功完成。
让我们一起来看看这个有趣的数学题目吧!题目:某商店购进了一批文具,总成本为300元。
商店打算以每件文具售价5元的价格进行销售。
请问商店需要卖出多少件文具才能实现总利润为150元的目标?解题过程:我们需要计算每件文具的利润是多少。
利润是售价减去成本的差额。
根据题目所给的信息,每件文具的成本为300元,售价为5元,因此每件文具的利润为5元- 3元= 2元。
接下来,我们需要确定实现总利润为150元的销售数量。
假设商店需要卖出x件文具才能实现目标利润。
总利润可以表示为利润乘以销售数量,即150元= 2元* x。
通过解方程,我们可以得出x的值。
150元= 2元* xx = 150元/ 2元x = 75商店需要卖出75件文具才能实现总利润为150元的目标。
在这道题目中,我们学习了如何计算售价、成本和利润之间的关系,以及如何通过方程来解决数学问题。
这些知识和技能在日常生活中也非常有用,能够帮助我们更好地理解商业运作和经济学原理。
希望同学们能够认真对待这个数学作业,并努力完成!如果有任何问题,也请及时向老师求助,老师们一定会很乐意帮助大家解决困惑。
加油!第二篇示例:售价、成本和利润这三个概念在商业中扮演着至关重要的角色。
对于一个商家来说,售价不仅影响到产品的市场竞争力,也直接关系到企业的盈利能力。
而成本则是生产或采购商品所花费的费用,直接影响到企业的盈利情况。
了解售价、成本和利润之间的关系,可以帮助我们更好地管理企业,提高盈利能力。
在数学中,我们可以通过一些应用题来深入了解售价、成本和利润之间的关系。
在六年级的数学课上,老师给出了以下的应用题来帮助学生练习掌握这些概念。
题目一:小明在一家商店购买了一件T恤,售价为50元。
销售利润问题应用题

销售利润问题应用题基本公式:利润=售价-进价利润率=利润/进价例题:某商品打折后,商家仍然可得25%的利润。
如果该商品是以每件元的价格进的,为该商品在货架上的标价是多少用公式:售价=进价*(1+利润率)本题中,设标价为x元,则售价为:75%*x进价为元,利润率为25%所以 75%*x = *(1+25%) ,解得:x=28(元)练习:1、商品进价为400元,标价为600元,商店要求以利润率不低于5%的售价打折出售,最低可以打几折出售此商品2、某种商品进价为1600元,按标价的8折出售利润率为10%,问它的标价是多少3、甲种运动器械进价1200元,按标价1800元的9折出售,乙种跑步器,进价2000元,按标价3200元的8折出售,哪种商品的利润率更高些4、一批货物,甲把原价降低10元卖,用售价的10%作资金,乙把原价降低20元,用售价的20%作资金,若两人资金一样多,求原价。
5、某商品的售价780元,为了薄利多销,按售价的9折销售再返还30元礼券,此时仍获利10%,此商品的进价是多少元6、一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400元,那么彩电的标价是多少元7、某商品的标价为165元,若降价以9折出售(即优惠10%),仍可获利10%(相对于进价),那么该商品的进价是多少8、某商品的进价是2000元,标价为3000元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品9、某种商品进货后,零售价定为每件900元,为了适应市场竞争,商店按零售价的九折降价,并让利40元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元10、某商场售货员同时卖出两件上衣,每件都以135元售出,若按成本计算,其中一件赢利25%,另一件亏损25%,问这次售货员是赔了还是赚了11、市场鸡蛋按个数计价,一商贩以每个元购进一批鸡蛋,但在贩运途中,不慎碰坏了12个,剩下的蛋以每个元售出,结果获利元,问商贩当初买进多少鸡蛋12、某学校准备组织教师和学生去旅游,其中教师22名,现有甲、乙两家旅行社,其定价相同,并且都有优惠条件,甲旅行社表示教师免费,学生按八折收费;乙旅行社表示教师和学生一律按七五折收费,经核算后,甲、乙实际收费相同,问共有多少学生参加旅游13、某股民将甲、乙两种股票卖出,甲种股票卖出1500元,获利20%,乙种股票也卖出1500元,但亏损20%,该股民在这次交易中是赢利还是亏损赢利或亏损多少14、某商店从某公司批发部购100件A钟商品,80件B种商品,共花去2800元,在商店零售时,每件A种商品加价15%,每件B种商品加价10%,这样全部售出后共收入3140元,问A、B两种商品的买入价各为多少元15、某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25元,而按定价的九折出售,将赚20元,这种商品的定价为多少元16、一套家具按成本加6成定价出售,后来在优惠条件下,按照售价的72%降低价格售出可得6336元,求这套家具的成本是多少元这套家具售出后可赚多少元17、某种商品标价为226元,现打七折出售,仍可获利13%,这钟商品的进价是多少18、个体户小张,把某种商品按标价的九折出售,仍可获利20%,若按货物的进价为每件24元,求每件的标价是多少元19、某商品的进价是3000元,标价是4500元(1)商店要求利润不低于5%的售价打折出售,最低可以打几折出售此商品(2)若市场销售情况不好,商店要求不赔本的销售打折出售,最低可以打几折售出此商品(3)如果此商品造成大量库存,商店要求在赔本不超过5%的售价打折出售,最低可以打几折售出此商品思考题:1. 某地生产蔬菜,若在市场上直接销售,每吨利润1000元。
一元一次不等式(销售问题)应用题专题(附答案)

一元一次不等式(销售问题)应用题专题(销售问题)1、商场购进某种商品m件,每件按进价加价30元售出全部商品的65%,然后再降价10%,这样每件仍可获利18元,又售出全部商品的25%。
(1)试求该商品的进价和第一次的售价;(2)为了确保这批商品总的利润率不低于25%,剩余商品的售价应不低于多少元?解:(1)设进价是x元, (一件商品)(1-10%)×(x+30)=x+18x=90第一次的售价x+30=90+30=120该商品的进价和第一次的售价分别是90元和120元(2)设剩余商品售价应不低于y元,(90+30)×m×65%+(90+18)×m×25%+y×m×(1-65%-25%)≥90×(1+25%) ×my≥75剩余商品的售价应不低于75元2.水果店进了某中水果1t,进价是7元/kg。
售价定为10元/kg,销售一半以后,为了尽快售完,准备打折出售。
如果要使总利润不低于2000元,那么余下的水果可以按原定价的几折出售?解:方法一:设按原价的x折出售所以:1000×1/2×10+1000×1/2×10×x/10>=7×1000+20005000+500x>=90005x>=40x>=8所以至多打8折方法二:1.货款:7.00*1000=7000.00元2、已销售产生的利润:(10.00*500)-(7.00*500)=5000.00-3500.00=1500.00元3、剩余商品需要产生的利润:2000-1500.00=500.00元4、产生利润需要的单价:7.00+500/500=8元5、需要在10元基础上打折:8/10=0.8,也就是八折3.“中秋节”期间苹果很热销,一商家进了一批苹果,进价为每千克1.5元,销售中有6%的苹果损耗,商家把售价至少定为每kg多少元,才能避免亏本?解:设这批苹果有 a千克,商家把售价至少定为每千克 x元a(1-6%)×x≥a×1.5解得:x≥1.60(哟等于)2、某电影院暑假向学生优惠开放,每张票2元。
小学数学六年级上册应用题解答题精选易错题集经典题目含答案

小学数学六年级上册应用题解答题精选易错题集经典题目含答案一、六年级数学上册应用题解答题1.龙城超市上个星期售出甲、乙两种品牌的饮料箱数如下图.(1)在这个星期中,两种品牌饮料的销售量在哪一天相差最大?(2)甲饮料周日的销售比周一多百分之几?(3)甲饮料这个星期平均每天销售多少箱?乙饮料呢?2.观察下面点阵中的规律,回答下面的问题:①方框内的点阵包含了()个点。
②照这样的规律,第12个点阵中应包含多少个点?我是这样想的:3.如图是光明小学的运动场的示意图,阴影部分为跑道.求跑道的占地面积.4.六年级举行体操和拔河比赛,参赛人数占全年级的40%,参加体操比赛的占参赛总人数的25,参加拔河比赛的占参赛总人数的34,两项都参加的有12人,全年级共有多少人?5.果园里的桃树比苹果树少50棵,苹果树的13和桃树的40%相等,梨树的棵数与苹果树的棵数之比是2∶3,果园里这三种树各有多少棵?6.工程队挖一条水渠,第一天挖了全长的20%,第二天比第一天多挖72米,这时已挖的部分与未挖部分的比是4∶3,这条水渠长多少米?7.赵叔叔加工一批零件,计划每小时加工125个,6小时完成,实际工作效率提高20%。
实际多少时间可以完成?8.一辆大巴车从濮阳开往郑州,行了一段路程后,离郑州还有135千米,接着又行了全程的20%,这时已行路程和未行路程的比是3∶2,濮阳与郑州相距多少千米?9.佳惠超市按商品标价的80%进行促销。
光明小学在此超市按促销价购买了200支钢笔,共付2040元。
(1)每支钢笔的标价是多少元?(2)如果每支钢笔超市的进价是8.5元,问超市是在进价基础上加价百分之几将这200支钢笔卖给光明小学的?10.实验小学六年级有男生120人,女生人数与男生人数的比是3∶5,六年级学生总人数恰好占全校学生人数的20%,实验小学有学生多少人?11.2019年12月新野到郑州的高铁正式开通,现在从新野乘高铁约需1小时30分到郑州,而乘大巴车到郑州约需4.5小时,现在乘高铁到郑州用的时间比乘大巴车到郑州节省百分之几?速度提高了百分之几?12.如图所示,大圆不动,小圆贴合着大圆沿顺时针方向不断滚动。
新人教版小学六年级数学上册应用题训练100题及答案解析

新人教版小学六年级数学上册应用题训练100题及答案解析一、六年级数学上册应用题解答题1.某商场一天内销售两种服装的情况是,甲种服装共卖得1560元,乙种服装共卖得1350元,若按两种服装的成本分别计算,甲种服装盈利25%,乙种服装亏本10%,试问该商场这一天是盈利还是亏本?盈或亏多少元?解析:盈利;盈利162元【分析】由题意可知,甲种服装盈利25%,就是比成本多了25%,那么卖价就是成本的1+25%=125%;乙种服装亏本10%,就是比成本少了10%,那么卖价就是成本的1-10%=90%;根据“已知一个数的百分之几是多少,求这个数”,用除法计算出甲种服装和乙种服装的成本价,然后把一天的销售总额加起来跟成本总价相比,就知道是盈亏多少了。
【详解】1560÷(1+25%)=1560÷1.25=1248(元)1350÷(1-10%)=1350÷90%=1500(元)1560+1350=2910(元)1248+1500=2748(元)2910-2748=162(元)答:该商场这一天盈利了,盈利162元。
【点睛】解答此题的关键是要求出甲乙两种服装的成本价,根据已知一个数的百分之几是多少,求这个数用除法计算。
2.如图是光明小学的运动场的示意图,阴影部分为跑道.求跑道的占地面积.解析:2750平方米【详解】60﹣10×2=60﹣20=40(米)50×10×2+3.14×[(60÷2)2﹣(40÷2)2]=1000+3.14×[900﹣400]=1000+3.14×500=1000+1750=2750(平方米)答:跑道的占地面积2750平方米.3.甲、乙两图中正方形的面积都是40cm2,阴影部分的面积哪一块大?大多少?解析:乙大,大14.2 cm2【分析】甲阴影部分的面积=正方形的面积-圆的面积,甲中圆的面积=π×正方形的面积÷4;乙阴影部分的面积=圆的面积-正方形的面积,乙中圆的面积=π×正方形的面积÷2;然后进行比较、作差即可。
一元一次方程应用题销售问题

思考?
• 对商品销售中的盈亏问题中的量?
成本价(进价); 标价; 利润; 销售价; 盈利;
亏损;
利润率;
销 售 中 的 盈 亏
●售价、进价、利润的关系式: 利润 = 售价—进价
●进价、利润、利润率的关系:
利润 利润率= 进价 ×100%
●标价、折扣数、商品售价关系
:
商品售价= 标价× 折扣数 10 ●商品售价、进价、利润率的关系: 商品售价= 商品进价×(1+利润率)
练习:
一项工程,甲单独做需要10天完成, 乙单独做需要15天完成,两人合作4天 后,剩下的部分由乙单独做,还需要几天 完成?
3.4一元一次方程的应用 ----销售问题
清仓处理
跳楼价5折酬宾Fra bibliotek满200返160
知识探究
探究销售中的盈亏问题:
1、商品原价200元,九折出售,卖价是 180 元. 2、商品进价是30元,售价是50元,则利润 是 20 元. 3、某商品按定价的八折出售,售价是14.8元, 设定价为X元,则可列方程 0.8X=14.8 . 4、某商品原来每件零售价是a元, 现在每件降 价10%,降价后每件零售价是 0.9a 元.
驶向胜利 的彼岸
问题&情境
探究1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、某种商品进价为1600 元,按标价的8 折出售利润率为10%,问它的标价是多少?
1600×(1+10%)÷80%,
=1600×1.1÷0.8,
=1760÷0.8,
=2200(元);
答:标价是2200元。
2、一商店把彩电按标价的九折出售,仍可获利20%,若该彩电的进价是2400 元,那么彩电的标价是多少元?
2400×(1+20%)÷90%,
=2400×120%÷90%,
=2880÷90%,
=3200(元);
答:该彩电的标价是3200元。
3、某商品的标价为165 元,若降价以9 折出售(即优惠10%),仍可获利10%(相对于进价),那么该商品的进价是多少?
解:设该商品的进价是x元,
根据题意列方程得:165×0.9-x=10%x,
解得:x=135.
答:该商品的进价是135元。
4、某商品的售价780 元,为了薄利多销,按售价的9 折销售再返还30 元礼券,此时仍获利20%,此商品的进价是多少元?
(780×90%-30)÷(1+20%)
=(702-30)÷120%
=672÷1.2=560(元)
答:此商品的进价是560元。
5、某商品的进价是2000 元,标价为3000 元,商店要求以利润率不低于5%的售价打折出售,售货员最低可以打几折出售此商品?2000×(1+5%)=2000×1.05=2100(元);
2100÷3000=70%;
最低售价是标价的70%,也就是最低可以打7折.
答:售货员最低可以打七折出售此商品。
6、某种商品进货后,零售价定为每件900 元,为了适应市场竞争,商店按零售价的九折降价,并让利40 元销售,仍可获利10%(相对于进价),问这种商品的进价为多少元?
解:设进价为x元可列方程:
x×(1+10%)=900×90%-40,
解得:x=700,
答:这种商品的进价为700元。
7、某种商品标价为226 元,现打七折出售,仍可获利13%,这钟商品的进价是多少?
226×70%÷(1+13%) =158.2÷113% =140(元)
答:这钟商品的进价是140元。
8、个体户小张,把某种商品按标价的九折出售,仍可获利20%,若
按货物的进价为每件24 元,求每件的标价是多少元?
24×(1+20%),
=24×1.2,
=28.8(元);
28.8÷90%=32(元);
答:每件的标价是32元。
9、某种商品因换季准备打折出售,如果按定价的七五折出售,将赔25 元,而按定价的九折出售,将赚20 元,这种商品的定价为多少元?解:设这种商品的定价是x元.根据题意,得
0.75x+25=0.9x-20,
解得x=300
答:这种商品的定价为300元。
10、一套家具按成本加6 成定价出售,后来在优惠条件下,按照售价的72%降低价格售出可得6336 元,求这套家具的成本是多少元?这套家具售出后可赚多少元?
6336÷72%÷(1+60%),
=6336÷72%÷160%,
=8800÷160%,
=5500(元)
6336-5500=836(元)
答:这套家具的成本是5500元,这套家具售出后可赚836元。