行列式的定义及性质

合集下载

行列式知识点

行列式知识点

行列式知识点行列式是线性代数中的重要概念之一,广泛应用于数学、物理、工程和计算机科学等领域。

本文将介绍行列式的基本概念、性质和计算方法,帮助读者更好地理解和应用行列式知识。

一、行列式的定义行列式是一个与矩阵相关的数值。

对于一个n阶方阵A,它的行列式表示为det(A),其中n表示方阵的阶数。

行列式的计算涉及到矩阵的元素和排列的概念,下面将详细介绍。

二、行列式的性质1. 行列式的对角线规则:对于一个n阶方阵A,行列式det(A)等于主对角线元素相乘的积减去次对角线元素相乘的积。

2. 行列式的性质之一:交换行(列)位置,行列式的值不变。

3. 行列式的性质之二:若行(列)中有两行(列)元素成比例,行列式的值为0。

4. 行列式的性质之三:行列式的某一行(列)乘以一个数k,等于行列式的值乘以k。

三、行列式的计算方法1. 二阶和三阶行列式的计算:对于二阶行列式A,可以用交叉相乘法计算,即ad-bc。

对于三阶行列式A,可以用Sarrus法则计算。

2. 高阶行列式的计算:对于n阶行列式A,可以利用拉普拉斯展开定理进行计算。

具体步骤是选择一行(列)作为展开行(列),将行列式展开为以该行(列)元素为首的n个代数余子式的乘积之和。

四、行列式的应用1. 线性方程组的解:行列式可以用于求解线性方程组的解。

若系数矩阵的行列式不为0,则方程组有唯一解;若行列式为0,则方程组无解或有无穷解。

2. 矩阵的逆:若一个n阶方阵A的行列式不为0,则矩阵A可逆,且其逆矩阵A^{-1}的元素可以用A的伴随矩阵元素和行列式的倒数表示。

3. 坐标变换:在几何学中,行列式可以用于坐标变换。

例如,二维平面上坐标变换时,坐标的旋转、平移和缩放可以用行列式进行表示。

五、总结本文介绍了行列式的基本概念、性质和计算方法,并提供了行列式在线性方程组、矩阵逆和坐标变换中的应用。

行列式作为线性代数中的基础知识,对于深入理解和应用相关领域的知识具有重要作用。

通过学习和掌握行列式的知识点,读者可以更好地理解相关的数学和科学问题,并灵活运用行列式进行问题求解和分析。

行列式的定义与计算

行列式的定义与计算

行列式的定义与计算行列式是线性代数中的一个重要概念,用于描述线性方程组的性质以及矩阵的特征。

在本文中,将介绍行列式的定义以及计算方法。

一、行列式的定义行列式是一个数学函数,用一种特定的方式将矩阵映射为一个数字。

对于n阶矩阵A = [aij]来说,其行列式记作det(A)或|A|。

行列式的定义如下:当n=1时,矩阵只有一个元素,此时矩阵的行列式就是这个元素本身。

当n>1时,矩阵A可以分为n行n列,可以表示为:A = [a11 a12 (1)a21 a22 (2)... ... ... ...an1 an2 ... ann]其中a11、a12...ann是矩阵A的元素。

对于n>1的情况,行列式的计算可以使用展开定理或按行(列)展开等方法进行。

二、行列式的计算(一)二阶行列式二阶行列式的计算公式如下:|A| = a11·a22 - a12·a21(二)三阶行列式三阶行列式的计算公式如下:|A| = a11·a22·a33 + a12·a23·a31 + a13·a21·a32 - a13·a22·a31 -a12·a21·a33 - a11·a23·a32(三)n阶行列式n阶行列式的计算可以通过列展开、行展开或使用拉普拉斯定理等方法进行。

这里以列展开为例介绍。

设A为一个n阶矩阵,可以将其表示为A = [a1 a2 ...an],其中ai为A的第i列。

若选择第k列进行展开,则根据列展开法可得:|A| = a1k·A1k - a2k·A2k + ... + (-1)^(k+1)·ank·Ank其中,Aik是移去第i行第k列元素所形成的(n-1)阶行列式。

根据此公式,可以递归地计算n阶行列式的值。

三、行列式的性质行列式具有以下性质:1. 互换行列式的两行(列),行列式的值变号。

行列式与行列式的性质

行列式与行列式的性质

行列式与行列式的性质行列式是线性代数中的一个重要概念,它在矩阵理论、线性方程组的求解以及向量空间的性质研究等方面都起到了至关重要的作用。

本文将从行列式的定义、性质以及应用等方面进行论述,以便更好地理解和应用行列式。

一、行列式的定义行列式是一个方阵所具有的一个标量值,它可以用来描述方阵的性质和特征。

对于一个n阶方阵A=[a_ij],其行列式记作det(A)或|A|,其中i和j分别代表矩阵中的行和列。

二、行列式的性质1. 行列式与矩阵的转置对于一个方阵A,其行列式与其转置矩阵的行列式相等,即det(A)=det(A^T)。

这个性质可以通过矩阵的定义和性质进行证明。

2. 行列式的可加性对于两个n阶方阵A和B,有det(A+B)=det(A)+det(B)。

这个性质可以通过行列式的定义和矩阵的性质进行证明。

3. 行列式的乘法性质对于一个n阶方阵A和一个标量k,有det(kA)=k^n*det(A)。

这个性质说明了行列式与矩阵的数乘之间的关系。

4. 行列式的行交换性对于一个n阶方阵A,如果将其两行进行交换,那么行列式的值会改变符号,即det(A)=-det(A'),其中A'是A进行行交换后的矩阵。

5. 行列式的行倍性对于一个n阶方阵A,如果将其某一行乘以一个非零标量k,那么行列式的值也会乘以k,即det(kA)=k*det(A)。

三、行列式的应用1. 线性方程组的求解行列式可以用来求解线性方程组的解,通过行列式的性质可以得到线性方程组是否有唯一解、无解或者有无穷多解。

2. 矩阵的可逆性一个n阶方阵A可逆的充要条件是其行列式不等于零,即det(A)≠0。

这个性质可以用来判断一个矩阵是否可逆。

3. 矩阵的秩矩阵的秩可以通过行列式的概念来定义,对于一个n阶矩阵A,其秩r等于其非零子式的最高阶数。

行列式的性质可以帮助我们计算矩阵的秩。

4. 矩阵的特征值与特征向量矩阵的特征值与特征向量可以通过行列式的性质来计算,特征值是一个标量,特征向量是一个非零向量,它们满足A*x=λ*x,其中A是矩阵,x是特征向量,λ是特征值。

行列式的认识

行列式的认识

行列式的认识在线性代数中,行列式是一种非常重要的概念,它是一个方阵的一个标量量度。

它在许多领域中都有着广泛的应用,包括物理,工程学,统计学和计算机图形学等。

1. 行列式的定义行列式通常表示为$det(A)$或$|A|$。

它是一个方阵的数字值,如果它是正的,则表示该矩阵是“正定”的,否则表示它是“负定”的。

一个矩阵的行列式的计算方式如下:$$ det(A)=\sum_{\sigma\in S_{n}}(-1)^{\tau(\sigma)}\prod_{i=1}^{n}a_{i,\sigma_i},$$其中,$n$是矩阵的阶数,$a_{i,j}$是矩阵$A$中第$i$行第$j$列的元素,$S_n$是$n$个元素的置换群,$\sigma$是$S_n$中一个置换。

$\tau(\sigma)$表示置换$\sigma$的逆序数,即该置换可以通过多少次交换相邻的元素变为单位置换。

$(-1)^{\tau(\sigma)}$表示符号,当逆序数是偶数时取值为正,当逆序数是奇数时取值为负。

因此,行列式的值可以通过先列出所有可能的$n!$种置换,然后计算每个置换的贡献来得到。

2. 行列式的性质行列式有许多令人惊讶的性质。

以下是一些重要性质的概述:2.1 行列式的性质1:任意交换矩阵的两行或两列,行列式的值会发生反转。

根据上述公式,当交换两行时,置换的符号改变了,因为逆序数的奇偶性改变了。

当交换两列时,置换的奇偶性也改变了,因此结果符号仍然改变。

例如,对于一个3x3的矩阵A,如果我们交换第1行和第2行,那么行列式的值将由$det(A)$变为$-det(A)$。

2.2 行列式的性质2:如果矩阵的两行或两列成比例,那么该行列式的值为零。

如果两行成比例,那么矩阵的行列式为零,因为对于任何置换$\sigma$,这两行的元素始终被映射到了同一列。

结果是,对于每个乘积$a_{i,\sigma_i}$,该乘积乘以一个相同的因子$a_{j,\sigma_j}=ka_{i,\sigma_j}$,其中$k$是一个常数。

行列式的运算法则

行列式的运算法则

行列式的运算法则行列式是线性代数中的一个重要概念,它在矩阵运算和方程组求解中起着重要的作用。

行列式的运算法则是指对于不同类型的行列式,我们可以通过一系列的运算来求得其值。

本文将介绍行列式的运算法则,包括行列式的定义、性质以及常见的运算方法。

1. 行列式的定义行列式是一个数学概念,用来描述一个方阵(即行数等于列数的矩阵)所固有的一种性质。

对于一个n阶方阵A,其行列式记作det(A),可以通过以下方法来计算:- 当n=1时,det(A) = a11,即一个1阶方阵的行列式就是它的唯一元素。

- 当n=2时,det(A) = a11 * a22 - a12 * a21,即一个2阶方阵的行列式是其主对角线上元素的乘积减去次对角线上元素的乘积。

- 当n>2时,可以通过递归的方法将n阶方阵的行列式表示为n-1阶方阵的行列式的线性组合,直到n=2时再利用上述方法计算。

2. 行列式的性质行列式具有许多重要的性质,其中包括:- 互换行列式的两行(列)会改变行列式的符号,即det(-A)= (-1)^n * det(A),其中n为方阵的阶数。

- 如果方阵A的某一行(列)全为0,则det(A) = 0。

- 如果方阵A的两行(列)成比例,则det(A) = 0。

- 如果方阵A的某一行(列)是另一行(列)的线性组合,则det(A) = 0。

- 如果方阵A的某一行(列)加上另一行(列)的k倍,行列式的值不变。

3. 行列式的运算法则在实际应用中,我们经常需要对行列式进行一系列的运算,常见的运算包括:- 行列式的加法:如果方阵A、B的行数和列数相等,则它们的行列式可以相加,即det(A + B) = det(A) + det(B)。

- 行列式的数乘:如果方阵A的行列式为det(A),则kA的行列式为k^n * det(A),其中k为常数,n为方阵的阶数。

- 行列式的乘法:如果方阵A、B的行数和列数相等,则它们的行列式可以相乘,即det(AB) = det(A) * det(B)。

行列式的性质及求解方法

行列式的性质及求解方法

行列式的性质及求解方法行列式是线性代数中的一个重要概念,具有广泛的应用领域,例如矩阵求逆、线性方程组的解法、空间向量的叉积等。

在本文中,我们将探讨行列式的性质及其求解方法。

一、行列式的定义及性质1.1 行列式的定义对于一个$n$阶方阵$A=[a_{ij}]$,定义它的行列式为:$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\sum_{\sigma \in S_n}(-1)^{\mathrm{sgn}(\sigma)}a_{1\sigma(1)}a_{2\sigma(2)}\cdotsa_{n\sigma(n)}$$其中,$\sigma$是$n$个元素的全排列,$S_n$表示$n$个元素的置换群,$\mathrm{sgn}(\sigma)$表示$\sigma$的符号,即$(-1)^k$,其中$k$为$\sigma$的逆序数。

1.2 行列式的性质- 行列式的值不变性行列式的值只与矩阵的元素有关,而与矩阵的行列变换或线性组合无关。

- 互换矩阵的两行或两列,行列式变号将矩阵的两行(列)互换,则该行列式的值取相反数。

- 矩阵的某一行(列)乘以一个数$k$,行列式的值乘以$k$将矩阵的某一行(列)乘以一个数$k$,则该行列式的值乘以$k$。

- 矩阵的某一行(列)加上另一行(列)的k倍,行列式不变将矩阵的某一行(列)加上另一行(列)的k倍,行列式的值不变。

- 方阵的行列式等于其转置矩阵的行列式$$\begin{vmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\a_{21} & a_{22} & \cdots & a_{2n} \\\vdots & \vdots & \ddots & \vdots \\a_{n1} & a_{n2} & \cdots & a_{nn}\\\end{vmatrix}=\begin{vmatrix}a_{11} & a_{21} & \cdots & a_{n1} \\a_{12} & a_{22} & \cdots & a_{n2} \\\vdots & \vdots & \ddots & \vdots \\a_{1n} & a_{2n} & \cdots & a_{nn}\\\end{vmatrix}$$二、行列式的求解方法2.1 按定义计算法按照上述定义,计算行列式涉及到全排列的遍历与逆序数的计算,这种方法虽然理论上可行,但计算量较大,不适用于较大的矩阵。

行列式知识点汇总

行列式知识点汇总

行列式知识点汇总在数学中,行列式是一个重要的概念,用于描述线性代数中的一些性质和运算。

它在各个领域中都有广泛应用,如线性方程组的求解、矩阵的特征值和特征向量的计算等。

本文将对行列式的相关知识点进行汇总介绍,帮助读者更好地理解和应用行列式。

1. 行列式的定义行列式是一个用来对方阵进行运算的函数。

对于n阶方阵A,它的行列式记作det(A)或|A|,其中n表示方阵的阶数。

行列式的计算通常通过对方阵进行按行展开或按列展开的方式来进行,根据展开的元素进行递归计算。

2. 行列式的性质行列式具有以下性质:- 性质1:互换行(列)会改变行列式的符号,即det(A) = -det(A'),其中A'表示通过互换A的两行(两列)得到的新方阵。

- 性质2:如果行(列)中有零元素,则行列式的值为0。

- 性质3:行(列)成比例,则行列式的值为0。

- 性质4:行列式的某一行(列)的所有元素都乘以k,等价于行列式乘以k。

- 性质5:若A的某一行(列)元素都是两数之和,则行列式可以分解为两个行列式的和。

- 性质6:若A的某一行(列)元素都是两数之差,则行列式可以分解为两个行列式的差。

3. 行列式的计算方法行列式的计算可以根据方阵的阶数和具体性质来选择不同的方法,主要有以下几种方法:- 按行(列)展开法:通过按行(列)展开元素,并对展开的结果进行递归计算。

- 初等行变换法:通过初等行变换将矩阵转化为上(下)三角矩阵,再利用三角矩阵行列式的计算公式求解。

- 对角线法则:将方阵按对角线划分为若干小方阵,利用小方阵行列式的性质求解。

4. 行列式的重要应用行列式在线性代数中有广泛的应用,下面介绍几个重要的应用:- 线性方程组的求解:利用行列式可以判断线性方程组是否有唯一解、无解或无穷解,并可以通过克拉默法则求解方程组。

- 矩阵的逆:若方阵A的行列式不为0,则A可逆,且可以通过行列式求解矩阵的逆。

- 特征值和特征向量:方阵A的特征值为使得det(A-λI)=0成立的λ值,其中I为单位矩阵。

行列式运算法则

行列式运算法则
• 利用代数法,通过行列式的性质和公式证明性质
• 利用几何法,通过图形直观地证明性质
行列式的特殊类型
对角行列式
• 对角线上的元素相乘后求和,即det(A) = Σ(-1)^(i+j) * aij * det(I_(ij)),其中I是
单位矩阵
上三角行列式和下三角行列式
• 上三角行列式:主对角线以下的元素全为0的行列式
det(I)
• 伴随矩阵可以用来计算行列式的导数
03
逆矩阵和伴随矩阵的计算方法
• 利用高斯消元法计算逆矩阵
• 利用行列式的性质和公式计算伴随矩阵
05
行列式运算的误差分析与优化
行列式运算的误差来源
误差来源分析
误差控制方法
• 舍入误差:由于计算机的浮点数表示和运算,可能导致
• 提高计算机的浮点数精度
• 对角线求和性:det(A) = Σ(-1)^(i+j) * aij * det(A(ij)),其中A(ij)是去掉第i行和第
j列后的矩阵
• 交换律:det(AB) = det(BA)
• 多行(列)展开性:可以将行列式的一行(列)展开,得到一个新的行列式
行列式性质的证明方法
• 利用定义法,通过计算证明性质
行列式运算法则
CREATE TOGETHER
DOCS
01
行列式的定义与性质
行列式的定义及其意义

行列式是线性代数中的一个重要概念
• 定义:一个n阶方阵A的元素aij(i, j = 1, 2, ..., n)按照一定的规则
相乘后求和,记作det(A)
• 意义:行列式反映了矩阵的一些重要性质,如线性无关向量组的体
• 行展开式:将第i行展开,得到一个新的(n-1)阶行列式
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行列式的定义及性质
(张俊敏)
教学目标与要求
通过学习,使学生理解n 阶行列式的定义,熟练掌握二、三阶行列式性质,能运用性质求行列式的值。

教学重点与难点
教学重点:n 阶行列式的定义及性质。

教学难点:n 阶行列式定义的理解.
教学方法与建议
通过复习高中时所学过的二阶与三阶行列式,了解行列式及其应用,在此基础上引出一般意义上的n 阶行列式定义。

要特别指出:行列式是一种运算,其结果是一个数;其意义在于在由数组成的形式(方阵)与数域之间建立了一种联系,使得我们可以通过数来研究形式的东西,同时可以通过形式的东西来研究与数有关的问题。

教学过程设计
1.问题的提出
求解二、三元线性方程组
(二元线性方程组⎩⎨
⎧=+=+2
2221211
212111b x a x a b x a x a ,当021122211≠-a a a a 时,可用消元法求得解为:
22
2112
11222121211222112
122211a a a a a b a b a a a a b a a b x =
--= 22
2
1211
22211112112221121
12112a b a a a a b a a a a a a b b a x =
--=
)二阶与三阶行列式
1。

二阶行列式:(回顾高中时的二阶与三阶行列式)1112
112212212122
det()a a A a a a a a a ==-,其中A 为方程组的
系数矩阵.
2. 三阶行列式:
引出 二阶、三阶行列式
32
31
222113
33
31
232112
33
32
2322
1133
32
31
23222113
1211a a a a a a a a a a a a a a
a a a a a a a a a a +-=
注:(1)这是把三阶行列式转化为比它低一阶的二阶行列式进行的计算。

三阶行列式算出来也是一个数。

(2)三阶行列式 也是方形矩阵上定义的一种运算。

2. n 阶行列式的定义:
1112122
23
221
23
22122211
12
23
1
3
1
221
22
2,1
111
2
,1
(1)n n
n
n n n nn
n n nn
n n nn
n n n
n n n n a a a a a a a a a a a a D a a a a a a a a a a a a a a a a a a -+-=
=-+
+- n 阶行列式中去掉
元素ij a 所在行所在列的元素后,得到的1n -阶行列式叫做ij a 的余子式,记作ij M ,即
111,11,111,11,11,11,1,11,11,11,1
,1
,1
j j n i i j i j n n ij i i j i j i n n n j n j nn
a a a a a a a a M a a a a a a a a -+----+-++-+++-+=
并称(1)i j ij ij D M +=-为ij a 的代数余子式.引入这两个记号则可将(2.4)式简记为
111111*********
det (1)(1)k
n
n n n k k k A a M a M a M a M ++==-+
+-=-∑ (2。

5)
或1111121211111
det n
n n k k k A a D a D a D a D ==++
+=∑ (2。

6)
式(2。

4)(2.5)和(2.6)统称为n 阶行列式按第一行的展开式。

注:1 记一阶行列式a a =,但注意不要将其与绝对值概念混淆。

2一些特殊的行列式(下三角行列式,上三角行列式,对角型行列式)
nn n n a a a a a a
2
1
2221
1100
0 nn
n
n a a a a a a 0
022211211
n
λλλ
2
1
n
λλλ
21
其中一类很好求值的行列式——上三角行列式。

例1
(1)
11
22
2122
11
1122
2
1
2
000nn n nn
n n nn
a a a a a a a a a a a a a ==
=
(2)
1
2
12
n n
λλλλλλ=
3.行列式的性质
行列式运算从本质上讲,是由数组成的一种形式上定义的运算,但随着形式的改变,行列式的值有那些变化呢?下面性质就解决了这些问题。

性质1 行列式与它的转置行列式相等.
注 性质1表明行列式中行与列具有同等的地位,也就是说:行列式对行成立的性质,对列也同样成立,反之亦然。

性质2 互换行列式的两行(列),行列式变号。

推论 若行列式中有两行元素完全相同,则行列式为零。

性质3 用数 k 乘行列式某一行中所有元素,等于用数 k
乘此行列式。

换句话叙述此性质即是
推论 某一行所有元素的公因子可提到行列式符号的外面。

性质4 若行列式中有两行元素对应成比例,则行列式为零。

性质5 若行列式某行的元素是两数之和,则行列式可拆成两个行列式的和.
性质6 行列式某一行元素加上另一行对应元素的 k
倍,则行列式的值不变。

注 性质 2、性质3、性质6对应行列式的三种运算,复杂行列式运算均可通过这三种运算的组合运算化为简单行列式运算,然后利用简单行列式(如例2.1)的结果算出复杂行列式的值.
2.三种运算分别记为:
① 互换i 、j 两行(列): )(j i j i c c r r ↔↔ ———- 性质 2;
② 第i 行(列)提取公因数k : )1(1k c k r i i ⨯⨯ ———— 性质3的推论;
③ 将第j 行(列)的k 倍加到第i 行(列)上去: )(j i j i c k c r k r ++ -—-—性质6
4.举例
例2 计算
d
c b a c b a b a a d
c b a c
b a b a a d
c b a c b a b a a d
c
b a D ++++++++++++++++++=3610363234232。

解一:
c
b a b a a c
b a b a a c
b a b
a a
d c b
a D r r r r r r +++++++++=====---363023200233
41
2b a a b a a c b a b a a d
c b a r r r r +++++=====--30020003423 4
0020003
4a a b a a
c b a b a a d
c
b
a r r =++++=====-。

注 1 注意运算中次序有时不能颠倒;还要注意运算i j r r +(加到第i 行上去)与i j r r +的区别。

2 算法不是唯一的,如也可有解法二: 解二:
21
3231414243
2334
00232432002036310630003730020000r r r r r r r r r r r r a
b
c d a b c
d
a a
b a b c
a b c
a a
b D a a b a b
c a a
b a a b a b
c a a b a b c
d a b c a a b a a a
b a
------++++++===========+++++++++++======
+. 例3 设nn
n n nk n k kk k k b b b b c c c c a a a a D 1111111111110
=,
kk k k ij
a a a a a D 11111)(det ==,nn
n n
ij b b b b b D 11112)(det ==, 证明: 21D D D =.
证明: (分析:对D 1作行运算,相当于对D 的前k 行作相同的行运算,且D 的后n 行不变;对D 2作列运
算,相当于对D 的后n 列作相同的列运算,且D 的前k 列不变。

)
∵ 对D 1作适当的运算j i r k r +,可将D 1化为下三角形;同理作适当的列运算j i c k c +,可将D 2化为下三角形,分别设为
kk kk k p p p p p D 1111110===, nn nn
n q q q q q D 1111120==,
故对D 的前k 行作上述行运算,和对D 的后n 列作上述列运算后,D 可化为
2111111111111111
0D D q q p p q q q c c c c p p p D nn kk nn
n nk n k kk
k ===
注 这个例题有很深刻的意义:行列式可进行某种分块运算,且关于块的运算同于行列式的运算。

相关文档
最新文档