2015届高考数学总复习第九章平面解析几何第5课时直线与圆的位置关系教学案(含最新模拟、试题改编)
直线与圆的位置关系 教案

《直线与圆的位置关系》教案【教学目标】一、知识与技能1.理解直线与圆的位置的种类。
2.利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离。
3.会用点到直线的距离来判断直线与圆的位置关系。
二、过程与方法1.通过对直线和圆的三种位置关系的直观演示,培养学生能从直观演示中归纳出几何性质的能力。
2.让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想。
三、情感、态度与价值观在解决实际问题中,体会数学应用的价值,体验动静结合的相对性和独立性。
【重点难点】1.重点:直线与圆的三种位置关系的理解与应用。
2.难点:运用直线与圆的位置关系的性质及判定解决相关的问题。
【教辅手段】板书,ppt等多媒体软件【教学过程】1、复习引入提问上节课所学的点与圆的位置关系,然后让学生带着“如果把点换成直线,那么这条直线与圆有怎样的位置关系?”这个问题画出一个圆和一条直线。
2、归纳概括:(一)询问学生所画的直线与圆有几个公共点并引导学生完成。
(1)直线与圆有两个公共点;(2)直线和圆有唯一公共点(3)直线和圆没有公共点(4)直线与圆不存在三个公共点(二)(指导学生完成)由直线与圆的公共点的个数,得出以下直线和圆的三种位置关系:(1)相交:直线与圆有两个公共点时,叫做直线和圆相交.这时直线叫做圆的割线.(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切.这时直线叫做圆的切线,唯一的公共点叫做切点.(3)相离:直线和圆没有公共点时,叫做直线和圆相离.3.巩固方法,定义新知例1、快速判断下列各图中直线与圆的位置关系解:图中关系依次是第四个直线与圆的关系不容易判断出。
因此引入新的概念——直线与圆的数量关系(1)直线l和⊙O相交⇔d<r;(2)直线l和⊙O相切⇔d=r;(3)直线l和⊙O相离⇔d>r.4、总结5.课堂练习练习1、在 Rt△ABC 中,∠C = 90°,AC = 3 cm , BC = 4 cm , 以C 为圆心,r 为半径的圆与 AB 有怎样的关系?为什么?(1)r = 2 cm ; (2)r = 2.4 cm ; (3)r = 3 cm .解:2.思考题:已知点A的坐标为(1,2),⊙A的半径为3.(1)若要使⊙A与y轴相切,则要把⊙A向右平移几个单位?此时,⊙A 与x轴、⊙A与点O分别有怎样的位置关系?若把⊙A向左平移呢?(2)若要使⊙A与x轴、y轴都相切,则圆心A应当移到什么位置?请写出点A所有可能位置的坐标.解:利用几何画板依次绘出下列图由图得知A 点坐标,以及⊙A 与x 轴、⊙A 与点O 的位置关系。
《直线与圆的位置关系》教案

《直线与圆的位置关系》教案第一章:引言教学目标:1. 让学生了解直线与圆的位置关系的概念。
2. 引导学生通过观察和思考,探索直线与圆的位置关系。
教学内容:1. 直线与圆的定义。
2. 直线与圆的位置关系的分类。
教学步骤:1. 引入直线和圆的定义,让学生回顾相关概念。
2. 提问:直线和圆有什么关系?它们可以相交、相切还是相离?3. 引导学生观察和思考直线与圆的位置关系,让学生举例说明。
练习题目:a) 直线x=2与圆x^2+y^2=4b) 直线y=3与圆x^2+y^2=9c) 直线x+y=4与圆x^2+y^2=8第二章:直线与圆的相交教学目标:1. 让学生了解直线与圆相交的概念。
2. 引导学生通过观察和思考,探索直线与圆相交的性质。
教学内容:1. 直线与圆相交的定义。
2. 直线与圆相交的性质。
教学步骤:1. 引入直线与圆相交的概念,让学生了解相交的含义。
2. 提问:直线与圆相交时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相交的性质,让学生举例说明。
练习题目:a) 直线y=2x+3与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第三章:直线与圆的相切教学目标:1. 让学生了解直线与圆相切的概念。
2. 引导学生通过观察和思考,探索直线与圆相切的性质。
教学内容:1. 直线与圆相切的定义。
2. 直线与圆相切的性质。
教学步骤:1. 引入直线与圆相切的概念,让学生了解相切的含义。
2. 提问:直线与圆相切时,会有什么特殊的性质?3. 引导学生观察和思考直线与圆相切的性质,让学生举例说明。
练习题目:a) 直线y=3x+2与圆x^2+y^2=16b) 直线x-y+4=0与圆x^2+y^2=16c) 直线x+y-6=0与圆x^2+y^2=36第四章:直线与圆的相离教学目标:1. 让学生了解直线与圆相离的概念。
2. 引导学生通过观察和思考,探索直线与圆相离的性质。
直线与圆的位置关系 完整教案

4.2.1 直线与圆的位置关系一、教学目标:1、知识与技能:(1)理解直线与圆的位置关系的种类;(2)会利用平面直角坐标系中点到直线的距离公式求圆心到直线的距离;(3)会用点到直线的距离来判断直线与圆的位置关系.2、过程与方法:通过学习直线与圆的位置关系,掌握解决问题的方法――几何法、代数法。
3、情感态度与价值观:让学生通过观察图形,理解并掌握直线与圆的位置关系,培养学生数形结合的思想.二、教学重、难点:重点:直线与圆的位置关系的几何图形及其判断方法.难点:用坐标法判断直线与圆的位置关系.三、教学方法与手段:1、教学方法:讲解法、讨论法、探究法、演示法2、教学手段:多媒体、几何画板四、教学过程:1、提出问题,情境导入教师利用多媒体展示如下问题:问题1:一个小岛的周围有环岛暗礁,暗礁分布在以小岛的中心为圆心,半径为30km的圆形区域,已知小岛中心位于轮船正西70km处,港口位于小岛中心正北40km处。
如果轮船沿直线返港,那么它是否会触礁危险?设计意图:让学生感受暗礁这个实际问题中所蕴含的直线与圆的位置关系,思考解决问题的方案。
通过实际问题引入,让学生体会生活中的数学,突出研究直线与圆的位置关系的重要意义。
师生活动:让学生进行讨论、交流,启发学生由图形获取判断直线与圆的位置关系的直观认知,引入新课.师:你怎么判断轮船会不会触礁?利用初中所学的平面几何知识,你能解决这个问题吗?请同学们动手试一下。
生:暗礁所在的圆与轮船航线所在直线是否相交。
师:(板书标题)这个问题,其实可以归结为直线与圆的位置关系。
2、回顾旧知、揭示课题——直线与圆的位置关系问题2:在初中,我们学习过直线与圆的位置关系,即直线与圆相交,有两个公共点,直线与圆相切,有一个公共点;直线与圆相离,没有公共点。
设计意图:从已有的知识经验出发,建立新旧知识之间的联系,构建学生学习的最近发展区,不断加深对问题的理解。
师生活动:引导学生回忆义务教育阶段判断直线与圆的位置关系的思想过程,可以展示下面的表格,使问题直观形象。
直线和圆的位置关系的数学教案

直线和圆的位置关系的数学教案一、教学目标:1. 让学生理解直线和圆的位置关系,并能运用其解决实际问题。
2. 让学生掌握判断直线和圆位置关系的方法,提高空间想象力。
3. 培养学生的逻辑思维能力和团队合作精神。
二、教学内容:1. 直线和圆的位置关系:相离、相切、相交。
2. 判断直线和圆位置关系的方法。
3. 实际问题中的应用。
三、教学重点与难点:1. 教学重点:直线和圆的位置关系,判断方法及实际应用。
2. 教学难点:直线和圆位置关系的判断,空间想象能力的培养。
四、教学方法:1. 采用问题驱动法,引导学生探究直线和圆的位置关系。
2. 利用多媒体辅助教学,直观展示直线和圆的位置关系。
3. 开展小组讨论,培养学生的团队合作精神。
五、教学过程:1. 导入新课:通过生活中的实例,引出直线和圆的位置关系。
2. 知识讲解:讲解直线和圆的相离、相切、相交三种位置关系,及判断方法。
3. 案例分析:分析实际问题,运用直线和圆的位置关系解决问题。
4. 课堂练习:布置练习题,巩固所学知识。
5. 小组讨论:探讨直线和圆位置关系在实际问题中的应用。
7. 课后作业:布置作业,巩固所学知识。
六、教学评估:1. 课堂练习题目的完成情况,以检验学生对直线和圆位置关系的理解和应用能力。
2. 小组讨论的参与度,观察学生是否能够主动思考和解决问题。
3. 课后作业的质量,评估学生对课堂所学知识的掌握程度。
4. 学生对拓展问题的回答,了解学生的思维拓展和创造性解决问题的能力。
七、教学反思:1. 学生是否能够清晰理解直线和圆的位置关系?2. 学生是否能够熟练运用判断方法解决实际问题?3. 教学方法和教学内容的安排是否适合学生的学习水平?4. 如何改进教学策略以提高学生的空间想象力和逻辑思维能力?八、教学资源:1. 多媒体教学课件,用于展示直线和圆的位置关系示意图。
2. 实际问题案例库,用于引导学生将理论知识应用于解决实际问题。
3. 练习题库,包括不同难度的题目,以满足不同学生的学习需求。
直线与圆位置关系公开课教案

直线与圆位置关系公开课教案一、教学目标1. 让学生理解直线与圆的位置关系,并能运用其解决实际问题。
2. 培养学生观察、分析、解决问题的能力。
3. 引导学生运用数形结合的思想方法,提高抽象思维能力。
二、教学内容1. 直线与圆的位置关系2. 判断直线与圆的位置关系的方法3. 直线与圆的位置关系的应用三、教学重点与难点1. 教学重点:直线与圆的位置关系的判定及应用。
2. 教学难点:直线与圆位置关系的理解及其在实际问题中的应用。
四、教学方法1. 采用问题驱动法,引导学生探究直线与圆的位置关系。
2. 利用数形结合思想,帮助学生直观理解直线与圆的位置关系。
3. 运用实例分析法,让学生学会解决实际问题。
五、教学过程1. 导入新课:通过展示生活中的实例,引导学生关注直线与圆的位置关系。
2. 探究直线与圆的位置关系:让学生观察图形,发现直线与圆的位置变化,引导学生总结位置关系的判定方法。
3. 讲解实例:利用实例分析,让学生学会判断直线与圆的位置关系,并运用其解决实际问题。
4. 练习巩固:设计相关练习题,让学生独立判断直线与圆的位置关系,并及时反馈、讲解。
5. 总结拓展:引导学生思考直线与圆位置关系在实际生活中的应用,激发学生学习兴趣。
6. 布置作业:布置适量作业,让学生进一步巩固所学知识。
教案仅供参考,具体实施时可根据学生实际情况进行调整。
六、教学评价1. 评价目标:检验学生对直线与圆位置关系的理解及应用能力。
2. 评价方法:通过课堂问答、练习题和课后作业进行评价。
3. 评价内容:a. 学生能准确判断直线与圆的位置关系。
b. 学生能运用直线与圆的位置关系解决实际问题。
c. 学生对直线与圆位置关系的理解程度。
七、教学反馈1. 课堂反馈:在课堂讲解过程中,注意观察学生的反应,及时调整教学节奏和难度。
2. 练习反馈:对学生的练习作业进行及时批改,给予个性化的指导和评价。
3. 课后反馈:收集学生的课后作业,分析学生的掌握情况,为后续教学提供参考。
数学《直线与圆的位置关系》教案

数学《直线与圆的位置关系》教案教学目标:1. 了解直线与圆的位置关系,熟练掌握直线与圆的切线、割线、切点、割点等概念。
2. 掌握直线与圆的位置关系的基础推理方法,能够灵活运用数学知识解决相关的问题。
3. 培养学生观察、分析的能力,增强学生的实际操作能力和动手能力。
教学重难点:1. 直线与圆的切线、割线、切点、割点等概念的理解和掌握。
2. 直线与圆的位置关系的基础推理方法的应用。
教学方法:1. 讲授法和实践法相结合。
2. 采用板书、多媒体等方式进行教学。
3. 鼓励学生积极思考、多动手实践。
教学内容:1. 直线与圆的位置关系的定义。
2. 直线与圆的切线、割线、切点、割点等概念的讲解。
3. 直线与圆的位置关系的基础推理方法的应用。
教学过程:一、引入通过实际例子引出今天的教育内容:小明在修建一条直线公路的时候,发现公路穿过了一块广场,广场的中央是一个圆形花坛。
这时候,我们就需要了解直线与圆的位置关系了。
二、学习内容1. 直线与圆的位置关系的定义2. 直线与圆的切线、割线、切点、割点等概念的讲解3. 直线与圆的位置关系的基础推理方法的应用三、学习方法1. 讲授法和实践法相结合,从例子入手,以实际问题为导向,让学生掌握知识。
2. 采用板书、多媒体等方式进行教学,以图形为主,直观、形象。
3. 鼓励学生积极思考、多动手实践,参与课堂讨论。
四、学习重点难点1. 直线与圆的切线、割线、切点、割点等概念的理解和掌握。
2. 直线与圆的位置关系的基础推理方法的应用。
五、学习结果1. 了解直线与圆的位置关系。
2. 掌握直线与圆的切线、割线、切点、割点等概念。
3. 熟练应用数学知识解决直线与圆的位置关系相关的问题。
六、作业1. 完成课后习题。
2. 预习下一节课内容。
直线与圆的位置关系 教案

直线与圆的位置关系教案教案标题:直线与圆的位置关系教案目标:1. 学生能够理解直线与圆的位置关系的基本概念和特点。
2. 学生能够通过观察、推理和解决问题,运用直线与圆的位置关系进行几何证明。
3. 学生能够应用直线与圆的位置关系解决实际问题。
教学准备:1. 教师准备黑板、白板或投影仪等教学工具。
2. 教师准备直线与圆的相关图形和实例。
3. 学生准备纸笔和直尺。
教学过程:引入:1. 教师通过展示一些直线和圆的图形,引导学生思考直线与圆的位置关系,并激发学生对该主题的兴趣。
2. 教师提出问题:“直线与圆有哪些可能的位置关系?请举例说明。
”探究:1. 教师引导学生观察直线与圆的不同位置关系的图形,并让学生描述和比较它们的特点。
2. 教师提供一些具体实例,让学生通过观察和推理找出直线与圆的位置关系的规律。
3. 学生个体或小组合作,完成一些相关的练习和问题解答,巩固对直线与圆位置关系的理解。
拓展:1. 教师提供更复杂的直线与圆的位置关系的问题,让学生应用所学知识进行解决,并进行相关的几何证明。
2. 学生个体或小组合作,设计一些实际问题,应用直线与圆的位置关系进行解决,并向全班展示解决过程和结果。
总结:1. 教师对本节课的内容进行总结,强调直线与圆的位置关系的重要性和应用。
2. 学生回答教师提出的总结问题,检查对本节课内容的理解和掌握程度。
作业:1. 学生完成课堂上未完成的练习和问题解答。
2. 学生设计一道与直线与圆的位置关系相关的问题,并写出解决过程。
教学反思:1. 教师对本节课的教学效果进行总结和反思,思考下节课的改进措施。
2. 学生对本节课的教学内容进行反馈和评价,提供建议和意见。
直线和圆的位置关系教案

直线和圆的位置关系教案教学目标:1.能够理解直线和圆的位置关系,并能够准确描述它们之间的相对位置。
2.能够运用几何知识,解决与直线和圆的位置关系相关的问题。
3.培养学生观察和归纳总结的能力,培养学生的几何思维。
教学重难点:1.直线和圆的位置关系。
2.解决与直线和圆的位置关系相关的问题。
教学准备:1.教师准备:教学课件、教学资料。
2.学生准备:几何工具。
教学过程:一、导入(5分钟)教师通过一个小游戏,让学生通过观察几何图形的关系,来引出直线和圆的位置关系。
教师可在黑板上绘制几个形状,要求学生观察并回答以下问题:1.画一个圆和一条直线,它们的位置关系是什么?2.如果直线与圆相交,交点有几个?3.如果直线与圆相切,它们的位置关系又是什么?4.如果直线与圆没有交点或相切,它们的位置关系呢?通过学生的回答,介绍直线和圆的位置关系。
二、讲解(10分钟)1.直线与圆相交的位置关系:教师通过教学课件,向学生展示直线与圆相交的不同情况,并讲解每种情况下的名称和特点。
-直线穿过圆的两个交点,这种情况称为“直线与圆相交”。
-直线经过圆的中心,这种情况称为“直线与圆相交于两个点”,交点分别为A、B。
-直线切圆,这种情况称为“直线与圆相切”。
2.直线与圆相切的位置关系:教师通过教学课件,向学生展示直线与圆相切的情况,并讲解。
-直线与圆相切于一个点,这种情况称为“直线与圆外切”。
-直线经过圆的中心,这种情况称为“直线与圆相切”。
-直线穿过圆,并且在圆的内部,这种情况称为“直线与圆内切”。
三、练习(35分钟)1.教师出示一些练习题,供学生进行个别练习。
学生可以用纸和笔列式解答,并标注出直线与圆的位置关系。
2.在练习过程中,教师根据学生的情况,进行辅导和指导,解答学生的疑惑。
四、归纳总结(10分钟)1.教师可以要求学生归纳总结直线与圆的位置关系,可以通过小组合作让学生共同完成。
2.教师带领学生一起进行讨论,让他们自己总结直线与圆的位置关系,并在黑板上进行记录。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 平面解析几何第5课时 直线与圆的位置关系第十章 ⎝⎛⎭⎪⎪⎫对应学生用书(文)122~124页 (理)127~129页考情分析考点新知掌握直线与圆、圆与圆的位置关系的几何图形及其判断方法.① 能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定的两个圆的方程,判断两圆的位置关系.② ② 能用直线和圆的方程解决一些简单的问题.1. 已知圆O :x 2+y 2=4,则过点P(2,4)与圆O 相切的切线方程为________________.答案:3x -4y +10=0或x =2解析:∵ 点P(2,4)不在圆O 上,∴ 切线PT 的直线方程可设为y =k(x -2)+4.根据d =r ,∴ |-2k +4|1+k 2=2,解得k =34,所以y =34(x -2)+4,即3x -4y +10=0.因为过圆外一点作圆的切线应该有两条,可见另一条直线的斜率不存在.易求另一条切线为x =2. 2. (必修2P 115练习1改编)已知圆(x -1)2+(y +2)2=6与直线2x +y -5=0的位置关系是________.答案:相交解析:由题意知圆心(1,-2)到直线2x +y -5=0的距离d =5,0<d <6,故该直线与圆相交但不过圆心.3. (必修2P 115练习4改编)若圆x 2+y 2=1与直线y =kx +2没有公共点,则实数k 的取值范围是________.答案:(-3,3) 解析:由题意知21+k2>1,解得-3<k < 3.4. 过直线x +y -22=0上点P 作圆x 2+y 2=1的两条切线,若两条切线的夹角是60°,则点P 的坐标是__________.答案:(2,2)解析:本题主要考查数形结合的思想,设P(x ,y),则由已知可得PO(O 为原点)与切线的夹角为30°,则|PO|=2,由⎩⎪⎨⎪⎧x 2+y 2=4,x +y =22,可得⎩⎪⎨⎪⎧x =2,y = 2.5. (必修2P 107习题4改编)以点(2,-2)为圆心并且与圆x 2+y 2+2x -4y +1=0相外切的圆的方程是________.答案:(x -2)2+(y +2)2=9解析:设所求圆的方程为(x -2)2+(y +2)2=r 2(r>0),此圆与圆x 2+y 2+2x -4y +1=0,即(x +1)2+(y -2)2=4相外切,所以(2+1)2+(-2-2)2=2+r ,解得r =3.所以所求圆的方程为(x -2)2+(y +2)2=9.1. 直线与圆的位置关系(1) 直线与圆相交,有两个公共点; (2) 直线与圆相切,只有一个公共点;(3) 直线与圆相离,无公共点. 2. 直线与圆的位置关系的判断方法直线l :Ax +By +C =0(A ,B 不全为0)与圆(x -a)2+(y -b)2=r 2(r>0)的位置关系的判断方法:(1)几何方法:圆心(a ,b)到直线Ax +By +C =0的距离为d , d<r Û直线与圆相交;d =r Û直线与圆相切; d>r Û直线与圆相离. (2) 代数方法:由Ax +By +C =0,(x -a)2+(y -b)2=r 2,消元,得到的一元二次方程的判别式为Δ,则Δ>0Û直线与圆相交; Δ=0Û直线与圆相切; Δ<0Û直线与圆相离.3. 圆与圆的位置关系及判断方法(1) 圆与圆的位置关系有五种,分别为外离、外切、相交、内切、内含. (2) 判断两圆位置关系的方法两圆(x -a 1)2+(y -b 1)2=r 12(r 1>0)与(x -a 2)2+(y -b 2)2=r 22(r 2>0)的圆心距为d ,则 d>r 1+r 2Û两圆外离; d =r 1+r 2Û两圆外切; |r 1-r 2|<d<r 1+r 2Û两圆相交;d =|r 1-r 2|(r 1≠r 2) Û两圆内切;0≤d<|r 1-r 2|(r 1≠r 2) Û两圆内含(d =0时为同心圆).题型1 直线与圆的位置关系 例1 已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ). (1) 求证:不论m 取什么实数,直线l 与圆C 恒交于两点; (2) 求直线被圆C 截得的弦长最小时直线l 的方程.(1) 证明:直线l 的方程整理得(x +y -4)+m(2x +y -7)=0,∵ m ∈R ,∴ ⎩⎪⎨⎪⎧2x +y -7=0,x +y -4=0⎩⎪⎨⎪⎧x =3,y =1,也就是直线l 恒过定点A(3,1).由于|AC|=5<5(半径),∴ 点A(3,1)在圆C 内,故直线l 与圆C 恒交于两点.(2) 解:弦长最小时,直线l ⊥AC ,而k AC =-12,故此时直线l 的方程为2x -y -5=0.变式训练已知圆x 2+y 2-6mx -2(m -1)y +10m 2-2m -24=0(m ∈R ). (1) 求证:不论m 取什么值,圆心在同一直线l 上; (2) 与l 平行的直线中,哪些与圆相交,相切,相离.(1) 证明:配方得(x -3m)2+[y -(m -1)]2=25.设圆心为(x ,y),则⎩⎪⎨⎪⎧x =3m ,y =m -1,消去m ,得x -3y -3=0.故不论m 取什么值,圆心在同一直线l :x -3y -3=0上.(2) 解:设与l 平行的直线为n :x -3y +b =0,则圆心到直线l 的距离d =|3m -3(m -1)+b|10=|3+b|10,由于圆的半径r =5,∴ 当d<r ,即-510-3<b<510-3时,直线与圆相交;当d =r ,即b =±510-3时,直线与圆相切;当d>r ,即b<-510-3或b>510-3时,直线与圆相离.题型2 直线与圆相交的弦的问题例2 已知圆C :x 2+(y -3)2=4,一动直线l 过A(-1,0)与圆C 相交于P 、Q 两点,M 是PQ 中点,l 与直线m :x +3y +6=0相交于N. (1) 求证:当l 与m 垂直时,l 必过圆心C ; (2) 当PQ =23时,求直线l 的方程;(3) 探索AM →·AN →是否与直线l 的倾斜角有关?若无关,请求出其值;若有关,请说明理由.(1) 证明:∵ l 与m 垂直,且k m =-13,∴ k l =3.又k AC =3,所以当l 与m 垂直时,l 的方程为y =3(x +1),l 必过圆心C. (2) 解:①当直线l 与x 轴垂直时, 易知x =-1符合题意.②当直线l 与x 轴不垂直时, 设直线l 的方程为y =k(x +1),即kx -y +k =0.因为PQ =2 3,所以CM =4-3=1,则由CM =|-k +3|k 2+1=1,得k =43,∴ 直线l :4x -3y +4=0. 从而所求的直线l 的方程为x =-1或4x -3y +4=0.(3) 解:∵ CM ⊥MN ,∴ AM →·AN →=(AC →+CM →)·AN →=AC →·AN →+CM →·AN →=AC →·AN →.①当l 与x 轴垂直时,易得N ⎝⎛⎭⎫-1,-53,则AN →=⎝⎛⎭⎫0,-53.又AC →=(1,3),∴ AM →·AN →=AC →·AN →=-5;②当l 的斜率存在时,设直线l 的方程为y =k(x +1),则由⎩⎪⎨⎪⎧y =k (x +1),x +3y +6=0,得N ⎝ ⎛⎭⎪⎫-3k -61+3k ,-5k 1+3k ,则AN →=⎝ ⎛⎭⎪⎫-51+3k ,-5k 1+3k . ∴ AM →·AN →=AC →·AN →=-51+3k +-15k 1+3k=-5.综上,AM →·AN →与直线l 的斜率无关,且AM →·AN →=-5.另解:连结CA 并延长交m 于点B ,连结CM ,CN ,由题意知AC ⊥m ,又CM ⊥l ,∴ 四点M 、C 、N 、B 都在以CN 为直径的圆上,由相交弦定理,得AM →·AN →=-|AM|·|AN|=-|AC|·|AB|=-5.备选变式(教师专享)已知圆C :(x -3)2+(y -4)2=4,直线l 1过定点A(1,0). (1) 若l 1与圆相切,求l 1的方程;(2) 若l 1与圆相交于P 、Q 两点,线段PQ 的中点为M ,又l 1与l 2:x +2y +2=0的交点为N ,判断AM ·AN 是否为定值?若是,则求出定值;若不是,请说明理由.解:(1) ①若直线l 1的斜率不存在,即直线是x =1,符合题意. ②若直线l 1斜率存在,设直线l 1为y =k(x -1),即kx -y -k =0.由题意知,圆心(3,4)到已知直线l 1的距离等于半径2,即||3k -4-k k 2+1=2,解得k =34.∴所求直线方程是x =1或3x -4y -3=0.(2) (解法1)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx -y -k =0.由⎩⎪⎨⎪⎧x +2y +2=0,kx -y -k =0,得N ⎝ ⎛⎭⎪⎫2k -22k +1,-3k 2k +1. 又直线CM 与l 1垂直,由⎩⎪⎨⎪⎧y =kx -k ,y -4=-1k (x -3),得M ⎝ ⎛⎭⎪⎫k 2+4k +31+k 2,4k 2+2k 1+k 2. ∴ AM ·AN =⎝ ⎛⎭⎪⎫k 2+4k +31+k 2-12+⎝ ⎛⎭⎪⎫4k 2+2k 1+k 22· ⎝ ⎛⎭⎪⎫2k -22k +1-12+⎝ ⎛⎭⎪⎫-3k 2k +12 =2|2k +1|1+k 21+k 2·31+k 2|2k +1|=6为定值.故AM·AN 是定值,且为6.(解法2)直线与圆相交,斜率必定存在,且不为0,可设直线方程为kx -y -k =0.由⎩⎪⎨⎪⎧x +2y +2=0,kx -y -k =0,得N ⎝ ⎛⎭⎪⎫2k -22k +1,-3k 2k +1. 再由⎩⎪⎨⎪⎧y =kx -k ,(x -3)2+(y -4)2=4,得(1+k 2)x 2-(2k 2+8k +6)x +k 2+8k +21=0.∴x 1+x 2=2k 2 + 8k + 61 + k 2,得M ⎝ ⎛⎭⎪⎫k 2+4k +31+k 2,4k 2+2k 1+k 2. 以下同解法1.(解法3)用几何法连结CA 并延长交l 2于点B ,k AC =2,kl 2=-12,∴CB ⊥l 2.如图所示,△AMC ∽△ABN ,则AM AB =ACAN,可得AM·AN =AC·AB =25·35=6,是定值.题型3 圆的切线问题例3 求半径为4,与圆x 2+y 2-4x -2y -4=0相切,且和直线y =0相切的圆的方程. 解:由题意,设所求圆的方程为圆C :(x -a)2+(y -b)2=r 2.圆C 与直线y =0相切,且半径为4,则圆心C 的坐标为C 1(a ,4)或C 2(a ,-4).又已知圆x 2+y 2-4x -2y -4=0的圆心A 的坐标为(2,1),半径为3.若两圆相切,则|CA|=4+3=7或|CA|=4-3=1.① 当C 1(a ,4)时,有(a -2)2+(4-1)2=72或(a -2)2+(4-1)2=12(无解),故可得a =2±210.∴ 所求圆方程为(x -2-210)2+(y -4)2=42或(x -2+210)2+(y -4)2=42.② 当C 2(a ,-4)时,(a -2)2+(-4-1)2=72或(a -2)2+(-4-1)2=12(无解),故a =2±2 6.∴ 所求圆的方程为(x -2-26)2+(y +4)2=42或(x -2+26)2+(y +4)2=42. 备选变式(教师专享)自点A(-3,3)发出的光线l 射到x 轴上,被x 轴反射,反射光线所在的直线与圆C :x 2+y 2-4x -4y +7=0相切.求:(1) 光线l 和反射光线所在的直线方程; (2) 光线自A 到切点所经过的路程.解:根据对称关系,首先求出点A 的对称点A′的坐标为()-3,-3,其次设过A′的圆C 的切线方程为y =k ()x +3-3.根据d =r ,即求出圆C 的切线的斜率为k =43或k =34,进一步求出反射光线所在的直线的方程为 4x -3y +3=0或3x -4y -3=0.最后根据入射光与反射光关于x 轴对称,求出入射光所在直线方程为4x +3y +3=0或3x +4y -3=0.光路的距离为||A′M ,可由勾股定理求得||A′M 2=||A′C 2-||CM 2=7.【示例】 (本题模拟高考评分标准,满分14分)直线l 过点(-4,0)且与圆(x +1)2+(y -2)2=25交于A ,B 两点,如果AB =8,求直线l 的方程.学生错解:解:设直线l 的方程为y =k(x +4),由被圆截得的弦长为8,可得圆心(-1,2)到直线y =k(x +4)的距离为3,即|3k -2|1+k 2=3,解得k =-512,此时直线方程为5x +12y +20=0.审题引导: (1) 如何设过定点的直线的方程?(2) 圆中弦长的问题,通常作怎样的辅助线构造直角三角形来解决?规范解答: 解:过点(-4,0)的直线若垂直于x 轴,经验证符合条件,即方程为x +4=0满足题意;(4分)若存在斜率,设其直线方程为y =k(x +4),由被圆截得的弦长为8,可得圆心(-1,2)到直线y =k(x +4)的距离为3,即|3k -2|1+k 2=3,解得k =-512,(10分)此时直线方程为5x +12y +20=0,(12分)综上直线方程为5x +12y +20=0或x +4=0.(14分)错因分析: 1. 解答本题易误认为斜率k 一定存在从而漏解.2. 对于过定点的动直线设方程时,可结合题意或作出符合题意的图形分析斜率k 是否存在,以避免漏解.1. 在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是____________.答案:43解析:∵ 圆C 的方程可化为(x -4)2+y 2=1,∴ 圆C 的圆心为(4,0),半径为1.由题意知,直线y =kx -2上至少存在一点A(x 0,kx 0-2),以该点为圆心,1为半径的圆与圆C 有公共点,∴ 存在x 0∈R ,使得AC ≤1+1成立,即AC min ≤2.∵ AC min 即为点C 到直线y =kx -2的距离|4k -2|k 2+1, ∴|4k -2|k 2+1≤2,解得0≤k ≤43.∴ k 的最大值是43.2. 已知直线l 过点(-2,0),当直线l 与圆x 2+y 2=2x 有两个交点时,其斜率k 的取值范围是________.答案:⎝⎛⎭⎫-24,24解析:易知圆心坐标是(1,0),圆的半径是1,直线l 的方程是y =k(x +2),即kx -y +2k =0,根据点到直线的距离公式得|k +2k|k 2+1<1,即k 2<18,解得-24<k <24.3. 直线y =kx +3与圆(x -2)2+(y -3)2=4相交于M ,N 两点,若MN ≥23,则k 的取值范围是________.答案:⎣⎡⎦⎤-33,33解析:设圆心C(2,3)到直线y =kx +3的距离为d ,若MN ≥23,则d 2=r 2-⎝⎛⎭⎫12MN 2≤4-3=1,即|2k|21+k 2≤1, 解得-33≤k ≤33. 4. 若圆O :x 2+y 2=5与圆O 1:(x -m)2+y 2=20(m ∈R )相交于A ,B 两点,且两圆在点A 处的切线互相垂直,则线段AB 的长是________.答案:4解析:依题意得OO 1=5+20=5,且△OO 1A 是直角三角形,S △OO 1A =12·AB2·OO 1=12·OA ·AO 1,因此AB =2·OA·AO 1OO 1=2×5×255=4.5. 如图,在平面直角坐标系xOy 中,椭圆C 的中心在坐标原点O ,右焦点为F.若C 的右准线l 的方程为x =4,离心率e =22.(1) 求椭圆C 的标准方程;(2) 设点P 为准线l 上一动点,且在x 轴上方.圆M 经过O 、F 、P 三点,求当圆心M 到x 轴的距离最小时圆M 的方程.解:(1) 由题意,设椭圆C 的标准方程为x 2a 2+y 2b 2=1(a>b>0),则⎩⎨⎧a 2c =4,c a =22,解得a =22,c =2.从而b 2=a 2-c 2=4.所以所求椭圆C 的标准方程为x 28+y 24=1.(2) (解法1)由(1)知F(2,0).由题意可设P(4,t),t>0.线段OF 的垂直平分线方程为x =1.①因为线段FP 的中点为⎝⎛⎭⎫3,t 2,斜率为t 2, 所以FP 的垂直平分线方程为y -t 2=-2t (x -3),即y =-2t x +6t +t2.②联立①②,解得⎩⎪⎨⎪⎧x =1,y =t 2+4t,即圆心M ⎝⎛⎭⎫1,t 2+4t . 因为t>0,所以t 2+4t≥2t 2·4t =22,当且仅当t 2=4t,即t =22时,圆心M 到x 轴的距离最小,此时圆心为M(1,22),半径为OM =3.故所求圆M 的方程为(x -1)2+(y -22)2=9.(解法2)由(1)知F(2,0).由题意可设P(4,t),t>0.因为圆M 过原点O ,故可设圆M 的方程为x 2+y 2+Dx +Ey =0.将点F 、P 的坐标代入得⎩⎪⎨⎪⎧4+2D =0,16+t 2+4D +tE =0,解得⎩⎪⎨⎪⎧D =-2,E =-⎝⎛⎭⎫t +8t .所以圆心M 的坐标为⎝⎛⎭⎫-D 2,-E 2,即(1,t 2+4t ).因为t>0,所以t 2+4t ≥2t 2·4t=22,当且仅当t 2=4t ,即t =22时,圆心M 到x 轴的距离最小,此时E =-4 2.故所求圆M 的方程为x 2+y 2-2x -42y =0.6. 如图,在平面直角坐标系xOy 中,已知曲线C 由圆弧C 1和圆弧C 2相接而成,两相接点M 、N 均在直线x =5上.圆弧C 1的圆心是坐标原点O ,半径为r 1=13;圆弧C 2过点A(29,0).(1) 求圆弧C 2所在圆的方程;(2) 曲线C 上是否存在点P ,满足PA =30PO ?若存在,指出有几个这样的点;若不存在,请说明理由;(3) 已知直线l :x -my -14=0与曲线C 交于E 、F 两点,当EF =33时,求坐标原点O 到直线l 的距离.解:(1) 由题意得,圆弧C 1所在圆的方程为x 2+y 2=169.令x =5,解得M(5,12),N(5,-12),又C 2过点A(29,0),设圆弧C 2所在圆方程为x 2+y 2+Dx +Ey +F =0,则⎩⎪⎨⎪⎧52+122+5D +12E +F =0,52+122+5D -12E +F =0,292+29D +F =0.解得⎩⎪⎨⎪⎧D =-28,E =0,F =-29.所以圆弧C 2所在圆的方程为x 2+y 2-28x -29=0.(2) 假设存在这样的点P(x ,y),则由PA =30PO ,得(x -29)2+y 2=30(x 2+y 2),即x 2+y 2+2x -29=0.由⎩⎪⎨⎪⎧x 2+y 2+2x -29=0,x 2+y 2=169(-13≤x ≤5),解得x =-70(舍去);由⎩⎪⎨⎪⎧x 2+y 2+2x -29=0,x 2+y 2-28x -29=0(5≤x ≤29),解得x =0(舍去).所以这样的点P 不存在.(3) 因为圆弧C 1、C 2所在圆的半径分别为r 1=13,r 2=15,因为EF>2r 1,EF>2r 2,所以E 、F 两点分别在两个圆弧上.设点O 到直线l 的距离为d ,因为直线l 恒过圆弧C 2所在圆的圆心(14,0),所以EF =15+132-d 2+142-d 2,即132-d 2+142-d 2=18,解得d 2=1 61516,所以点O 到直线l 的距离为1 6154.1. 已知圆O 的半径为1,PA 、PB 为该圆的两条切线,A 、B 为两切点,那么PA →·PB →的最小值为________.答案:-3+22解析:设∠APB =2θ,|PO →|=x ,则PA →·PB →=|PA →|·|PB →|·cos2θ=|PA →|2cos2θ=(|PO →|2-1)·(1-2sin 2θ)=(x 2-1)·⎝⎛⎭⎫1-2x 2=x 2-2-1+2x 2≥-3+22,当且仅当x 2=2x2,即x =42时取等号. 2. 若直线y =x +b 与曲线y =3-4x -x 2有公共点,则b 的取值范围是________. 答案:[1-22,3] 解析:y =3-4x -x 2变形为(x -2)2+(y -3)2=4(0≤x ≤4,1≤y ≤3),表示以(2,3)为圆心,2为半径的下半圆,如图所示.若直线y =x +b 与曲线y =3-4x -x 2有公共点,只需直线y =x +b 在图中两直线之间(包括图中两条直线),y =x +b 与下半圆相切时,圆心到直线y =x +b 的距离为2,即|2-3+b|2=2,解得b =1-22或b =1+22(舍去), ∴b 的取值范围为1-22≤b ≤3.3. 已知圆C 过点P(1,1),且与圆M :(x +2)2+(y +2)2=r 2(r >0)关于直线x +y +2=0对称.(1) 求圆C 的方程;(2) 过点P 作两条相异直线分别与圆C 相交于A 、B ,且直线PA 和直线PB 的倾斜角互补,O 为坐标原点,试判断直线OP 和AB 是否平行?请说明理由.解:(1) 设圆心C(a ,b),则⎩⎨⎧a -22+b -22+2=0,b +2a +2=1,解得⎩⎪⎨⎪⎧a =0,b =0,则圆C 的方程为x 2+y 2=r 2,将点P 的坐标代入得r 2=2,故圆C 的方程为x 2+y 2=2.(2) 由题意知,直线PA 和直线PB 的斜率存在,且互为相反数,故可设PA :y -1=k(x -1),PB :y -1=-k(x -1),由⎩⎪⎨⎪⎧y -1=k (x -1),x 2+y 2=2得(1+k 2)x 2+2k(1-k)x +(1-k)2-2=0.因为点P 的横坐标x =1一定是该方程的解,故可得x A =k 2-2k -11+k 2.同理可得x B =k 2+2k -11+k 2,所以k AB =y B -y A x B -x A =-k (x B -1)-k (x A -1)x B -x A =2k -k (x B +x A )x B -x A=1=k OP ,所以,直线AB 和OP 一定平行.4. 已知以点C ⎝⎛⎭⎫t ,2t (t ∈R ,t ≠0)为圆心的圆与x 轴交于点O 、A ,与y 轴交于点O 、B ,其中O 为原点.(1) 求证:△AOB 的面积为定值;(2) 设直线2x +y -4=0与圆C 交于点M 、N ,若|OM|=|ON|,求圆C 的方程;(3) 在(2)的条件下,设P 、Q 分别是直线l :x +y +2=0和圆C 的动点,求|PB|+|PQ|的最小值及此时点P 的坐标.解:(1) 由题设知,圆C 的方程为(x -t)2+⎝⎛⎭⎫y -2t 2=t 2+4t 2,化简得x 2-2tx +y 2-4ty =0,当y =0时,x =0或2t ,则A(2t ,0);当x =0时,y =0或4t,则B ⎝⎛⎭⎫0,4t , ∴ S ΔAOB =12|OA|·|OB|=12|2t|·⎪⎪⎪⎪4t =4为定值.(2) ∵ |OM|=|ON|,则原点O 在MN 的中垂线上,设MN 的中点为H ,则CH ⊥MN ,∴C 、H 、O 三点共线,则直线OC 的斜率k =2t t =2t 2=12,∴ t =2或t =-2,∴ 圆心C(2,1)或C(-2,-1)∴ 圆C 的方程为(x -2)2+(y -1)2=5或(x +2)2+(y +1)2=5,由于当圆方程为(x +2)2+(y +1)2=5时,直线2x +y -4=0到圆心的距离d>r ,此时不满足直线与圆相交,故舍去.∴ 圆C 的方程为(x -2)2+(y -1)2=5(3) 点B(0,2)关于直线x +y +2=0的对称点为B′(-4,-2),则|PB|+|PQ|=|PB′|+|PQ|≥|B′Q|,又B′到圆上点Q 的最短距离为|B ′C|-r =(-6)2+32-5=35-5=2 5.所以|PB|+|PQ|的最小值25,直线B′C 的方程为y =12x ,则直线B′C 与直线x +y +2=0的交点P 的坐标为⎝⎛⎭⎫-43,-23.1. 两圆位置关系的判断常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差得到.2. 圆的弦长的常用求法:(1) 几何法:设圆的半径为r ,弦心距为d ,弦长为l ,则⎝⎛⎭⎫12l 2=r 2-d 2;(2) 代数方法:运用根与系数的关系及弦长公式:AB =1+k 2|x 1-x 2|=(1+k 2)[(x 1+x 2)2-4x 1x 2].请使用课时训练(B)第5课时(见活页).。