概率论与数理统计及其应用第二版课后答案浙江大学
浙江大学《概率论、数理统计与随机过程》课后习题答案张帼奋主编第一章概率论习题__奇数题

01 11 11 11 11 5 25 35 45 55
77 300
15 解 : 设 A1 入市时间在1年以内 , A2 入市时间在1年以上不到 4年 ,
A3 入市时间在4年以上, B1 股民赢, B2 股民平, B3 股民亏
则
pB1 A1 0.1 , pB2 A1 0.2 , pB3 A1 0.7 , pB1 A2 0.2 , pB2 A2 0.3 ,
pB3 A2 0.5 , pB1 A3 0.4 , pB2 A3 0.4 , pB3 A3 0.2
(1) pB1 pB1 A1 pA1 pB1 A2 pA2 pB1 A3 pA3
0.22
(2)
p A1 B3
pA1B3 pB3
pB3
A1 p A1
pB3 A1 pA1 pB3 A2 pA2
(1) pAi p C1Ci1Ci p C1 p Ci1 pCi p1 p i1 pB4 p C1C2C3C4 p C1C2C3C4 p2 1 p
p
(2)
B4
A1
pB4 A1 p A1
p31 p
p
p2 1 p
(3)
pA1
B4
pB4 A1 pB4
p 3 1 p2 1
0.8 0.9 0.99 0.2 0.01 1 0.9 1 0.9 0.99 1 0.2 0.01
1 19
(2)记
Ai
第i个元件正常工作,则
pAi
1 19
p A1 A5 1 p A1 A5 1 p A1 p A5
1 1 1 5 19
0.9984
pB3
A3 pA3
7 0.538 13
17 解:(1)第三天与今天持平包括三种情况:第 2 天平,第 3 天平;第 2 天涨,第 3 天跌; 第 2 天跌,第 3 天涨。则
概率论与数理统计_浙江大学中国大学mooc课后章节答案期末考试题库2023年

概率论与数理统计_浙江大学中国大学mooc课后章节答案期末考试题库2023年1.随机变量X~N(1,4),则P(X>2)=【图片】.参考答案:正确2.在(0,1)区间独立随机地抽取100个数【图片】,则以下结果正确的是参考答案:近似服从N(5, 1/12)3.设随机变量X服从参数为3的泊松分布,则【图片】.参考答案:正确4.两个独立总体【图片】均未知,从中抽取容量分别为4和6的样本,【图片】为样本均值,【图片】为样本方差,若【图片】则【图片】,又查表知【图片】,则在显著水平为0.05下检验假设【图片】,以下结果正确的是参考答案:P_值=0.6174,所以不拒绝原假设。
5.设(X,Y)的联合分布律如下表所示,且X与Y相互独立,则a,b,c满足【图片】参考答案:b=2a=2c6.设(X,Y)的联合分布律如下表所示,则以下结果正确的是【图片】参考答案:X与Y不独立7.甲乙两人独立地在(0,1)区间内随机取一数,分别记为X,Y,则以下结果正确的是参考答案:X与Y相互独立8.设(X,Y)的联合分布律如下表所示,则P(X=1)=P(X=2).【图片】参考答案:错误9.设(X,Y)的联合分布律如下表所示,则P(Y=0)=P(Y=1)=2P(Y=2).【图片】参考答案:正确10.设进入某公众服务中心的顾客每人接受服务时间X(单位:分钟)服从参数为1/6(E(X)=6)的指数分布,随机观察100个人的服务时间,结果记为【图片】,设【图片】,假设每人的服务时间是相互独立的.利用切比雪夫不等式,可得【图片】的下界为16/25.参考答案:正确11.设X与Y相互独立,均服从参数为1的指数分布,则以下结果正确的是参考答案:E(X+Y)=212.设(X,Y)的联合概率密度为【图片】则X与Y不独立且不相关.参考答案:错误13.设X与Y相互独立,X服从参数为1/2的0-1分布,Y服从参数为3/4的0-1分布,则E(XY)=参考答案:3/814.设随机变量X~B(3, 0.4),【图片】, 则P(Y=1)的值为参考答案:63/12515.随机选9个高血压患者,分别测量他们早上起床时的收缩压X(毫米汞柱)与服药后的收缩压Y(毫米汞柱),得到9对数据【图片】则【图片】与【图片】是来自两个独立总体的样本。
概率论与数理统计 第二版 齐民友 第二章 课后习题答案

P( B1 U B2 U B3 U B4 ) = 1 − P( B1B2 B3 B4 ) = 1 − P( B1 )P( B2 )P( B3 )P( B4 ) ,
这里 Bi , i = 1,2,3, 4, 表示出现了故障及时得到了维修, 且有 P ( B1 )=P ( B2 )=P ( B3 )=P ( B4 ) . 若 设随机变量 X 为一人承包的机器中出故障的数量, 则 X : B (20, 0.01) , 近似地, 我们可以把
13. 设每条蚕的 产卵 数量记 为 X , 则 X : P (λ ), 设 每条蚕产 的卵变 成小蚕的数量 为 Y , 那么有
P(Y = k ) = ∑ P(Y = k | X = m) P( X = m )
m =k ∞ k k p (1 − p ) m −k = ∑ Cm m=k
∞
λ m −λ e m! λ k λ m −k m!
P ( A3 ) = 0.30. 由于 A1,A2,A3 相互独立,因此,有
P{X = 0} = P( A 1 A2 A3 ) = P( A1 ) P( A2 ) P( A3 ) = (1 − 0.1) × (1 − 0.2) × (1 − 0.3) = 0.504, P{X = 1} = P( A1 A2 A3 ) + P( A1 A2 A3 ) + P( A1 A2 A3 ) =0.1×0.8×0.7+0.9×0.2×0.7+0.9×0.8×0.3=0.398, P{X = 2} = P( A1 A2 A3 ) + P( A1 A2 A3 ) + P( A1 A2 A3 ) =0.092,
(2) P( X > 300) = e
−
1 ×300 200
浙江大学《概率论、数理统计与随机过程》课后习题答案张帼奋主编第二章概率论习题_奇数

第二章 随机变量及其概率分布注意: 这是第一稿(存在一些错误) 第二章概率论习题__奇数.doc1解:X 取值可能为2,3,4,5,6,则X 的概率分布律为: ()371235p X ===; ()378335p X ===; ()379435p X ===; ()378535p X ===; ()37167p X ===。
3解:(1)没有中大奖的概率是()71110np -=-;(2)每一期没有中大奖的概率是()107110p -=-, n 期没有中大奖的概率是()1072110nn p p -==-。
5解:X 取值可能为0,1,2,3;Y 取值可能为0,1,2,3()()()()1230111p x p p p ==---,()()()()()()()1232133121111111p x p p p p p p p p p ==--+--+--, ()()()()1231323212111p x p p p p p p p p p ==-+-+-, ()1233p x p p p ==。
Y 取每一值的概率分布为:()10p y p ==, ()()1211p y p p ==-,()()()123211p y p p p ==--, ()()()()1233111p y p p p ==---。
7解:(1)()()()345324555510.10.110.10.110.10.991α=-+-+-=,()()233445555510.210.20.210.20.20.942β=--+-+=。
(2)诊断正确的概率为0.70.30.977p αβ=+=。
(3)此人被诊断为有病的概率为()0.70.310.711p αβ=+-=。
9解:(1)由题意知,候车人数X k =的概率为()!ke p X k k λλ-==,则()0p X e λ-==,从而单位时间内至少有一人候车的概率为1p e λ-=-,所以 4.511ee λ---=-解得 4.5λ=则() 4.54.5!ke p X k k -==。
浙江大学《概率论、数理统计与随机过程》课后习题答案张帼奋主编第一章概率论习题__偶数题

第一章 概率论的基本概念注意: 这是第一稿(存在一些错误)第一章概率论习题__偶数.doc2、解(1)ABBC AC 或ABC ABC ABC ABC ;(2)AB BC AC (提示:题目等价于A ,B ,C 至少有2个发生,与(1)相似); (3)ABC ABC ABC ; (4)A B C 或ABC ; (提示:A ,B ,C 至少有一个发生,或者A B C ,,不同时发生);4、解(1)因为A B ,不相容,所以A B ,至少有一发生的概率为:()()()=0.3+0.6=0.9P A B P A P B =+(2) A B , 都不发生的概率为:()1()10.90.1P A B P A B =-=-=;(3)A 不发生同时B 发生可表示为:A B ,又因为A B ,不相容,于是()()0.6P AB P B ==;6、解 设A ={“两次均为红球”},B ={“恰有1个红球”},C ={“第二次是红球”} 若是放回抽样,每次抽到红球的概率是:810,抽不到红球的概率是:210,则 (1)88()0.641010P A =⨯=; (2)88()210.321010P B =⨯⨯-=(); (3)由于每次抽样的样本空间一样,所以:8()0.810P C == 若是不放回抽样,则(1)2821028()45C P A C ==;(2)82210()45P B C ==; (3)111187282104()5A A A A P C A +==。
8、解(1)设A ={“1红1黑1白”},则1112323712()35C C C P A C ==; (2)设B ={“全是黑球”},则33371()35C P B C ==; (3)设C ={第1次为红球,第2次为黑球,第3次为白球”},则2322()7!35P C ⨯⨯==。
10、解 由已知条件可得出:()1()10.60.4P B P B =-=-=;()()()0.70.50.2P AB P A P AB =-=-=;()()()()0.9P A B P A P B P AB =+-=;(1)(())()7(|==()()9P A A B P A P A A B P AB P A B =); (2)()()()0.40.20.2P AB P B P AB =-=-=()(+()()0.5P A B P A P B P AB =-=)于是 (())()2(|==5()()P A A B P AB P A A B P A B P A B =); (3)(())()2(|)()()9P AB AB P AB P AB AB P AB P A B ===。
概率论与数理统计及其应用课后答案(浙江大学-盛骤版)

概率论与数理统计及其应用课后答案(浙江大学-盛骤版)
目录
第一章随机变量及其概率. (2)
第二章随机变量及其分布. (13)
第三章随机变量的数字特征. (30)
第四章正态分布. (39)
第五章样本及抽样分布. (49)
第六章参数估计. (55)
第七章假设检验. (68)
第一章随机变量及其概率
1,写出下列试验的样本空间:
(1)连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2)连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4)抛一枚硬币,若出现H则再抛一次;若出现T,则再抛一颗骰子,观察出现的各种结果。
解:(1)S {2,345,6,7} ;(2)S {2,3,4, } ;(3)S
{H ,TH ,TTH ,TTTH , };
(4)S {HH , HT,T1,T2,T3,T4,T5,T6} o
2,设A,B 是两个事件,已知P(A) 0.25,P(B) 0.5,P(AB) 0.125,,求
P(A B), P(AB), P(AB), P[( A B)(AB)]。
解:P(A B) P(A) P(B) P(AB) 0.625,
P(AB) P[(S A)B] P(B) P(AB) 0.375,
P(AB) 1 P(AB) 0.875,
P[(A B)(AB)] P[(A B)(S AB)] P(A B) P[(A B)( AB)] 0.625 P(AB) 0.5。
浙江大学《概率论与数理统计》配套题库【课后习题】(样本及抽样分布)

第6章样本及抽样分布1.在总体中随机抽取一容量为36的样本,求样本均值落在50.8到53.8之间的概率.解:由已知得,,,则,从而2.在总体N(12,4)中随机抽一容量为5的样本.(1)求样本均值与总体均值之差的绝对值大于1的概率;(2)求概率.解:(1)由已知得,从而(2)记,因的分布函数为,则M的分布函数为因而记,则N的分布函数为故3.求总体N(20,3)的容量分别为10,15的两独立样本均值差的绝对值大于0.3的概率.解:将总体N(20,3)的容量分别为10,15的两独立样本的均值分别记作,则,从而,即.故所求概率为4.(1)设样本来自总体N(0,1),,试确常数C使CY服从分布.(2)设样本来自总体N(0,1),,试确定常数C 使Y服从t分布.(3)已知X~t(n),求证.解:(1)因是总体N(0,1)的样本,故且两者是相互独立,因此又两者相互独立,按分布的定义即,因此所求常数.(2)因是总体N(0,1)的样本,故,即有又与相互独立,于是因此所求的常数.(3)由已知得X~t(n),故X可表示成,其中,,则,.又Z,Y相互独立,知Z2与Y相互独立,按F分布的定义得5.(1)已知某种能力测试的得分服从正态分布,随机取10个人参与这一测试.求他们得分的联合概率密度,并求这10个人得分的平均值小于的概率.(2)在(1)中设,若得分超过70就能得奖,求至少有一人得奖的概率.解:(1)10个人的得分分别记为,它们的联合概率密度为(2)若一人得奖的概率为p,则得奖人数Y~b(10,P),此处p是随机选取一人,其考分X在70分以上的概率.因X~N(62,25),故则至少一人得奖的概率为.6.设总体X~b(1,p),是来自X的样本.(1)求的分布律;(2)求的分布律;(3)求.解:(1)因相互独立,且有,即具有分布律因此的分布律为(2)因相互独立,且有,故,其分布律为(3)由于总体,则,,故有7.设总体,是来自X的样本,求, , .解:由已知得,因是来自X的样本,故,,8.设总体是来自X的样本.(1)写出的联合概率密度.(2)写出的概率密度.解:(1)由已知得的概率密度为,故的联合概率密度为(2),故的概率密度为9.设在总体中抽得一容量为16的样本,这里均未知;(1)求,其中为样本方差;(2)求.解:(1)因为,现在n=16,即有,故有查分布表得,从而知p=1-0.01=0.99(2)由,得,即。
浙江大学《概率论、数理统计与随机过程》课后习题答案张帼奋主编第五章概率论习题_奇数答案

P{32 X 40} 1 P( X 36 4) 1 22 3 0.75 16 4
3
解
服从参数为
0.5
的几何分布,
P(
n)
1 2
n1
,
(n
2,3, 4)
可求出 E( ) nP( n) 3, D( ) 2 n2
于是令 a b E( ) , b a ,利用切比雪夫不等式,得
2
Yi
1,第i次试验中该事件发生
,i=1,2,3 ,且
0, 第i次试验中该事件不发生
P(Yi
1)
p
n
100
于是Y
Yi 服从二项分布: P(Y k ) P(
Yi
k)
Cn 100
p
k
(1
p) 100k
i 1
i 1
方法一:(Y 的精确分布)
P(Y 2) 1 P(Y 0) P(Y 1) 1 (1 p) 100 100 p(1 p) 99 99.756%
X
2 i
)
a
2 2
,
D(
X
2 i
)
24 4
,利用中心极限定理,可知
1
100
100 i 1
X
2 i
~
N
(
2 2
,
24 100
4
)
从而
P{ 1 100
100 i 1
X
2 i
2 2
}
0.5
9 解 (1)由题意得:记 p P0.95 X 1.05 1.1 0.952 1.05 ,引入随机变量
2
100
Xi 2.464*100
同时 i1
~ N (0,1) ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第1章 随机变量及其概率1,写出下列试验的样本空间:(1) 连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2) 连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3) 连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4) 抛一枚硬币,若出现H 则再抛一次;若出现T,则再抛一颗骰子,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{Λ=S ;(3)},,,,{ΛTTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,就是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。
解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P3,在100,101,…,999这900个3位数中,任取一个3位数,求不包含数字1个概率。
解:在100,101,…,999这900个3位数中不包含数字1的3位数的个数为648998=⨯⨯,所以所求得概率为72.0900648= 4,在仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数中,任取一个三位数。
(1)求该数就是奇数的概率;(2)求该数大于330的概率。
解:仅由数字0,1,2,3,4,5组成且每个数字之多出现一次的全体三位数的个数有100455=⨯⨯个。
(1)该数就是奇数的可能个数为48344=⨯⨯个,所以出现奇数的概率为48.010048= (2)该数大于330的可能个数为48454542=⨯+⨯+⨯,所以该数大于330的概率为48.010048= 5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。
(1)4只中恰有2只白球,1只红球,1只黑球。
(2)4只中至少有2只红球。
(3)4只中没有白球。
解: (1)所求概率为338412131425=C C C C ; (2) 所求概率为165674952014124418342824==++C C C C C C ; (3)所求概率为16574953541247==C C 。
6,一公司向M 个销售点分发)(M n n <张提货单,设每张提货单分发给每一销售点就是等可能的,每一销售点得到的提货单不限,求其中某一特定的销售点得到)(n k k ≤张提货单的概率。
解:根据题意,)(M n n <张提货单分发给M 个销售点的总的可能分法有n M 种,某一特定的销售点得到)(n k k ≤张提货单的可能分法有k n k n M C --)1(种,所以某一特定的销售点得到)(n k k ≤张提货单的概率为nk n k n M M C --)1(。
7,将3只球(1~3号)随机地放入3只盒子(1~3号)中,一只盒子装一只球。
若一只球装入与球同号的盒子,称为一个配对。
(1)求3只球至少有1只配对的概率。
(2)求没有配对的概率。
解:根据题意,将3只球随机地放入3只盒子的总的放法有3!=6种:123,132,213,231,312,321;没有1只配对的放法有2种:312,231。
至少有1只配对的放法当然就有6-2=4种。
所以(2)没有配对的概率为3162=;(1)至少有1只配对的概率为32311=-。
8,(1)设,1.0)(,3.0)(,5.0)(===AB P B P A P ,求)|(),|(),|(B A A P A B P B A P ⋃, )|(),|(AB A P B A AB P ⋃、 (2)袋中有6只白球,5只红球,每次在袋中任取1只球,若取到白球,放回,并放入1只白球;若取到红球不放回也不放入另外的球。
连续取球4次,求第一、二次取到白球且第三、四次取到红球的概率。
解:(1)由题意可得7.0)()()()(=-+=⋃AB P B P A P B A P ,所以313.01.0)()()|(===B P AB P B A P , 515.01.0)()()|(===A P AB P A B P ,75)()()()]([)|(=⋃=⋃⋃=⋃B A P A P B A P B A A P B A A P , 71)()()()]([)|(=⋃=⋃⋃=⋃B A P AB P B A P B A AB P B A AB P , 1)()()()]([)|(===AB P AB P AB P AB A P AB A P 。
(2)设)4,3,2,1(=i A i 表示“第i 次取到白球”这一事件,而取到红球可以用它的补来表示。
那么第一、二次取到白球且第三、四次取到红球可以表示为4321A A A A ,它的概率为(根据乘法公式))|()|()|()()(32142131214321A A A A P A A A P A A P A P A A A A P =0408.020592840124135127116==⨯⨯⨯=。
9,一只盒子装有2只白球,2只红球,在盒中取球两次,每次任取一只,做不放回抽样,已知得到的两只球中至少有一只就是红球,求另一只也就是红球的概率。
解:设“得到的两只球中至少有一只就是红球”记为事件A ,“另一只也就是红球”记为事件B 。
则事件A 的概率为65314232422)(=⨯+⨯⨯=A P (先红后白,先白后红,先红后红) 所求概率为51653142)()()|(=⨯==A P AB P A B P 10,一医生根据以往的资料得到下面的讯息,她的病人中有5%的人以为自己患癌症,且确实患癌症;有45%的人以为自己患癌症,但实际上未患癌症;有10%的人以为自己未患癌症,但确实患了癌症;最后40%的人以为自己未患癌症,且确实未患癌症。
以A 表示事件“一病人以为自己患癌症”,以B 表示事件“病人确实患了癌症”,求下列概率。
(1))(),(B P A P ;(2))|(A B P ;(3))|(A B P ;(4))|(B A P ;(5))|(B A P 。
解:(1)根据题意可得%50%45%5)()()(=+=+=B A P AB P A P ;%15%10%5)()()(=+=+=A B P BA P B P ;(2)根据条件概率公式:1.0%50%5)()()|(===A P AB P A B P ; (3)2.0%501%10)()()|(=-==A P AB P A B P ; (4)179%151%45)()()|(=-==B P B A P B A P ; (5)31%15%5)()()|(===B P AB P B A P 。
11,在11张卡片上分别写上engineering 这11个字母,从中任意连抽6张,求依次排列结果为ginger 的概率。
解:根据题意,这11个字母中共有2个g,2个i,3个n,3个e,1个r 。
从中任意连抽6张,由独立性,第一次必须从这11张中抽出2个g 中的任意一张来,概率为2/11;第二次必须从剩余的10张中抽出2个i 中的任意一张来,概率为2/10;类似地,可以得到6次抽取的概率。
最后要求的概率为924013326403661738193102112==⨯⨯⨯⨯⨯;或者92401611111311131212=A C C C C C C 。
12,据统计,对于某一种疾病的两种症状:症状A 、症状B,有20%的人只有症状A,有30%的人只有症状B,有10%的人两种症状都有,其她的人两种症状都没有。
在患这种病的人群中随机地选一人,求(1)该人两种症状都没有的概率;(2)该人至少有一种症状的概率;(3)已知该人有症状B,求该人有两种症状的概率。
解:(1)根据题意,有40%的人两种症状都没有,所以该人两种症状都没有的概率为%40%10%30%201=---;(2)至少有一种症状的概率为%60%401=-;(3)已知该人有症状B,表明该人属于由只有症状B 的30%人群或者两种症状都有的10%的人群,总的概率为30%+10%=40%,所以在已知该人有症状B 的条件下该人有两种症状的概率为41%10%30%10=+。
13,一在线计算机系统,有4条输入通讯线,其性质如下表,求一随机选择的进入讯号无误差地被接受的概率。
通讯线通讯量的份额 无误差的讯息的份额 1 0、4 0、9998 20、3 0、9999 30、1 0、9997 4 0、2 0、9996解:设“讯号通过通讯线i 进入计算机系统”记为事件)4,3,2,1(=i A i ,“进入讯号被无误差地接受”记为事件B 。
则根据全概率公式有9996.02.09997.01.09999.03.09998.04.0)|()()(41⨯+⨯+⨯+⨯==∑=i i i A B P A P B P=0、9997814,一种用来检验50岁以上的人就是否患有关节炎的检验法,对于确实患关节炎的病人有85%的给出了正确的结果;而对于已知未患关节炎的人有4%会认为她患关节炎。
已知人群中有10%的人患有关节炎,问一名被检验者经检验,认为她没有关节炎,而她却有关节炎的概率。
解:设“一名被检验者经检验认为患有关节炎”记为事件A ,“一名被检验者确实患有关节炎”记为事件B 。
根据全概率公式有%1.12%4%90%85%10)|()()|()()(=⨯+⨯=+=B A P B P B A P B P A P , 所以,根据条件概率得到所要求的概率为%06.17%1.121%)851%(10)(1)|()()()()|(=--=-==A P B A P B P A P A B P A B P 即一名被检验者经检验认为没有关节炎而实际却有关节炎的概率为17、06%、15,计算机中心有三台打字机A,B,C,程序交与各打字机打字的概率依次为0、6, 0、3, 0、1,打字机发生故障的概率依次为0、01, 0、05, 0、04。
已知一程序因打字机发生故障而被破坏了,求该程序就是在A,B,C 上打字的概率分别为多少?解:设“程序因打字机发生故障而被破坏”记为事件M ,“程序在A,B,C 三台打字机上打字”分别记为事件321,,N N N 。