《平面解析几何初步》教材分析
教案平面解析几何

精品教案平面解析几何第一章:平面解析几何的基本概念1.1 坐标系学习笛卡尔坐标系及其特点理解原点、x轴、y轴、第一象限、第二象限、第三象限和第四象限的概念1.2 点、直线和圆的方程学习点的坐标表示方法理解直线方程的斜截式、点斜式和一般式学习圆的标准方程和一般方程第二章:直线方程2.1 直线方程的斜截式学习斜截式的定义和特点掌握斜截式方程的求法2.2 直线方程的点斜式学习点斜式的定义和特点掌握点斜式方程的求法2.3 直线方程的一般式学习一般式的定义和特点掌握一般式方程的求法第三章:圆的方程3.1 圆的标准方程学习圆的标准方程的定义和特点掌握圆的标准方程的求法3.2 圆的一般方程学习圆的一般方程的定义和特点掌握圆的一般方程的求法3.3 圆的方程的应用学习圆的方程在几何问题中的应用掌握圆的方程解决实际问题的方法第四章:解析几何中的图形变换4.1 坐标轴上的平移学习坐标轴上的平移对图形的影响掌握坐标轴上的平移的规律4.2 坐标轴上的旋转学习坐标轴上的旋转对图形的影响掌握坐标轴上的旋转的规律4.3 坐标轴上的对称学习坐标轴上的对称对图形的影响掌握坐标轴上的对称的规律第五章:解析几何中的几何问题5.1 点到直线的距离学习点到直线的距离的定义和求法掌握点到直线的距离公式的应用5.2 直线与圆的位置关系学习直线与圆的位置关系的定义和判断方法掌握直线与圆的位置关系解决实际问题的方法5.3 圆与圆的位置关系学习圆与圆的位置关系的定义和判断方法掌握圆与圆的位置关系解决实际问题的方法第六章:直线与直线的相交问题6.1 两直线的斜率是否存在学习如何判断两条直线斜率是否存在掌握两条直线斜率存在时的解题方法6.2 两直线垂直的条件学习两条直线垂直的判定条件掌握两条直线垂直时的解题方法6.3 两直线平行的问题学习两条直线平行的判定条件掌握两条直线平行时的解题方法第七章:解析几何中的最值问题7.1 直线与直线交点问题学习如何求解两直线交点问题掌握直线与直线交点问题的解题方法7.2 直线与圆的最值问题学习如何求解直线与圆的最值问题掌握直线与圆最值问题的解题方法7.3 圆与圆的最值问题学习如何求解圆与圆的最值问题掌握圆与圆最值问题的解题方法第八章:解析几何中的轨迹问题8.1 动点的轨迹问题学习如何求解动点的轨迹问题掌握动点轨迹问题的解题方法8.2 直线与圆的轨迹问题学习如何求解直线与圆的轨迹问题掌握直线与圆轨迹问题的解题方法8.3 圆与圆的轨迹问题学习如何求解圆与圆的轨迹问题掌握圆与圆轨迹问题的解题方法第九章:解析几何中的应用问题9.1 面积问题学习如何利用解析几何解决面积问题掌握解析几何解决面积问题的方法9.2 距离问题学习如何利用解析几何解决距离问题掌握解析几何解决距离问题的方法9.3 几何图形构造问题学习如何利用解析几何解决几何图形构造问题掌握解析几何解决几何图形构造问题的方法第十章:解析几何的拓展与提高10.1 参数方程学习参数方程的定义和特点掌握参数方程的求法及其应用10.2 极坐标方程学习极坐标方程的定义和特点掌握极坐标方程的求法及其应用10.3 解析几何在实际问题中的应用学习如何利用解析几何解决实际问题掌握解析几何解决实际问题的方法重点和难点解析重点环节一:直线方程的斜截式、点斜式和一般式斜截式、点斜式和一般式是直线方程的三个基本形式,掌握它们的定义和特点是理解解析几何的基础。
高一数学必修2 点到直线的距离

高一数学必修2 点到直线的距离一、教材分析1、教学内容本节课是人教B 版数学必修2第二章《平面解析几何初步》第§2.2.4节,主要内容是点到直线的距离公式的推导和应用。
2、课程标准探索并掌握点到直线的距离公式,会求两条平行直线间的距离。
3、地位与作用本节对“点到直线的距离”的认识,是从初中平面几何的定性作图,过渡到了解析几何的定量计算,是在学生已掌握了直线倾斜角、斜率、直线方程和两条直线的位置关系等相关知识基础上的学习,对“点到直线的距离”的研究,为以后直线与圆的位置关系等几何问题的进一步学习奠定了基础。
二、教学目标依据《普通高中数学课程标准》的要求及教材的特点,结合学生的认知水平确定教学目标如下:1、知识与技能目标:理解点到直线距离公式的推导和掌握点到直线距离公式及其应用,能用公式2221BA C C d +-=求两平行线间距离。
2、过程与方法目标:(1)通过对点到直线的距离公式的推导与应用,培养学生数形结合、分类讨论、转化的数学思想,进而培养学生探究性思维方法和由特殊到一般、由具体到抽象的研究能力,以及用代数方法解决几何问题的能力。
(2)通过点到直线的距离公式的探索和推导过程,渗透算法的思想。
(3)通过问题获得数学知识,经历“发现问题—提出问题—解决问题”的过程。
3、情感、态度与价值观目标:通过教学过程中的师生互动、生生互动,形成学生的体验性认识,提高数学学习兴趣,树立学好数学的信心,逐步形成锲而不舍的钻研精神和合作交流的团队精神。
4、教学重点、难点及确立的依据教学重点:点到直线的距离公式确定依据:由本节在教材中的地位确定教学难点:点到直线的距离公式的推导确定依据:学生根据点到直线的距离定义进行推导,思路自然,但运算繁琐,在解决问题的过程中遇到困难,此时需要教师引导学生采用整体代换的思想简化推导过程。
三、教学方法发现法:本节课为了培养学生探究性思维能力,在教学过程中,使老师的主导性和学生的主体性有机结合,使学生能够愉快地自觉学习,通过学生自己动手实践,引导、启发学生分析、发现、归纳、论证等,从而形成完整的数学模型。
《平面解析几何》课件

向量运算
向量的加法和减法
向量加法和减法是向量运 算中的基本运算,包括向 量的平移、旋转和拉伸等。
向量的数量积和向量 积
在所有的线性代数中,向 量的数量积和向量积是最 常用的向量积运算之一。
向量的投影
向量的投影是计算向量在 投影方向上的长度的一种 方法,是一种常用的数学 概念,应用广泛。
二次曲线
椭圆 双曲线 抛物线
《平面解析几何》PPT课 件
本课程介绍平面解析几何,一门研究平面上点、直线、圆、二次曲线等图形 的位置关系和相互运算的学科。
简介
什么是平面解析几何
是最基础的空间几何的入门课,学习解析几何可以帮助你更好地理解各种数学问题。
历史发展
解析几何的提出是十七世纪科学革命时期的一项重要成就。
坐标系
直角坐标系
由平面上到定点F1、F2的距离之和为定常值 2a。
双曲线也由平面上到定点F1、F2的距离之差 为定常值2a。
抛物线是是一个平面曲线,因其具有完美的抛 物线形状而得名。
结论
平面解析几何的应用
平面解析几何是现代数学的一个分支,它对于计 算机科学、物理学、经济学、心理学等学科都有 非常重要的应用。
本课程的主要内容回顾
截距法是三种构图法之一,大大简化了复 杂的运算。
3 法线式
4 点斜式
数学中,直线的法线式是表示某直线在某 点处垂直的一条直线的代数式。
在点斜式中,直线上任意一点的坐标及其 方向与坐标平面上已知一点相对应的斜率 确定。
圆的方程
标准式
以坐标系原点为圆心,以半 径长为圆的方程。
一般式
圆的一般式是用Ax2 + Ay2 + Bx + By + C = 0的形式表示 的。
苏教版高中高一数学必修2《平面解析几何初步》评课稿

苏教版高中高一数学必修2《平面解析几何初步》评课稿一、教材简介《平面解析几何初步》是苏教版高中高一数学必修2教材中的一章,主要介绍平面解析几何的基本概念和基本方法。
通过学习本章内容,学生可以掌握平面坐标系的建立与运用,了解平面解析几何的基本思想和基本定理,培养学生的几何建模、问题分析和解决问题的能力。
二、教学目标本章的主要教学目标如下:1.理解平面直角坐标系的概念和性质;2.掌握平面直角坐标系中的点、线段的坐标表示方法;3.熟练掌握坐标表示法求解距离、斜率、中点等问题的方法;4.理解直线的方程及其性质,能够求解直线的方程;5.学会判定两条直线相交、平行或重合的方法;6.掌握解直线方程组的方法,理解直线方程组解的几何意义。
三、教学重点1.平面直角坐标系的建立与应用;2.直线方程的求解与性质;3.直线方程组的解与几何意义。
四、教学难点1.直线的判定;2.直线方程组的解法。
五、教学准备1.课前准备:教师需要提前准备好教材、教具等教学资源;2.课堂准备:教师需要准备黑板、彩笔等辅助教学工具。
六、教学过程1. 导入与激发兴趣(5分钟)引导学生回顾上一堂课的内容,并提出与本节课相关的问题,激发学生对本节课内容的兴趣与思考。
2. 新知呈现(15分钟)第一部分:平面直角坐标系1.教师通过示意图引入平面直角坐标系的概念和性质;2.教师展示如何在平面上建立直角坐标系,并解释坐标的表示方法;3.通过具体的例子,教师讲解点、线段在坐标系中的表示方法,并进行示范。
第二部分:距离、斜率和中点1.教师引入距离的概念,并介绍计算两点距离的方法;2.教师讲解斜率的概念和计算方法,并通过实例演示;3.教师引入线段的中点概念,并讲解求解中点坐标的方法。
3. 知识拓展与巩固(20分钟)第一部分:直线的方程1.教师引导学生探讨直线的特征和性质,进一步理解直线方程的意义;2.教师介绍直线方程的一般形式和斜截式,并通过例题演示解题方法;3.学生通过练习题巩固直线方程的求解方法。
《平面解析几何初步》教材分析共26页文档

3、道德行为训练,不是通过语言影响 ,而是 让儿童 练习良 好道德 行为, 克服懒 惰、轻 率、不 守纪律 、颓废 等不良 行为。 4、学校没有纪律便如磨房里没有水。 ——夸 美纽斯
5、教导儿童服从真理、服从集体,养 成儿童 自觉的 纪律性 ,这是 儿童道 德教育 最重要 的部分 。—— 陈鹤琴
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
《解析几何初步》教材分析

教材分析:平面解析几何初步解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究几何图形的性质,即建立直角坐标系,通过点与坐标、曲线与方程之间的对应关系,将几何问题转化为代数问题,充分体现了数形结合的数学思想。
1.本章教学目标通过本章的学习,学生初步学会在平面直角坐标系中建立直线和圆的代数方程,体会与感悟运用代数方法研究直线和圆几何性质的思想,了解空间直角坐标系。
体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
1.理解直线的斜率和倾斜角的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线斜率的计算公式;2.根据确定直线位置的几何要素,探索并掌握直线方程的几种形式以及直线方程的几种形式转化(点斜式、两点式及一般式),体会斜截式与一次函数的关系;3.掌握利用斜率判定两条直线平行或垂直的方法;能用解方程的方法求两直线的交点坐标;4.探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离;5.在平面直角坐标系中,探索并掌握圆的标准方程与一般方程;能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系;6.通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置;理解空间两点间的距离公式;7.通过平面解析几何初步的学习,使学生体会用代数方法处理几何问题的思想,感受“形”和“数”的对立和统一,渗透数学中普遍存在的动静变化、相互联系、相互转化的辩证观点,提高学生的数学素养,培养学生良好的思维品质。
2.本章设计意图本章包含了直线与方程、圆与方程、空间直角坐标系三部分内容。
本章的编写强化了解析几何研究问题的思维和方法:本章在直线和圆的方程处理上,以学生熟悉的问题(生活实例、数学问题等)为背景,按照“问题情境—数学活动—意义建构—数学理论—数学应用—反思”的顺序结构,引导学生主动参与探索,通过师生共同对问题的分析,使学生感受用坐标、方程刻画点、直线、圆等图形的一般方法,逐步体会解析几何的基本思想。
平面解析几何初步教材分析剖析

平面分析几何初步永乐店中学李建松一、本章地位和作用本章的学习把数学的两个基本对象——形和数有机地联系起来,这就使得坐标法的作用更为明显,这对于人们发现新结论也拥有重要意义.近代数学的巨大发展,在很大程度上应当归功于分析几何.本章的主要学习内容是:在平面直角坐标系中成立直线和圆的方程,运用代数方法研究它们的几何性质及其互相间的地点关系,初步形成用代数方法解决几何问题的能力,表现数形联合的思想方法.这也为此后学习圆锥曲线打下基础.二、分析几何的基本思想方法分析几何的基本思想:用代数的方法解决几何问题.分析法,就是坐标法,分析几何就是在座标系的基础上,用代数的方法研究几何问题一门学科.用分析法研究几何图形的性质,须先将几何图形置于坐标系下,对“形”进行翻译转变:把点转化为坐标、把曲线转变为方程,把题目中显然的或隐含的解题所需要的全部几何特色,用数式和数目关系表示出来.把“形”翻译为“数”是用坐标法解决几何问题时首要工作.几何问题“翻译”“代数运算”“翻译”代数问题代数问题的解几何问题的解点坐标曲线方程几何特色数式和数目关系教课建议:在平面分析几何初步的教课中,教师应帮助学生经历以下的过程:第一将几何问题代数化,用代数的语言描绘几何因素及其关系,从而将几何问题转变为代数问题;办理代数问题;剖析代数结果的几何含义,最后解决几何问题。
这类思想应贯串平面分析几何教课的一直。
帮助学生不停地领会“数形联合”的思想方法。
三、教课建议第三章直线与方程(一)课时分派(15课时)内容课时数倾斜角与斜率2课时两条直线平行与垂直的判断1课时直线的点斜式方程1课时直线的两点式方程1课时直线的一般式方程1课时两条直线的交点坐标1课时两点间的距离1课时1点到直线的距离 两条平行直线间的距离 1课时二元一次不等式(组)与简单的线性规划问题4课时 复习小结2课时(二)分章节教课建议及要求 倾斜角与斜率 2课时要点:要点是斜率的观点,用代数的方法刻画直线斜率的过程,过两点的直线斜率的计算公式。
高中数学必修2解析几何初步教材分析及教学建议之一

高中数学必修2《解析几何初步》教材分析及教学建议之一三明九中李宇宙一、解析几何内容的设计:1. 几何的内容按三个层次设计(1)必修课程中的几何,主要包括:立体几何初步、解析几何初步、平面向量、解三角形等。
(2)选修系列1、系列2中的几何,主要包括:圆锥曲线与方程、空间向量与立体几何。
(3)选修系列3、系列4(专题)中的几何.主要包括:球面上的几何、坐标系与参数方程、几何证明选讲等。
2.解析几何内容的变化突出了用代数方法解决几何问题的过程,同时也强调代数关系的几何意义。
解析几何的内容也是分层次设计的:在必修课程中,主要是直线与方程、圆与方程;圆锥曲线与方程的内容则放在选修系列1、系列2中。
3.必修2削弱的内容两条直线的位置关系(删除了两条直线的夹角)等。
4.必修2增删的内容(1) 解析几何增加的内容:直线与圆、圆与圆的位置关系;空间直角坐标系(2) 解析几何删除的内容:曲线与方程;圆的参数方程;圆锥曲线;线性规划移至必修5(第三章)不等式部分二、数学必修2《解析几何初步》的教学建议认真把握教学要求教学中,注意控制教学的难度,避免进行综合性强、难度较大的数学题的训练,避免在解题技巧上做文章。
关注重要数学思想方法的教学重要的数学思想方法不怕重复。
《标准》要求“坐标法”应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合”的思想方法。
在教学中应自始至终强化这一思想方法,这是解析几何的特点。
教学中注意“数”与“形”的结合,在通过代数方法研究几何对象的位置关系以后,还可以画出其图形,验证代数结果;同时,通过观察几何图形得到的数学结论,对结论进行代数证明,即用解析方法解决某些代数问题,不应割断它们之间的联系,应避免只强调“形”到“数”的方面,而忽视“数”到“形”的方面。
关注学生的动手操作和主动参与学习方式的转变是课程改革的重要目标之一。
教学中,注意适当给学生数学活动和交流的机会,引导他们在自主探索的过程中获得知识、增强技能、掌握基本的数学思想方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修2《平面解析几何初步》教材分析一、《课程标准》关于平面解析几何初步的表述解析几何是17世纪数学发展的重大成果之一,其本质是用代数方法研究图形的几何性质,体现了数形结合的重要数学思想。
在本模块中,学生将在平面直角坐标系中建立直线和圆的代数方程,运用代数方法研究它们的几何性质及其相互位置关系,并了解空间直角坐标系。
体会数形结合的思想,初步形成用代数方法解决几何问题的能力。
在平面解析几何初步的教学中,教师应帮助学生经历如下的过程:首先将几何问题代数化,用代数的语言描述几何要素及其关系,进而将几何问题转化为代数问题;处理代数问题;分析代数结果的几何含义,最终解决几何问题。
这种思想应贯穿平面解析几何教学的始终,帮助学生不断地体会“数形结合” 的思想方法。
平面解析几何初步(18课时)(1)直线与方程①在平面直角坐标系中,结合具体图形,探索确定直线位置的几何要素。
②理解直线的倾斜角和斜率的概念,经历用代数方法刻画直线斜率的过程,掌握过两点的直线的斜率计算公式。
③能根据斜率判定两条直线平行或垂直。
④根据确定直线位置的几何量,探索并掌握直线方程的几种形式(点斜式、两点式及一般式)斜截式与一,体会次函数的关系。
⑤能用解方程组的方法求两直线的交点坐标。
⑥探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
(2 )圆与方程①回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程。
②能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系。
③能用直线和圆的方程解决一些简单的问题。
(3 )在平面解析几何的学习过程中,体会用代数方法处理几何问题的思想。
(4 )空间直角坐标系①通过具体情境,感受建立空间直角坐标系的必要性,了解空间直角坐标系,会用空间直角坐标系刻画点的位置。
②通过表示特殊长方体(所有棱分别与坐标轴平行)顶点的坐标,探索并得出空间两点间的距离公式。
二、教学大纲与课程标准的比较1、《教学大纲》与《课程标准》的比较1.平面解析几何分层为三块:初步(必修)、圆锥曲线(必选)和坐标系与参数方程(自选)。
2•线性规划问题移点的直线斜率的计算公式。
③ 能根据斜率判定两条直线平行或垂直。
④ 根据确定直线位置的几何要素, 探索并 掌握直线方程的几种形式(点斜式、两点式及 一般式),体会斜截式与一次函数的关系。
⑤ 能用解方程组的方法求两直线的交点 坐标。
⑥ 探索并掌握两点间的距离公式、 点到直 线的距离公式,会求两条平行直线间的距离。
(2)圆与方程① 回顾确定圆的几何要素,在平面直角 坐标系中。
探索并掌握圆的标准方程与一般 方程。
② 能根据给定直线、圆的方程,判断直 线与圆、圆与圆的位置关系。
③ 能用直线和圆的方程解决一些简单的 问题。
(3) 在平面解析几何初步的学习过程中, 体会用代数方法处理几何问题的思想。
(4) 空间直角坐标系① 通过具体情境,感受建立空间直角坐 标系的必要性,了解空间直角坐标系,会用 空间直角坐标系刻画点的位置。
② 通过表示特殊长方体(所有棱分别与坐 标轴平行)顶点的坐标,探索并得出空间两点 间的距离公式。
教学建议:在平面解析几何初步的教学中,教师应 帮助学生经历如下的过程:首先将几何问题 代数化,用代数的语言描述几何要素及其关 系,进而将几何问题转化为代数问题;处理 代数问题;分析代数结果的几何含义,最终 解决几何问题。
这种思想应贯穿平面解析几 何教学的始终。
帮助学生不断地体会 数形结 合”的思想方法。
2、课时安排上的差异用二元一次不等式表示平面区 域。
简单线性规划问题。
实习作业。
曲线与方程的概念。
由已知条 件列出曲线方程。
圆的标准方程和一般方程。
圆 的参数方程。
教学目标(1) 理解直线的倾斜角和斜率的 概念,掌握过两点的直线的斜率公 式,掌握由一点和斜率导出直线方 程的方法;掌握直线方程的点斜式、 两点式和直线方程的一般式,并能 根据条件熟练地求出直线的方程。
(2) 掌握两条直线平行与垂直的 条件,掌握两条直线所成的角和点 到直线的距离公式;能够根据直线 的方程判断两条直线的位置关系。
(3) 会用二兀一次不等式表示平 面区域。
(4) 了解简单的线性规划问题, 了解线性规划的意义,并会简单应 用。
(5) 了解解析几何的基本思想, 了解用坐标法研究几何问题的方 法。
(6) 掌握圆的标准方程和一般方 程,了解参数方程的概念,理解圆 的参数方程。
(7) 结合教学内容进行对立统一 观点的教育。
(8) 实习作业以线性规划为内 容,培养解决实际问题的能力。
到《数学5》不等式” 部分;原立几B 教材空 间直角坐标系”移至解 几初步。
3 .注重过程教学, 加大了师生共同探索知 识的力度。
如①在平面 直角坐标系中,结合具 体图形,探索确定直线 位置的几何要素;②理 解直线的倾斜角和斜率 的概念,经历用代数方 法刻画直线斜率的过 程,④根据确定直线位置的几何要素,探索并 掌握直线方程的几种形 式(点斜式、两点式及一 般式),体会斜截式与一 次函数的关系。
” 4 •删除了直线到直 线的角、两直线夹角的 概念及相应公式。
5 •圆的参数方程移 至选修4-5 “坐标系及 参数方程”中。
6 •“曲线与方程” 移至选修2-1 (文科不 学)。
7、由已知条件列出曲线方程(求轨迹)部 分的内容要求降低,不 讲纯粹性和完备性”, 只是在选修内容部分讲 解充分必要条件”。
2、 3、点出本章的主题和本章的数 学思想方法(数形结合);(2) 描述了本章知识用 途;(3) 曲线与方程的关系; (4) 本章的学习任务。
页,但它叙述了本章的灵魂,以 初中的函数为依托,首先讲解方程与函数的关系,渗透函数与方 程思想;其次重点复习初中阶段一次函数的有关知识。
三、浙江省数学学科关于《解析几何初步》的教学指导建议 第三章直线与方程教学要求 3.1直线的倾斜角与斜率3.3直线的交点坐标与距离公式会求两条直线的交点坐标。
理解两条直线的平行、相交与相应的直线方程所组成的二元一次方程组的解的对应关系。
掌握平面上两点间的距离公式。
以及研究本章的重要的方法(坐标法) , 即用代数的方法研究几何问题(解析几何的本质),点出了数形结合这一重要的数 学思想方法。
(2)以一次函数为依托,引出 直线 的方程”和 方程”的直线两个重要概念;1、 基本要求教学建议1课时分配(9课时)课时数3.1.1倾斜角与斜率2、重点难点3.1.1节重点是斜率的概念,用代数的方法刻画直线斜率的过程,过两点的直线斜率的计算公式。
难 点是直线的斜率和倾斜角的关系。
3.1.2节重点是根据斜率判定两条直线平行或垂直。
难点是根据斜率判定两条直线垂直。
3.2.1节重点是直线点斜式方程推导,直线的斜截式方程以及由已知条件求直线方程。
难点是直线点 斜式方程的推导及适用范围的的讨论。
3.2.2节重点是直线两点式方程推导,以及由已知条件求直线方程。
难点是直线两点式方程的推导及 对这种形式的理解。
3.2.3节重点是直线的一般式方程。
难点是直线一般式方程的理解与应用。
3.3.1节重点是两条直线交点坐标的求解,难点是根据直线方程判定两条直线的位置关系。
3.3.2节重点是两点间距离公式的推导及坐标法的基本步骤, 3.3.3节重点是两点间的距离公式,点到直线的距离公式。
难点是点到直线距离公式的推导。
3、分析说明由于直线的倾斜程度在初中研究一次函数图象的时候已经作过分析,建议让学生回忆这些内容,为 后面研究直线方程和一次函数的关系奠定基础。
直线的倾斜角和直线的斜率一样,也是刻画直线倾斜程 度的量,直线的倾斜角侧重于直观形象,直线的斜率则侧重于数量关系。
教学中要让学生知道:任何直 线都有倾斜角,但不是任何直线都有斜率。
通过分析“坡度”这一学生熟悉的概念,得到研究直线倾斜程度的量一一斜率。
对于直线的斜率公1课时 3.1.2两条直线平行与垂直的判定 1课时 3.2.1直线的点斜式方程 1课时 3.2.2直线的两点式方程 3.2.3直线的一般式方程 3.3.1 两条直线的交点坐标 3.3.2 两点间的距离 3.3.3 点到直线的距离 两条平行直线间的距离 复习小结3.3.4 1课时 1课时 1课时 1课时1课时 1课时 难点是两点间距离公式的应用。
式要注意:(1)斜率公式与两点顺序无关; (2)对于不垂直于 x 轴的直线,直线的斜率是确定的,与所选择的直线上的两点位置无关; (3)与x 轴垂直的直线,它的斜率不存在。
通过例子帮助理解经过两点的直线的斜率公式。
在处理直线的斜率和倾斜角的关系时,可以通过计算机演示或计算器操作,使学生观察并体会直线 的倾斜角变化时,直线斜率的变化规律。
直线是点的集合,求直线的方程实际上是求直线上点的坐标之间所满足的一个等量关系。
直线的方 程是本章的一个核心概念,教学中要充分调动学生的学习积极性,建议将教学的过程设计成一个一个问 题链,引导学生自主探索解决。
在求直线方程的过程中,既要说明直线上点的坐标满足方程,也要说明以方程的解为坐标的点在直 线上,满足了这两点,我们就可以说这个方程是直线的方程,直线是这个方程的直线。
让学生意识到这 一点就可以了,不必展开。
直线斜截式方程是直线点斜式方程的一种特殊情形,教学过程中,要与一次函数进行比较,并注意 分析方程中k 和b 的几何意义。
由于两点决定了直线的斜率,将两点式方程转化为点斜式方程,体现了化归的思想。
在教学中,可 以让学生讨论并独立得到结论。
在求两点式方程时,学生有可能直接利用直线上的点和两个已知点的连 线的斜率相等获得方程,这种方法也应肯定,它体现了求轨迹方程的基本思想。
要注意引导学生分析以 上三种形式应用时的局限性。
直线的截距式方程作为直线的两点式方程的特殊情形,不必单独提出。
对于直线的一般式方程 By + C = 0(A , B 不全为0),常常转为斜截式加以研究。
在教学中,可以让学生直线方程的三种形式斜式、斜截式、两点式)以及它们与直线的一般式方程的联系。
由于垂直于x 轴的直线斜率不存在,此,应提醒学生判断两直线平行和垂直时,要注意对斜率的存在性进行讲论。
教材通过构造相似三角形 得到两直线垂直的条件。
推证中实际上用到了有向线段的概念,只要求学生能够理解,不必作深入说明。
有了直线方程,对直线间的位置关系的研究就可以转化为对它们方程的研究。
从两条直线的平行、相交、 重合问题转化为方程组是否有解、有惟一解、有无数个解的问题中,引导学生领会解析法的本质。
在推 导点到直线的距离公式的过程中,要重视对推导过程的分析。
建立坐标系是将几何问题转化为代数问题 的基础,合理地建立坐标系可以减少解题的计算量,教学中可引导学生在如何合理建立坐标系方面展开 讨论。