2020年福建省南平市浦城县中考数学一模试卷
南平市中考数学一模考试试卷

南平市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共16题;共41分)1. (3分)下列命题中,真命题是()A . 同位角相等B . 内错角相等C . 同旁内角互补D . 同一平面内,平行于同一直线的两直线平行2. (3分)(2020·南山模拟) 如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得C′C∥AB,则∠B′AB为()A . 25°B . 30°C . 50°D . 55°3. (3分) (2016八上·无锡期末) 下列说法:①有理数和数轴上的点一一对应;②成轴对称的两个图形是全等图形;③- 是17的平方根;④等腰三角形的高线、中线及角平分线重合.其中正确的有()A . 0个B . 1C . 2个D . 3个4. (2分)下列说法正确的是A . 相等的圆心角所对的弧相等B . 无限小数是无理数C . 阴天会下雨是必然事件D . 在平面直角坐标系中,如果位似是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k5. (3分)(2019·定兴模拟) 如图是由7个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体()A . 主视图改变,俯视图改变B . 左视图改变,俯视图改变C . 俯视图不变,左视图改变D . 主视图不变,左视图不变6. (3分)(2019·定兴模拟) 从河北省统计局获悉,2018年前三季度新能源发电量保持快速增长,其中垃圾焚烧发电量6.9亿千瓦时,同比增长59%,6.9亿用科学记数法表示为a×10n万,则n的值为()A . 9B . 8C . 5D . 47. (3分)(2019·定兴模拟) 如图,给出线段a、h ,作等腰三角形ABC ,使AB=AC=a , BC边上的高AD=h .张红的作法是:(1)作线段AD=h;(2)作线段AD的垂线MN;(3)以点A为圆心,a为半径作弧,与MN 分别交于点B、C;(4)连接AB、AC、△ABC为所求作的等腰三角形.上述作法的四个步骤中,你认为有不正确一步是()A . (1)B . (2)C . (3)D . (4)8. (3分)(2019·定兴模拟) 下面是嘉嘉和琪琪的对话,根据对话内容,则x的值可能是嘉嘉:我能正确化简分式()÷琪琪:我给x取一个值,使你化简分式后所得代数式的值大于0,你能猜出来我给x取的值是几吗?()A . ﹣1B . 1C . 0D . 29. (3分)(2019·定兴模拟) 如图,将边长为5的正六边形ABCDEF沿直线MN折叠,则图中阴影部分周长为()A . 20B . 24C . 30D . 3510. (3分)(2019·定兴模拟) 某射击运动员练习射击,5次成绩分别是:8、9、7、8、x(单位:环).下列说法中正确是()A . 若这5次成绩的中位数为8,则x=8B . 若这5次成绩的众数是8,则x=8C . 若这5次成绩的方差为8,则x=8D . 若这5次成绩的平均成绩是8,则x=811. (2分)(2019·定兴模拟) 如图,△ABC是等边三角形,点P是三角形内的任意一点,PD∥AB ,PE∥BC ,PF∥AC ,若△ABC的周长为12,则PD+PE+PF=()A . 12B . 8C . 4D . 312. (2分) (2017七下·东港期中) 如图,要修建一条公路,从A村沿北偏东75°方向到B村,从B村沿北偏西25°方向到C村.若要保持公路CE与AB的方向一致,则∠ECB的度数为()A . 80°B . 90°C . 100°D . 105°13. (2分)如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于()A . 2B . 3C .D .14. (2分)(2019·定兴模拟) 如图,小明为了测量河宽AB ,先在BA延长线上取一点D ,再在同岸取一点C ,测得∠CAD=60°,∠BCA=30°,AC=15m ,那么河AB宽为()A . 15mB . mC . mD . m15. (2分)(2019·定兴模拟) 如图,用四根长为5cm的铁丝,首尾相接围成一个正方形(接点不固定),要将它的四边按图中的方式向外等距离移动acm ,同时添加另外四根长为5cm的铁丝(虚线部分)得到一个新的正八边形,则a的值为()A . 4cmB . 5cmC . 5 cmD . cm16. (2分)(2019·定兴模拟) 二次函数y=x2+bx﹣1的图象如图,对称轴为直线x=1,若关于x的一元二次方程x2﹣2x﹣1﹣t=0(t为实数)在﹣1<x<4的范围内有实数解,则t的取值范围是()A . t≥﹣2B . ﹣2≤t<7C . ﹣2≤t<2D . 2<t<7二、填空题 (共3题;共8分)17. (3分)用分式表示下列式子的商,并约分:2(a﹣b)÷(a﹣b)2=________.18. (3分)(2016·镇江模拟) 若m、n互为倒数,则mn2﹣(n﹣1)的值为________.19. (2分)(2019·定兴模拟) 如图,在△ABC中,BC=AC=5,AB=8,CD为AB边的高,点A在x轴上,点B在y轴上,点C在第一象限,若A从原点出发,沿x轴向右以每秒1个单位长的速度运动,则点B随之沿y轴下滑,并带动△ABC在平面内滑动,设运动时间为t秒,当B到达原点时停止运动(1)连接OC ,线段OC的长随t的变化而变化,当OC最大时,t=________;(2)当△ABC的边与坐标轴平行时,t=________.三、解答题 (共7题;共58分)20. (8分)用公式法解方程:(1);(2)(3)(4)21. (9分)(2019·定兴模拟) 小明对A , B , C , D四个中小型超市的女工人数进行了统计,并绘制了下面的统计图表,已知A超市有女工20人.超市A B C D女工人数占比62.5%62.5%50%75%(1) A超市共有员工多少人?B超市有女工多少人?(2)若从这些女工中随机选出一个,求正好是C超市的概率;(3)现在D超市又招进男、女员工各1人,D超市女工占比还是75%吗?甲同学认为是,乙同学认为不是,你认为谁说的对,并说明理由.22. (9分)(2019·江川模拟) 探究:在一次聚会上,规定每两个人见面必须握手,且只握手1次(1)若参加聚会的人数为3,则共握手________次:;若参加聚会的人数为5,则共握手________次;(2)若参加聚会的人数为n(n为正整数),则共握手________次;(3)若参加聚会的人共握手28次,请求出参加聚会的人数.(4)拓展:嘉嘉给琪琪出题:“若线段AB上共有m个点(含端点A,B),线段总数为30,求m的值.”琪琪的思考:“在这个问题上,线段总数不可能为30”琪琪的思考对吗?为什么?23. (9.0分)(2019·定兴模拟) 老师布置了一个作业,如下:已知:如图1▱ABCD的对角线AC的垂直平分线EF交AD于点F ,交BC于点E ,交AC于点O求证:四边形AECF是菱形.某同学写出了如图2所示的证明过程,老师说该同学的作业是不正确,请你解答下列问题:(1)能找出该同学不正确原因吗?请你指出来;(2)请你给出本题的正确证明过程.24. (2分)(2019·定兴模拟) 如图,在平面直角坐标系中,反比例函数y=(x>0)的图象与边长是6的正方形OABC的两边AB , BC分别相交于M , N两点.(1)若点M是AB边的中点,求反比例函数y=的解析式和点N的坐标;(2)若AM=2,求直线MN的解析式及△OMN的面积.25. (10分)(2019·定兴模拟) 如图1,四边形ABCD是正方形,且AB=8,点O与B重合,以O为圆心,作半径长为5的半圆O ,交BC于点E ,交AB于点F ,交AB的延长线于点G .发现:M是半圆O上任意一点,连接AM ,则AM的最大值为;思考:如图2,将半圆O绕点F逆时针旋转,记旋转角为α(0°<α<180°)【答案】13(1)当α=90°时,求半圆O落在正方形内部的弧长;(2)在旋转过程中,若半圆O与正方形ABCD的边相切时,请直接写出此时点A到切点的距离.(注:sin37°=,sin53°=,tan37°=)26. (11.0分)(2019·定兴模拟) 如图1,地面BD上两根等长立柱AB , CD之间悬挂一根近似成抛物线y = x2﹣ x+3的绳子.(1)求绳子最低点离地面的距离;(2)因实际需要,在离AB为3米的位置处用一根立柱MN撑起绳子(如图2),使左边抛物线F1的最低点距MN为1米,离地面1.8米,求MN的长;(3)将立柱MN的长度提升为3米,通过调整MN的位置,使抛物线F2对应函数的二次项系数始终为,设MN离AB的距离为m ,抛物线F2的顶点离地面距离为k ,当2≤k≤2.5时,求m的取值范围.参考答案一、选择题 (共16题;共41分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、二、填空题 (共3题;共8分)17-1、18-1、19-1、19-2、三、解答题 (共7题;共58分)20-1、20-2、20-3、20-4、21-1、21-2、21-3、22-1、22-2、22-3、22-4、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。
2020年福建省南平市中考数学一模试卷含答案解析

2020年福建省南平市中考数学模拟试卷一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣2.“武夷水秀”以特有的光影效果,吸引众多市民前去观看.特别是五一当天,共演了7场,平均每场有1200人观看,这天观看的总人数用科学记数法可以表示为()A.0.12×104 B.1.2×103C.8.4×103D.84×1023.小明从正面观察如图所示的两个物体,看到的大致图形是()A.B.C.D.4.一组数据1,0,﹣1,2,3的中位数是()A.1 B.0 C.﹣1 D.25.下列运算正确的是()A.4a﹣a=3 B.a6÷a3=a3 C.(ab)2=ab2D.(a﹣b)2=a2﹣b26.下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形B.平行四边形C.矩形 D.正五边形7.下列说法正确的是()A.抛一枚图钉钉尖着地和钉尖朝上的概率一样大B.彩票中奖的机会是1%,买100张一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半的时间在下雨D.在同一年出生的367名学生中,至少有两人的生日是同一天8.方程x2﹣2x﹣3=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实根 D.有一个实根9.如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,以相同长(大于BC)为半径作弧,两弧相交于点D,连接AD,BD,CD.则下列结论错误的是()A.AD平分∠MAN B.AD垂直平分BCC.∠MBD=∠NCD D.四边形ACDB一定是菱形10.如图,⊙O的弦BC长为8,点A是⊙O上一动点,且∠BAC=45°,点D,E分别是BC,AB的中点,则DE长的最大值是()A.4 B.4C.8 D.8二、填空题(本大题共6小题,每小题4分,共24分.)11.抛掷一枚标有数字1~6的质地均匀的正方体骰子,朝上一面出现1的概率是.12.分解因式:ax2﹣2ax+a=.13.分式方程=的解是.14.写出一个同时满足下面两个条件的一次函数的解析式.条件:①y随x的增大而减小;②图象经过点(0,2).15.已知扇形的圆心角为120°,弧长为4π,则它的半径为.16.直线y=x+2与x轴,y轴分别交于M,N两点,O为坐标原点,将△OMN沿直线MN翻折后得到△PMN,则点P的坐标为.三、解答题(本大题共9小题,共86分.)17.(8分)计算:|﹣3|+()﹣1﹣÷5.18.(8分)解不等式组:.19.(8分)化简:a(2﹣a)﹣(3+a)•(3﹣a)20.(8分)2020年6月28日,“合福高铁”正式开通,对南平市的旅游产业带来了新的发展机遇.某旅行社抽样调查了2020年8月份该社接待来南平市若干个景点旅游的人数,并将调查结果绘制成如下两幅不完整的统计图表,请根据图表信息回答下列问题:景点频数(人数)频率九曲溪116 0.29归宗岩0.25天成奇峡84 0.21溪源峡谷64 0.16华阳山36 0.09(1)此次共调查人,并补全条形统计图;(2)由上表提供的数据可以制成扇形统计图,则“天成奇峡”所对扇形的圆心角为°;(3)该旅行社预计今年8月份将要接待来以上景点的游客约2 500人,根据以上信息,请你估计去“九曲溪”的游客大约有多少人?21.(8分)如图,点C,E,F,B在同一直线上,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.22.(10分)如图,已知△ABC中,AB=AC,O为BC的中点,AB与⊙O相切于点D.(1)求证:AC是⊙O的切线;(2)若∠B=33°,⊙O的半径为1,求BD的长.(结果精确到0.01)23.(10分)某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=18时,大棚内的温度约为多少度?24.(12分)如图,已知抛物线y=﹣x2+mx+n与x轴交于A (﹣2,0)、B两点,与y 轴交于点C.抛物线对称轴为直线x=3,且对称轴与x轴交于点D.(1)求抛物线的解析式;(2)点P在线段BC上从点C开始向点B运动(点P不与点B、C重合),速度为每秒个单位,设运动时间为t(单位:s),过点P作x轴的垂线与抛物线相交于点F.求四边形CDBF的面积S关于t的函数关系式.25.(14分)如图1,在△ABC中,CD为AB边上的中线,点E、F分别在线段CD、AD 上,且.点G是EF的中点,射线DG交AC于点H.(1)求证:△DFE∽△DAC;(2)请你判断点H是否为AC的中点?并说明理由;(3)若将△ADH绕点D顺时针旋转至△A′DH′,使射线DH′与射线CB相交于点M(不与B,C重合.图2是旋转后的一种情形),请探究∠BMD与∠BDA′之间所满足的数量关系,并加以证明.2020年福建省南平市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)1.﹣3的相反数是()A.3 B.﹣3 C.D.﹣【考点】相反数.【分析】根据相反数的概念解答即可.【解答】解:﹣3的相反数是3,故选:A.【点评】本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2.“武夷水秀”以特有的光影效果,吸引众多市民前去观看.特别是五一当天,共演了7场,平均每场有1200人观看,这天观看的总人数用科学记数法可以表示为()A.0.12×104 B.1.2×103C.8.4×103D.84×102【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:7×1200=8.4×103,故选C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.小明从正面观察如图所示的两个物体,看到的大致图形是()A.B.C.D.【考点】简单组合体的三视图.【分析】根据从正面看得到的图形是主视图,可得答案.【解答】解:从正面看左边是一个正方形,右边是一个正方形,故B符合题意;故选:B.【点评】本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.一组数据1,0,﹣1,2,3的中位数是()A.1 B.0 C.﹣1 D.2【考点】中位数.【分析】按大小顺序排列这组数据,第三个数就是中位数.【解答】解:从小到大排列此数据为:﹣1,0,1,2,3,处在中间位置的是1,则1为中位数.所以这组数据的中位数是1.故答案为1.【点评】本题属于基础题,考查了确定一组数据的中位数的能力.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.下列运算正确的是()A.4a﹣a=3 B.a6÷a3=a3 C.(ab)2=ab2D.(a﹣b)2=a2﹣b2【考点】完全平方公式;合并同类项;幂的乘方与积的乘方;同底数幂的除法.【分析】根据整式的运算法则分别计算即可判断.【解答】解:A、4a﹣a=3a,此选项错误;B、a6÷a3=a3,此选项正确;C、(ab)2=a2b2,此选项错误;D、(a﹣b)2=a2﹣2ab+b2,此选项错误;故选:B.【点评】本题主要考查了合并同类项、幂的运算、完全平方公式,熟练掌握运算法则是解题的关键.6.下列图形中,既是中心对称图形又是轴对称图形的是()A.等边三角形B.平行四边形C.矩形 D.正五边形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误;B、不是轴对称图形,因为找不到任何这样的一条直线,沿这条直线对折后它的两部分能够重合;即不满足轴对称图形的定义.是中心对称图形.故错误;C、是轴对称图形,又是中心对称图形.故正确;D、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义.故错误.故选C.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.7.下列说法正确的是()A.抛一枚图钉钉尖着地和钉尖朝上的概率一样大B.彩票中奖的机会是1%,买100张一定会中奖C.天气预报说明天下雨的概率是50%,所以明天将有一半的时间在下雨D.在同一年出生的367名学生中,至少有两人的生日是同一天【考点】概率的意义.【分析】概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生,机会小也有可能发生.【解答】解:A、抛一枚图钉钉尖着地和钉尖朝上的概率一样大错误,故本选项错误;B、彩票中奖的机会是1%,买100张一定会中奖错误,故本选项错误;C、天气预报说明天下雨的概率是50%,所以明天将有一半的时间在下雨错误,故本选项错误;D、在同一年出生的367名学生中,至少有两人的生日是同一天正确,因为一年最多有366天,故本选项正确.故选D.【点评】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.8.方程x2﹣2x﹣3=0的根的情况是()A.有两个不相等的实数根 B.有两个相等的实数根C.没有实根 D.有一个实根【考点】根的判别式.【分析】判断上述方程的根的情况,只要看根的判别式△=b2﹣4ac的值的符号就可以了.【解答】解:∵△=4+12=16>0,∴方程有两个不相等的实数根.故本题选A.【点评】总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.9.如图,以A点为圆心,以相同的长为半径作弧,分别与射线AM,AN交于B,C两点,连接BC,再分别以B,C为圆心,以相同长(大于BC)为半径作弧,两弧相交于点D,连接AD,BD,CD.则下列结论错误的是()A.AD平分∠MAN B.AD垂直平分BCC.∠MBD=∠NCD D.四边形ACDB一定是菱形【考点】作图—基本作图;角平分线的性质.【分析】利用基本作图对A进行判断;利用作法得到AB=AC,DB=DC,则根据线段垂直平分线的判定方法可对B进行判定;根据等腰三角形的性质得到∠ABC=∠ACB,∠DBC=∠DCB,则∠ABD=∠ACD,然后根据邻补角对C进行判定;利用作图可直接对D进行判定.【解答】解:A、由作法可得AD平分∠MAN,所以A选项的结论正确;B、因为AB=AC,DB=DC,所以AD垂直平分BC,所以B选项的结论正确;C、因为AB=AC,DB=DC,所以∠ABC=∠ACB,∠DBC=∠DCB,则∠ABD=∠ACD,所以∠MBD=∠NCD,所以C选项的结论正确;D、BA不一定等于BD,所以四边形ABDC不一定是菱形,所以D选项的结论错误.故选D.【点评】本题考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).10.如图,⊙O的弦BC长为8,点A是⊙O上一动点,且∠BAC=45°,点D,E分别是BC,AB的中点,则DE长的最大值是()A.4 B.4C.8 D.8【考点】三角形中位线定理;圆周角定理.【分析】当AC是直径时,DE最长,求出直径即可解决问题.【解答】解:当AC是直径时,∵∠BAC=45°,∠ABC=90°,∴∠BAC=∠BCA=45°,∴AB=BC=8,∴AC=8,∵AE=EB,BD=DC,∴DE=AC=4.故选B.【点评】本题考查三角形中位线性质、圆的有关性质,解题的关键是灵活应用三角形中位定理识解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题4分,共24分.)11.抛掷一枚标有数字1~6的质地均匀的正方体骰子,朝上一面出现1的概率是.【考点】概率公式.【分析】弄清骰子六个面上分别刻的点数,再根据概率公式解答就可求出朝上一面出现1的概率.【解答】解:抛掷一枚标有数字1~6的质地均匀的正方体骰子,朝上一面出现的数字有6种等可能的结果,其中朝上一面出现1的情况只有1种,所以朝上一面出现1的概率是.故答案为.【点评】此题考查了概率公式的应用.注意掌握概率=所求情况数与总情况数之比.12.分解因式:ax2﹣2ax+a=a(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】先提公因式a,再利用完全平方公式继续分解因式.【解答】解:ax2﹣2ax+a,=a(x2﹣2x+1),=a(x﹣1)2.【点评】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.分式方程=的解是x=2.【考点】分式方程的解.【分析】观察可得这个分式方程的最简公分母为x(x﹣1),去分母,转化为整式方程求解,结果要检验.【解答】解:两边都乘以x(x﹣1)得:x=2(x﹣1),去括号,得:x=2x﹣2,移项、合并同类项,得:x=2,检验:当x=2时,x(x﹣1)=2≠0,∴原分式方程的解为:x=2,故答案为:x=2.【点评】此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.14.写出一个同时满足下面两个条件的一次函数的解析式y=﹣x+2.条件:①y随x的增大而减小;②图象经过点(0,2).【考点】待定系数法求一次函数解析式.【分析】设该函数的解析式为y=kx+b(k≠0),根据y随x的增大而减小可知k<0,由经过点(0,2)可知b=2,写出符合此条件的函数解析式即可.【解答】解:设该函数的解析式为y=kx+b(k≠0),∵y随x的增大而减小可知k<0,∵函数图象经过点(0,2),∴b=2,∴当k=﹣1时,b=2,∴符合条件的一次函数解析式可以为:y=﹣x+2(答案不唯一).故答案为:y=﹣x+2(答案不唯一).【点评】本题考查的是待定系数法求一次函数解析式,此题属开放性题目,答案不唯一.15.已知扇形的圆心角为120°,弧长为4π,则它的半径为6.【考点】弧长的计算.【分析】根据弧长的公式:l=进行计算即可.【解答】解:由扇形的弧长公式l=,得4π=,解得:r=6.故答案为:6.【点评】本题考查了扇形的弧长的计算,掌握扇形的弧长公式:l=(弧长为l,圆心角度数为n,圆的半径为R)是解题的关键.16.直线y=x+2与x轴,y轴分别交于M,N两点,O为坐标原点,将△OMN沿直线MN翻折后得到△PMN,则点P的坐标为(﹣3,).【考点】一次函数图象上点的坐标特征;翻折变换(折叠问题).【分析】连接OP交MN于点E,过点P作PF⊥x轴于点F.根据直线MN的解析式可求出点M、N的坐标,利用三角形的面积公式可求出PE的长度,依据翻折的性质可以求出线段OP的长度,利用正弦的定义通过角的计算可求出∠MOE的度数,再利用正弦余弦的定义即可求出线段OF、PF的长度,由此即可得出点P的坐标.【解答】解:连接OP交MN于点E,过点P作PF⊥x轴于点F,如图所示.∵直线MN的解析式为y=x+2,∴点M的坐标为(﹣2,0),点N的坐标为(0,2),∴MN==4,∴sin∠ONM===,∠ONM=30°.∵MN•OE=OM•ON,∴OE===.∵△OMN沿直线MN翻折后得到△PMN,∴OP=2OE=2.∵∠OMN+∠ONM=90°,∠OME+∠MOE=90°,∴∠MOE=30°,∴PF=OP•sin∠FOP=,OF=OP•cos∠FOP=3,∴点P的坐标为(﹣3,).故答案为(﹣3,).【点评】本题考查了一次函数图象上点的坐标特征以及翻折变换,解题的关键是求出线段OF、PF的长度.本题属于基础题,难度不大,解决该题型题目时,通过解直角三角形,利用正余弦的定义求出线段的长度是关键.三、解答题(本大题共9小题,共86分.)17.计算:|﹣3|+()﹣1﹣÷5.【考点】实数的运算;负整数指数幂.【分析】根据实数的运算,即可解答.【解答】解:原式=3+2﹣5÷5=5﹣1=4.【点评】本题考查了实数的运算,解决本题的关键是熟记实数的运算.18.解不等式组:.【考点】解一元一次不等式组.【分析】先求出两个不等式的解集,再求不等式组的公共解.【解答】解:由x﹣2>0,得x>2;由2(x+1)≥3x﹣1,得2x+2≥3x﹣1;2x﹣3x≥﹣1﹣2x≤3∴不等式组的解集是2<x≤3【点评】求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.化简:a(2﹣a)﹣(3+a)•(3﹣a)【考点】多项式乘多项式;单项式乘多项式.【分析】直接利用单项式乘以多项式以及平方差公式化简求出答案.【解答】解:a(2﹣a)﹣(3+a)•(3﹣a)=2a﹣a2﹣(9﹣a2)=2a﹣9.【点评】此题主要考查了单项式乘以多项式以及平方差公式,正确掌握运算法则是解题关键.20.2020年6月28日,“合福高铁”正式开通,对南平市的旅游产业带来了新的发展机遇.某旅行社抽样调查了2020年8月份该社接待来南平市若干个景点旅游的人数,并将调查结果绘制成如下两幅不完整的统计图表,请根据图表信息回答下列问题:景点频数频率(人数)九曲溪116 0.29归宗岩0.25天成奇峡84 0.21溪源峡谷64 0.16华阳山36 0.09(1)此次共调查400人,并补全条形统计图;(2)由上表提供的数据可以制成扇形统计图,则“天成奇峡”所对扇形的圆心角为75.6°;(3)该旅行社预计今年8月份将要接待来以上景点的游客约2 500人,根据以上信息,请你估计去“九曲溪”的游客大约有多少人?【考点】条形统计图;用样本估计总体;频数(率)分布表;扇形统计图.【分析】(1)由“九曲溪“的频数与频率,根据调查的总人数=计算可得总人数,用总人数减去其余景点人数可得“归宗岩“的人数;(2“天成奇峡”所对扇形的圆心角=“天成奇峡”对应频率×360°;(3)“九曲溪”的人数=“九曲溪”的频率×2500.【解答】解:(1)此次共调查有:116÷0.29=400(人),“归宗岩”的游客人数为:400×0.25=100(人),补全条形图如图:(2)“天成奇峡”所对扇形的圆心角为:360°×0.21=75.6°;(3)2500×0.29=725(人),答:估计去九曲溪的游客约有725人.故答案为:(1)400;(2)75.6.【点评】本题考查了条形统计图,用样本估计总体以及频数(率)分别表.读图时要全面细致,同时,解题方法要灵活多样,切忌死记硬背,要充分运用数形结合思想来解决由统计图形式给出的数学实际问题.21.如图,点C,E,F,B在同一直线上,AB∥CD,AE=DF,∠A=∠D.求证:AB=CD.【考点】全等三角形的判定与性质.【分析】根据平行线的性质得出∠B=∠C,再根据AAS证出△ABE≌△DCF,从而得出AB=CD.【解答】解:∵AB∥CD,∴∠B=∠C,在△ABE和△DCF中,,∴△ABE≌△DCF,∴AB=CD.【点评】本题考查了全等三角形的判定与性质,用到的知识点是平行线的性质,全等三角形的判定和性质,关键是根据平行线的性质证出∠B=∠C.22.(10分)(2020•南平模拟)如图,已知△ABC中,AB=AC,O为BC的中点,AB与⊙O相切于点D.(1)求证:AC是⊙O的切线;(2)若∠B=33°,⊙O的半径为1,求BD的长.(结果精确到0.01)【考点】切线的判定与性质.【分析】(1)过点O作OE⊥AC于点E,连结OD,OA,根据切线的性质得出AB⊥OD,根据等腰三角形三线合一的性质得出AO是∠BAC的平分线,根据角平分线的性质得出OE=OD,从而证得结论;(2)根据三角函数的定义即可得到结论.【解答】(1)证明:过点O作OE⊥AC于点E,连结OD,OA,∵AB与⊙O相切于点D,∴AB⊥OD,∵△ABC为等腰三角形,O是底边BC的中点,∴AO是∠BAC的平分线,∴OE=OD,即OE是⊙O的半径,∵AC经过⊙O的半径OE的外端点且垂直于OE,∴AC是⊙O的切线;(2)解:在Rt△BDO中,BD=≈1.54.【点评】本题考查了切线的判定和性质,等腰三角形的性质,角平分线的性质,熟练掌握性质定理是解题的关键.23.(10分)(2020•南平模拟)某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种,下图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线y=的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=18时,大棚内的温度约为多少度?【考点】反比例函数的应用.【分析】(1)直接利用图象得出恒温系统在这天保持大棚内温度18℃的时间;(2)将(12,18)代入求出k的值即可;(3)当x=18时,求出y=12,即可得出答案.【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为10小时;(2)∵点B(12,18)在双曲线y=上,∴18=,解得:k=216;(3)当x=18时,y=12,所以当x=18时,大棚内的温度约为12℃.【点评】此题主要考查了反比例函数的应用,正确利用图象得出点的坐标是解题关键.24.(12分)(2020•南平模拟)如图,已知抛物线y=﹣x2+mx+n与x轴交于A (﹣2,0)、B两点,与y轴交于点C.抛物线对称轴为直线x=3,且对称轴与x轴交于点D.(1)求抛物线的解析式;(2)点P在线段BC上从点C开始向点B运动(点P不与点B、C重合),速度为每秒个单位,设运动时间为t(单位:s),过点P作x轴的垂线与抛物线相交于点F.求四边形CDBF的面积S关于t的函数关系式.【考点】二次函数综合题.【分析】(1)根据对称轴和点A的坐标,直接求出抛物线解析式;(2)先确定出直线BC :y=﹣x +4,设出点P 坐标,表示出FP 用面积的和,求出四边形CDBF 的面积和点P 的横坐标的关系,最后用相似三角形即可.【解答】(1)∵抛物线对称轴为直线x=3,∴﹣,∴m=,把A (﹣2,0)代入y=﹣x 2+x +n 中,得n=4,∴抛物线的解析式为y=﹣x 2+x +4,(2)易得B (8,0),C (0,4)设直线BC :y=kx +b ,(k ≠0)∴,∴∴直线BC :y=﹣x +4,设点P (p ,﹣ p +4),F (p ,﹣ p 2+p +4),∴, ∴S 四边形CDBF =S △CDB +S △CBF==, 在Rt △BCO 中,BC==4,如图,过点P作PG⊥y轴于点G,∴PG∥OB∴△PCG∽△BCO,∴,∴,∴p=2t=﹣4t2+16t+10.∴S四边形CDBF【点评】此题是二次函数综合题,主要考查了待定系数法,相似三角形的性质和判定,平面坐标系中几何图形面积的求法,解本题的关键是四边形CDBF的面积和点P的横坐标的关系.25.(14分)(2020•南平模拟)如图1,在△ABC中,CD为AB边上的中线,点E、F分别在线段CD、AD上,且.点G是EF的中点,射线DG交AC于点H.(1)求证:△DFE∽△DAC;(2)请你判断点H是否为AC的中点?并说明理由;(3)若将△ADH绕点D顺时针旋转至△A′DH′,使射线DH′与射线CB相交于点M(不与B,C重合.图2是旋转后的一种情形),请探究∠BMD与∠BDA′之间所满足的数量关系,并加以证明.【考点】相似形综合题.【分析】(1)根据三角形的中线的概念和相似三角形的判定定理证明即可;(2)证明△DGF∽△DHA,△DEG∽△DCH,根据相似三角形的性质得到比例式,根据线段中点的概念得到EG=FG,等量代换即可;(3)分点M在线段BC上和点M在CB的延长线上两种情况,根据相似三角形的性质和旋转的性质解答即可.【解答】(1)证明:∵CD为AB边上的中线,∴DB=DA,∵,∴,又∠FDE=∠ADC,∴△DFE∽△DAC;(2)解:点H为AC的中点.理由如下:∵△DFE∽△DAC,∴∠DFE=∠DAC,∴EF∥AC,∴△DGF∽△DHA,△DEG∽△DCH,∴,,∴,∵点G是EF的中点,∴EG=FG,∴HC=AH,即点H为AC的中点;(3)解:①如图2,当点M在线段BC上时(不与B,C重合),∠BMD+∠BDA'=180°,∵BD=AD,HC=AH,∴DH∥BC,∴∠BMD=∠HDH′,∵将△ADH绕点D旋转至△A'DH',∴∠HDH′=∠ADA'.∵∠BDA′+∠ADA'=180°,∴∠BMD+∠BDA′=180°;②如图3,当点M在CB的延长线上时,∠BMD=∠BDA',∵BD=AD,HC=AH,∴DH∥BC,∴∠BMD=∠NDH,∵将△ADH绕点D旋转至△A'DH',∴∠HDH′=∠ADA',∵∠BDA′+∠ADA'=180°,∠NDH+∠HDH′=180°,∴∠NDH=∠BDA′。
福建省南平市2020版数学中考一模试卷(II)卷

福建省南平市2020版数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)如果x≤0,则化简|1-x|-的结果为()A . 1-2xB . 2x-1C . -1D . 12. (2分)福布斯2015年全球富豪榜出炉,中国上榜人数仅次于美国,其中王健林以242亿美元的财富雄踞中国内地富豪榜榜首,这一数据用科学记数法可表示为()A . 0.242×1010美元B . 0.242×1011美元C . 2.42×1010美元D . 2.42×1011美元3. (2分)从某个方向观察一个正六棱柱,可看到如图所示的图形,其中四边形ABCD为矩形,E、F分别是AB、DC的中点.若AD=8,AB=6,则这个正六棱柱的侧面积为()A . 48B . 96C . 144D . 964. (2分)下列关于x的方程中,一定有实数根的是()A . +1=0B . =﹣xC . =0D . =5. (2分)(2018·东营) 为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是()捐款数额10203050100人数24531A . 众数是100B . 中位数是30C . 极差是20D . 平均数是306. (2分)下列一元二次方程中,常数项为0的是()A . x2+x=1B . 2x2﹣x﹣12=0C . 2(x2﹣1)=3(x﹣1)D . 2(x2+1)=x+27. (2分)下列说法正确的是()A . 3的平方根是B . 对角线相等的四边形是矩形C . 近似数0.2050有4个有效数字D . 两个底角相等的梯形一定是等腰梯形8. (2分)在x2□2xy□y2的空格□中,分别填上“+”或“﹣”,在所得的代数式中,能构成完全平方式的概率是()A .B .C . 1D .9. (2分)如图,图象(折线OEFPMN)描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是()A . 第3分时汽车的速度是40千米/时B . 第12分时汽车的速度是0千米/时C . 从第3分到第6分,汽车行驶了120千米D . 从第9分到第12分,汽车的速度从60千米/时减少到0千米/时10. (2分)如图,已知△ABC,D,E分别是AB,AC边上的点.AD=3cm,AB=8cm,AC=10cm.若△ADE∽△ABC,则AE的值为()A . cmB . cm或cmC . cm或cmD . cm二、填空题 (共6题;共21分)11. (1分)求值:________12. (1分)不等式组的所有整数解的积为________ .13. (2分)若点A(a,3a﹣b)、B(b,2a+b﹣2)关于x轴对称,则a= ________,b= ________14. (1分)(2018·乐山) 如图,△OAC的顶点O在坐标原点,OA边在x轴上,OA=2,AC=1,把△OAC绕点A 按顺时针方向旋转到△O′AC′,使得点O′的坐标是(1,),则在旋转过程中线段OC扫过部分(阴影部分)的面积为________.15. (1分)(2017·惠山模拟) 如图,∠A=110°,在边AN上取B,C,使AB=BC.点P为边AM上一点,将△APB 沿PB折叠,使点A落在角内点E处,连接CE,则∠BPE+∠BCE=________°.16. (15分)(2019·云南) 如图,AB是⊙C的直径,M、D两点在AB的延长线上,E是⊙C上的点,且DE2=DB· DA.延长AE至F,使AE=EF,设BF=10,cos∠BED= .(1)求证:△DEB∽△DAE;(2)求DA,DE的长;(3)若点F在B、E、M三点确定的圆上,求MD的长.三、解答题 (共7题;共80分)17. (10分) (2019八上·西岗期末) 计算:(1)(2)先化简,再求值:(2x+3y)2﹣(2x+y)(2x﹣y),其中x=,y=﹣1.18. (15分)(2018·曲靖) 某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本容量的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.19. (5分) (2018九上·皇姑期末) 如图是某路灯在铅垂面内的示意图,灯柱AC的高为11米,灯杆AB与灯柱AC的夹角∠A=120°,路灯采用锥形灯罩,在地面上的照射区域DE长为18米,从D , E两处测得路灯B的仰角分别为α和β,且tanα=6,tanβ= ,求灯杆AB的长度.20. (15分) (2017·揭阳模拟) 将一矩形纸片OABC放在平面直角坐标系中,O(0,0),A(6,0),C(0,3).动点Q从点O出发以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点P从点A出发以相等的速度沿AO向终点O运动.当其中一点到达终点时,另一点也停止运动.设点P的运动时间为t(秒).(1)用含t的代数式表示OP,OQ;(2)当t=1时,如图1,将沿△OPQ沿PQ翻折,点O恰好落在CB边上的点D处,求点D的坐标;(3)连接AC,将△OPQ沿PQ翻折,得到△EPQ,如图2.问:PQ与AC能否平行?PE与AC能否垂直?若能,求出相应的t值;若不能,说明理由.21. (10分)某工厂生产某种产品,每件产品的出厂价为50元,其成本价为25元,因为在生产过程中,平均每生产一件产品有0.5m3的污水排出,所以为了保护环境,工厂设计两种方案对污水进行处理并准备实施.方案一:工厂污水先净化后再排出,每处理1m3污水的所需原料费为2元,且每月排污设备损耗为30000元;方案二:工厂将污水排到污水厂统一处理,每处理1m3污水需付14元排污费.(1)设工厂每月生产x件产品,方案一每月纯利润为y1元,方案二每月纯利润为y2元.分别求出方案1和方案2处理污水时,y1、y2与x的关系式(利润=总收入﹣总支出)(2)设工厂每月生产量6000件产品时,你若作为厂长在不污染环境和节约资金的前提下选用哪种处理污水的方案?通过计算加以说明.22. (10分) (2017八下·海宁开学考) 轴运动,速度为每秒1个单位长度,以P为直角顶点在第一象限内作等腰Rt△APB.设P点的运动时间为t秒.(1)若AB∥x轴,求t的值;(2)当t=3时,坐标平面内有一点M,使得以M、P、B为顶点的三角形和△ABP全等,请直接写出点M的坐标.23. (15分)(2019·南宁模拟) 如图所示:在平面直角坐标系中,圆M经过原点O且与X轴Y轴分别相交于A(-6,0),B(0,-8)两点(1)请写出直线 AB的解析式(2)若有一抛物线的对称轴平行于Y轴且经过点M,顶点C在圆M上,开口向下且经过点B。
福建省南平市2019-2020学年中考一诊数学试题含解析

福建省南平市2019-2020学年中考一诊数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A .B .C .D .2.超市店庆促销,某种书包原价每个x 元,第一次降价打“八折”,第二次降价每个又减10元,经两次降价后售价为90元,则得到方程( ) A .0.8x ﹣10=90B .0.08x ﹣10=90C .90﹣0.8x=10D .x ﹣0.8x ﹣10=903.如图,PA 、PB 是O e 的切线,点D 在»AB 上运动,且不与A ,B 重合,AC 是O e 直径.62P ∠=︒,当//BD AC 时,C ∠的度数是( )A .30°B .31︒C .32︒D .33︒4.如图,已知△ABC 中,∠C=90°,AC=BC=2,将△ABC 绕点A 顺时针方向旋转60°到△AB′C′的位置,连接C′B ,则C′B 的长为( )A .2-2B .3C 3-1D .15.已知关于x 的不等式3x ﹣m+1>0的最小整数解为2,则实数m 的取值范围是( ) A .4≤m <7B .4<m <7C .4≤m≤7D .4<m≤76.如图,能判定EB ∥AC 的条件是( )A .∠C=∠ABEB .∠A=∠EBDC .∠A=∠ABED .∠C=∠ABC7.如图,平行四边形ABCD 中,E ,F 分别在CD 、BC 的延长线上,AE ∥BD ,EF ⊥BC ,tan ∠ABC=34,EF=,则AB 的长为( )A .533B .536C .1D .1728.若一元二次方程x 2﹣2kx+k 2=0的一根为x =﹣1,则k 的值为( ) A .﹣1B .0C .1或﹣1D .2或09.如图,已知点A 在反比例函数y =kx上,AC ⊥x 轴,垂足为点C ,且△AOC 的面积为4,则此反比例函数的表达式为( )A .y =4xB .y =2xC .y =8xD .y =﹣8x10.将一把直尺与一块直角三角板如图放置,如果158∠=︒,那么2∠的度数为( ).A .32︒B .58︒C .138︒D .148︒11.一列动车从A 地开往B 地,一列普通列车从B 地开往A 地,两车同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y 与x 之间的函数关系.下列叙述错误的是( )A .AB 两地相距1000千米 B .两车出发后3小时相遇C .动车的速度为10003D .普通列车行驶t 小时后,动车到达终点B 地,此时普通列车还需行驶20003千米到达A 地 12.二次函数2(0)y ax bx c a =++≠的图像如图所示,下列结论正确是( )A .0abc >B .20a b +<C .30a c +<D .230ax bx c ++-=有两个不相等的实数根二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.已知a 2+1=3a ,则代数式a+1a的值为 . 14.如图,等边△ABC 的边长为6,∠ABC ,∠ACB 的角平分线交于点D ,过点D 作EF ∥BC ,交AB 、CD 于点E 、F ,则EF 的长度为_____.15.225ab π-的系数是_____,次数是_____.16.若关于x 的一元二次方程(m-1)x 2-4x+1=0有两个不相等的实数根,则m 的取值范围为_____________. 17.已知,大正方形的边长为4厘米,小正方形的边长为2厘米,起始状态如图所示,大正方形固定不动,把小正方形向右平移,当两个正方形重叠部分的面积为2平方厘米时,小正方形平移的距离为_____厘米.18.一个凸边形的内角和为720°,则这个多边形的边数是__________________三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)已知顶点为A的抛物线y=a(x-12)2-2经过点B(-32,2),点C(52,2).(1)求抛物线的表达式;(2)如图1,直线AB与x轴相交于点M,与y轴相交于点E,抛物线与y轴相交于点F,在直线AB上有一点P,若∠OPM=∠MAF,求△POE的面积;(3)如图2,点Q是折线A-B-C上一点,过点Q作QN∥y轴,过点E作EN∥x轴,直线QN与直线EN相交于点N,连接QE,将△QEN沿QE翻折得到△QEN′,若点N′落在x轴上,请直接写出Q点的坐标.20.(6分)为上标保障我国海外维和部队官兵的生活,现需通过A港口、B港口分别运送100吨和50吨生活物资.已知该物资在甲仓库存有80吨,乙仓库存有70吨,若从甲、乙两仓库运送物资到港口的费用(元/吨)如表所示:设从甲仓库运送到A港口的物资为x吨,求总运费y(元)与x(吨)之间的函数关系式,并写出x的取值范围;求出最低费用,并说明费用最低时的调配方案.21.(6分)如图,∠A=∠D,∠B=∠E,AF=DC.求证:BC=EF.22.(8分)如图,AB、AC分别是⊙O的直径和弦,OD⊥AC于点D.过点A作⊙O的切线与OD的延长线交于点P,PC、AB的延长线交于点F.(1)求证:PC是⊙O的切线;(2)若∠ABC=60°,AB=10,求线段CF的长.23.(8分)已知:如图,在梯形ABCD中,AD∥BC,AB=DC,E是对角线AC上一点,且AC·CE=AD·BC. (1)求证:∠DCA=∠EBC;(2)延长BE交AD于F,求证:AB2=AF·AD.24.(10分)灞桥区教育局为了了解七年级学生参加社会实践活动情况,随机抽取了铁一中滨河学部分七年级学生2016﹣2017学年第一学期参加实践活动的天数,并用得到的数据绘制了两幅统计图,下面给出了两幅不完整的统计图.请根据图中提供的信息,回答下列问题:(1)a=%,并补全条形图.(2)在本次抽样调查中,众数和中位数分别是多少?(3)如果该区共有七年级学生约9000人,请你估计活动时间不少于6天的学生人数大约有多少?25.(10分)如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与抛物线交于点A,B,若△AMB 为等腰直角三角形,我们把抛物线上A,B两点之间的部分与线段AB 围成的图形称为该抛物线对应的准蝶形,线段AB称为碟宽,顶点M 称为碟顶.由定义知,取AB 中点N ,连结MN ,MN 与AB 的关系是_____.抛物线y =212x 对应的准蝶形必经过B (m ,m ),则m =_____,对应的碟宽AB 是_____.抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1. ①求抛物线的解析式;②在此抛物线的对称轴上是否有这样的点P (x p ,y p ),使得∠APB 为锐角,若有,请求出y p 的取值范围.若没有,请说明理由.26.(12分)如图,在△ABC 中,AB=AC ,以AB 为直径作⊙O 交BC 于点D ,过点D 作⊙O 的切线DE 交AC 于点E ,交AB 延长线于点F . (1)求证:BD=CD ; (2)求证:DC 2=CE•AC ;(3)当AC=5,BC=6时,求DF 的长.27.(12分)某初中学校组织400 位同学参加义务植树活动,每人植树的棵数在5至10之间,甲、乙两位同学分别调查了30位同学的植树情况,并将收集的数据进行了整理,绘制成统计表分别为表1和表2: 表1:甲调查九年级30位同学植树情况统计表(单位:棵) 每人植树情况 7 8 9 10 人数 3 6 15 6 频率0.10.20.50.2表2:乙调查三个年级各10位同学植树情况统计表(单位:棵) 每人植树情况 6 7 8 9 10 人数 3 6 3 11 6 频率0.10.20.10.40.2根据以上材料回答下列问题:(1)表1中30位同学植树情况的中位数是 棵;(2)已知表2的最后两列中有一个错误的数据,这个错误的数据是 ,正确的数据应该是 ; (3)指出哪位同学所抽取的样本能更好反映此次植树活动情况,并用该样本估计本次活动400位同学一共植树多少棵?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】 【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】∵二次函数图象开口方向向上, ∴a>0,∵对称轴为直线02bx a=->, ∴b<0,二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x=1时y=a+b+c<0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交, 反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合. 故选:D. 【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键. 2.A试题分析:设某种书包原价每个x 元,根据题意列出方程解答即可. 设某种书包原价每个x 元, 可得:0.8x ﹣10=90考点:由实际问题抽象出一元一次方程. 3.B 【解析】 【分析】连接OB ,由切线的性质可得90∠=∠=︒PAO PBO ,由邻补角相等和四边形的内角和可得62∠=∠=︒BOC P ,再由圆周角定理求得D ∠,然后由平行线的性质即可求得C ∠.【详解】 解,连结OB ,∵PA 、PB 是O e 的切线,∴PA OA ⊥,PB OB ⊥,则90∠=∠=︒PAO PBO ,∵四边形APBO 的内角和为360°,即++360∠∠∠+∠=︒PAO PBO P AOB , ∴180∠+∠=︒P AOB ,又∵62P ∠=︒,180∠+∠=︒BOC AOB , ∴62∠=∠=︒BOC P ,∵»»BCBC =, ∴1312∠=∠=︒D BOC , ∵//BD AC , ∴31∠=∠=︒C D , 故选:B . 【点睛】本题主要考查了切线的性质、圆周角定理、平行线的性质和四边形的内角和,解题的关键是灵活运用有关定理和性质来分析解答. 4.C【分析】延长BC′交AB′于D,根据等边三角形的性质可得BD⊥AB′,利用勾股定理列式求出AB,然后根据等边三角形的性质和等腰直角三角形的性质求出BD、C′D,然后根据BC′=BD-C′D计算即可得解.【详解】解:延长BC′交AB′于D,连接BB',如图,在Rt△AC′B′中,2AC′=2,∵BC′垂直平分AB′,∴C′D=12AB=1,∵BD为等边三角形△ABB′的高,∴BD=323∴BC′=BD-3.故本题选择C.【点睛】熟练掌握勾股定理以及由旋转60°得到△ABB′是等边三角形是解本题的关键.5.A【解析】【分析】先解出不等式,然后根据最小整数解为2得出关于m的不等式组,解之即可求得m的取值范围.【详解】解:解不等式3x﹣m+1>0,得:x>1 3m-,∵不等式有最小整数解2,∴1≤13m-<2,解得:4≤m<7,故选A.本题考查了一元一次不等式的整数解,解一元一次不等式组,正确解不等式,熟练掌握一元一次不等式、一元一次不等式组的解法是解答本题的关键.6.C【解析】【分析】在复杂的图形中具有相等关系的两角首先要判断它们是否是同位角或内错角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【详解】A、∠C=∠ABE不能判断出EB∥AC,故本选项错误;B、∠A=∠EBD不能判断出EB∥AC,故本选项错误;C、∠A=∠ABE,根据内错角相等,两直线平行,可以得出EB∥AC,故本选项正确;D、∠C=∠ABC只能判断出AB=AC,不能判断出EB∥AC,故本选项错误.故选C.【点睛】本题考查了平行线的判定,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.7.B【解析】【分析】由平行四边形性质得出AB=CD,AB∥CD,证出四边形ABDE是平行四边形,得出DE=DC=AB,再由平行线得出∠ECF=∠ABC,由三角函数求出CF长,再用勾股定理CE,即可得出AB的长.【详解】∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠ECF=∠ABC,∴tan ∠ECF=tan ∠ABC=34,在Rt △CFE 中,tan ∠ECF=EF CF =CF =34,∴CF=3,根据勾股定理得,,∴AB=12, 故选B .【点睛】本题考查了平行四边形的性质和判定、平行线的性质,三角函数的运用;熟练掌握平行四边形的性质,勾股定理,判断出AB=12CE 是解决问题的关键. 8.A【解析】【分析】把x =﹣1代入方程计算即可求出k 的值.【详解】解:把x =﹣1代入方程得:1+2k+k 2=0,解得:k =﹣1,故选:A .【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.9.C【解析】【分析】由双曲线中k 的几何意义可知12AOC S k =V , 据此可得到|k|的值;由所给图形可知反比例函数图象的两支分别在第一、三象限,从而可确定k 的正负,至此本题即可解答.【详解】∵S △AOC =4,∴k=2S △AOC =8;∴y=8x;故选C .【点睛】本题是关于反比例函数的题目,需结合反比例函数中系数k 的几何意义解答;10.D【解析】【分析】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠1,再根据两直线平行,同位角相等可得∠2=∠1.【详解】如图,由三角形的外角性质得:∠1=90°+∠1=90°+58°=148°.∵直尺的两边互相平行,∴∠2=∠1=148°.故选D .【点睛】本题考查了平行线的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.11.C【解析】【分析】可以用物理的思维来解决这道题.【详解】未出发时,x=0,y=1000,所以两地相距1000千米,所以A 选项正确;y=0时两车相遇,x=3,所以B 选项正确;设动车速度为V 1,普车速度为V 2,则3(V 1+ V 2)=1000,所以C 选项错误;D 选项正确.【点睛】理解转折点的含义是解决这一类题的关键.12.C【解析】【分析】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0;由对称轴为x=2b a=1,可得2a+b=0;当x=-1时图象在x 轴下方得到y=a-b+c <0,结合b=-2a 可得 3a+c <0;观察图象可知抛物线的顶点为(1,3),可得方程230ax bx c ++-=有两个相等的实数根,据此对各选项进行判断即可.【详解】观察图象:开口向下得到a <0;对称轴在y 轴的右侧得到a 、b 异号,则b >0;抛物线与y 轴的交点在x 轴的上方得到c >0,所以abc <0,故A 选项错误;∵对称轴x=2b a-=1,∴b=-2a ,即2a+b=0,故B 选项错误; 当x=-1时, y=a-b+c <0,又∵b=-2a ,∴ 3a+c <0,故C 选项正确;∵抛物线的顶点为(1,3),∴230ax bx c ++-=的解为x 1=x 2=1,即方程有两个相等的实数根,故D 选项错误,故选C.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0)的图象,当a >0,开口向上,函数有最小值,a <0,开口向下,函数有最大值;对称轴为直线x=2b a-,a 与b 同号,对称轴在y 轴的左侧,a 与b 异号,对称轴在y 轴的右侧;当c >0,抛物线与y 轴的交点在x 轴的上方;当△=b 2-4ac >0,抛物线与x 轴有两个交点.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【分析】根据题意a 2+1=1a ,整体代入所求的式子即可求解.【详解】∵a 2+1=1a ,∴a+1a =2a a +1a =2a 1a+=3a a =1. 故答案为1.14.4【解析】试题分析:根据BD 和CD 分别平分∠ABC 和∠ACB ,和EF ∥BC ,利用两直线平行,内错角相等和等量代换,求证出BE=DE ,DF=FC .然后即可得出答案.解:∵在△ABC 中,BD 和CD 分别平分∠ABC 和∠ACB ,∴∠EBD=∠DBC ,∠FCD=∠DCB ,∵EF ∥BC ,∴∠EBD=∠DBC=∠EDB ,∠FCD=∠DCB=∠FDC ,∴BE=DE ,DF=EC ,∵EF=DE+DF ,∴EF=EB+CF=2BE ,∵等边△ABC 的边长为6,∵EF ∥BC ,∴△ADE 是等边三角形,∴EF=AE=2BE ,∴EF==,故答案为4考点:等边三角形的判定与性质;平行线的性质.15.25π- 1 【解析】【分析】根据单项式系数及次数的定义进行解答即可.【详解】 根据单项式系数和次数的定义可知,﹣225ab π的系数是25π-,次数是1. 【点睛】本题考查了单项式,熟知单项式中的数字因数叫做单项式的系数,一个单项式中所有字母的指数的和叫做单项式的次数是解题的关键.16.5m <且1m ≠【解析】试题解析: ∵一元二次方程()21410m x x --+=有两个不相等的实数根, ∴m−1≠0且△=16−4(m−1)>0,解得m<5且m≠1,∴m 的取值范围为m<5且m≠1.故答案为:m<5且m≠1.点睛:一元二次方程()200.ax bx c a ++=≠ 方程有两个不相等的实数根时:0.∆>17.1或5.【解析】【分析】小正方形的高不变,根据面积即可求出小正方形平移的距离.【详解】解:当两个正方形重叠部分的面积为2平方厘米时,重叠部分宽为2÷2=1,①如图,小正方形平移距离为1厘米;②如图,小正方形平移距离为4+1=5厘米.故答案为1或5,【点睛】此题考查了平移的性质,要明确,平移前后图形的形状和面积不变.画出图形即可直观解答. 18.1【解析】【分析】设这个多边形的边数是n ,根据多边形的内角和公式:()n 2180o-⨯,列方程计算即可. 【详解】解:设这个多边形的边数是n根据多边形内角和公式可得()n 2180720,-⨯= 解得n 6=.故答案为:1.【点睛】此题考查的是根据多边形的内角和,求边数,掌握多边形内角和公式是解决此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1) y =(x -12)2-2;(2)△POE 的面积为115或13;(3)点Q 的坐标为(-54,32)或(-355,2)或(355,2).【解析】【分析】(1)将点B 坐标代入解析式求得a 的值即可得;(2)由∠OPM=∠MAF 知OP ∥AF ,据此证△OPE ∽△FAE 得OP FA =OE FE=134=43,即OP=43FA ,设点P (t ,-2t-1),列出关于t 的方程解之可得; (3)分点Q 在AB 上运动、点Q 在BC 上运动且Q 在y 轴左侧、点Q 在BC 上运动且点Q 在y 轴右侧这三种情况分类讨论即可得.【详解】解:(1)把点B(-32,2)代入y=a(x-12)2-2,解得a=1,∴抛物线的表达式为y=(x-12)2-2,(2)由y=(x-12)2-2知A(12,-2),设直线AB表达式为y=kx+b,代入点A,B的坐标得122322k bk b ⎧-=+⎪⎪⎨⎪=-+⎪⎩,解得21 kb=-⎧⎨=-⎩,∴直线AB的表达式为y=-2x-1,易求E(0,-1),F(0,-74),M(-12,0),若∠OPM=∠MAF,∴OP∥AF,∴△OPE∽△FAE,∴OP OE143FA FE34===,∴OP=43FA=43=设点P(t,-2t-1)=解得t1=-215,t2=-23,由对称性知,当t1=-215时,也满足∠OPM=∠MAF,∴t1=-215,t2=-23都满足条件,∵△POE的面积=12 OE·|t|,∴△POE的面积为115或13;(3)如图,若点Q在AB上运动,过N′作直线RS∥y轴,交QR于点R,交NE的延长线于点S,设Q(a,-2a-1),则NE=-a,QN=-2a. 由翻折知QN′=QN=-2a,N′E=NE=-a,由∠QN′E=∠N=90°易知△QRN′∽△N′SE,∴QRN S'=RNES'=QNEN'',即QR1==2a12aES a---=-=2,∴QR=2,ES=2a12--,由NE+ES=NS=QR可得-a+2a12--=2,解得a=-54,∴Q(-54,32),如图,若点Q在BC上运动,且Q在y轴左侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.设NE=a,则N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR5SE5-a.在Rt△SEN′中,5-a)2+12=a2,解得a 35,∴Q(35,2),如图,若点Q在BC上运动,且点Q在y轴右侧,过N′作直线RS∥y轴,交BC于点R,交NE的延长线于点S.设NE=a,则N′E=a.易知RN′=2,SN′=1,QN′=QN=3,∴QR5SE5-a.在Rt△SEN′中,5-a)2+12=a2,解得a=355,∴35,2).综上,点Q的坐标为(-54,32)或(35,2)或35,2).【点睛】本题主要考查二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、相似三角形的判定与性质、翻折变换的性质及勾股定理等知识点.20.(1)y=﹣8x+2560(30≤x≤1);(2)把甲仓库的全部运往A港口,再从乙仓库运20吨往A港口,乙仓库的余下的全部运往B港口.【解析】试题分析:(1)设从甲仓库运x吨往A港口,根据题意得从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,再由等量关系:总运费=甲仓库运往A港口的费用+甲仓库运往B港口的费用+乙仓库运往A港口的费用+乙仓库运往B港口的费用列式并化简,即可得总运费y(元)与x(吨)之间的函数关系式;由题意可得x≥0,8-x≥0,x-30≥0,100-x≥0,即可得出x的取值;(2)因为所得的函数为一次函数,由增减性可知:y随x增大而减少,则当x=1时,y 最小,并求出最小值,写出运输方案.试题解析:(1)设从甲仓库运x吨往A港口,则从甲仓库运往B港口的有(1﹣x)吨,从乙仓库运往A港口的有吨,运往B港口的有50﹣(1﹣x)=(x﹣30)吨,所以y=14x+20+10(1﹣x )+8(x ﹣30)=﹣8x+2560,x 的取值范围是30≤x≤1.(2)由(1)得y=﹣8x+2560y 随x 增大而减少,所以当x=1时总运费最小,当x=1时,y=﹣8×1+2560=1920, 此时方案为:把甲仓库的全部运往A 港口,再从乙仓库运20吨往A 港口,乙仓库的余下的全部运往B 港口.考点:一次函数的应用.21.证明见解析.【解析】【分析】想证明BC=EF ,可利用AAS 证明△ABC ≌△DEF 即可.【详解】解:∵AF =DC ,∴AF+FC =FC+CD ,∴AC =FD ,在△ABC 和△DEF 中,A DB E AC DF ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ABC ≌△DEF (AAS )∴BC =EF .【点睛】本题考查全等三角形的判定和性质,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 22.(1)证明见解析(2)【解析】【分析】(1)连接OC ,可以证得△OAP ≌△OCP ,利用全等三角形的对应角相等,以及切线的性质定理可以得到:∠OCP=90°,即OC ⊥PC ,即可证得;(2)先证△OBC 是等边三角形得∠COB=60°,再由(1)中所证切线可得∠OCF=90°,结合半径OC=1可得答案.【详解】(1)连接OC .∵OD⊥AC,OD经过圆心O,∴AD=CD,∴PA=PC.在△OAP和△OCP中,∵OA OCPA PCOP OP=⎧⎪=⎨⎪=⎩,∴△OAP≌△OCP(SSS),∴∠OCP=∠OAP.∵PA是半⊙O的切线,∴∠OAP=90°,∴∠OCP=90°,即OC⊥PC,∴PC是⊙O的切线.(2)∵OB=OC,∠OBC=60°,∴△OBC是等边三角形,∴∠COB=60°.∵AB=10,∴OC=1.由(1)知∠OCF=90°,∴CF=OC•tan∠COB=13.【点睛】本题考查了切线的性质定理以及判定定理,以及直角三角形三角函数的应用,证明圆的切线的问题常用的思路是根据切线的判定定理转化成证明垂直的问题.23.(1)见解析;(2)见解析.【解析】【分析】(1)由AD∥BC得∠DAC=∠BCA, 又∵AC·CE=AD·BC∴AC ADBC CE=,∴△ACD∽△CBE ,∴∠DCA=∠EBC,(2)由题中条件易证得△ABF∽△DAC∴AB AFAD DC=,又∵AB=DC,∴2AB AF AD=⋅【详解】证明:(1)∵AD∥BC,∴∠DAC=∠BCA,∵AC·CE=AD·BC,∴AC ADBC CE=,∴△ACD∽△CBE , ∴∠DCA=∠EBC, (2)∵AD∥BC,∴∠AFB=∠EBC,∵∠DCA=∠EBC,∴∠AFB=∠DCA,∵AD∥BC,AB=DC, ∴∠BAD=∠ADC,∴△ABF∽△DAC,∴AB AF AD DC=,∵AB=DC,∴2AB AF AD=⋅.【点睛】本题重点考查了平行线的性质和三角形相似的判定,灵活运用所学知识是解题的关键.24.(1)10,补图见解析;(2)众数是5,中位数是1;(3)活动时间不少于1天的学生人数大约有5400人.【解析】【分析】(1)用1减去其他天数所占的百分比即可得到a的值,用310°乘以它所占的百分比,即可求出该扇形所对圆心角的度数;根据1天的人数和所占的百分比求出总人数,再乘以8天的人数所占的百分比,即可补全统计图;(2)根据众数和中位数的定义即可求出答案;(3)用总人数乘以活动时间不少于1天的人数所占的百分比即可求出答案.【详解】解:(1)扇形统计图中a=1﹣5%﹣40%﹣20%﹣25%=10%,该扇形所对圆心角的度数为310°×10%=31°,参加社会实践活动的天数为8天的人数是:2020%×10%=10(人),补图如下:故答案为10;(2)抽样调查中总人数为100人,结合条形统计图可得:众数是5,中位数是1.(3)根据题意得:9000×(25%+10%+5%+20%)=5400(人),活动时间不少于1天的学生人数大约有5400人.【点睛】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.25.(1)MN与AB的关系是:MN⊥AB,MN=12AB,(2)2,4;(2)①y=13x2﹣2;②在此抛物线的对称轴上有这样的点P,使得∠APB 为锐角,y p的取值范围是y p<﹣2或y p>2.【解析】【分析】(1)直接利用等腰直角三角形的性质分析得出答案;(2)利用已知点为B(m,m),代入抛物线解析式进而得出m的值,即可得出AB的值;(2)①根据题意得出抛物线必过(2,0),进而代入求出答案;②根据y=13x2﹣2的对称轴上P(0,2),P(0,﹣2)时,∠APB 为直角,进而得出答案.【详解】(1)MN与AB的关系是:MN⊥AB,MN=12 AB,如图1,∵△AMB是等腰直角三角形,且N为AB的中点,∴MN⊥AB,MN=12 AB,故答案为MN⊥AB,MN=12 AB;(2)∵抛物线y =212x 对应的准蝶形必经过B (m ,m ), ∴m =12m 2, 解得:m =2或m =0(不合题意舍去), 当m =2则,2=12x 2, 解得:x =±2, 则AB =2+2=4;故答案为2,4;(2)①由已知,抛物线对称轴为:y 轴,∵抛物线y =ax 2﹣4a ﹣53(a >0)对应的碟宽在x 轴上,且AB =1. ∴抛物线必过(2,0),代入y =ax 2﹣4a ﹣53(a >0), 得,9a ﹣4a ﹣53=0, 解得:a =13, ∴抛物线的解析式是:y =13x 2﹣2; ②由①知,如图2,y =13x2﹣2的对称轴上P (0,2),P (0,﹣2)时,∠APB 为直角, ∴在此抛物线的对称轴上有这样的点P ,使得∠APB 为锐角,y p 的取值范围是y p <﹣2或y p >2.【点睛】此题主要考查了二次函数综合以及等腰直角三角形的性质,正确应用等腰直角三角形的性质是解题关键.26.(1)详见解析;(2)详见解析;(3)DF=607. 【解析】【分析】(1)先判断出AD ⊥BC ,即可得出结论;(2)先判断出OD∥AC,进而判断出∠CED=∠ODE,判断出△CDE∽△CAD,即可得出结论;(3)先求出OD,再求出CD=3,进而求出CE,AE,DE,再判断出DF ODEF AE=,即可得出结论.【详解】(1)连接AD,∵AB是⊙O的直径,∴∠ADB=90°,∴AD⊥BC,∵AB=AC,∴BD=CD;(2)连接OD,∵DE是⊙O的切线,∴∠ODE=90°,由(1)知,BD=CD,∵OA=OB,∴OD∥AC,∴∠CED=∠ODE=90°=∠ADC,∵∠C=∠C,∴△CDE∽△CAD,∴CD CE AC CD=,∴CD2=CE•AC;(3)∵AB=AC=5,由(1)知,∠ADB=90°,OA=OB,∴OD=12AB=52,由(1)知,CD=12BC=3,由(2)知,CD2=CE•AC,∵AC=5,∴CE=295 CDAC=,∴AE=AC-CE=5-95=165,在Rt△CDE中,根据勾股定理得,12 5 =,由(2)知,OD∥AC,∴DF OD EF AE=,∴52121655 DFDF+=,∴DF=607.【点睛】此题是圆的综合题,主要考查了圆的性质,等腰三角形的性质,相似三角形的判断和性质,勾股定理,判断出△CDE∽△CAD是解本题的关键.27.(1)9;(2)11,12;(3)3360棵【解析】【分析】(1)30位同学的植树量中第15个、16个数都是9,即可得到植树的中位数;(2)根据频率相加得1确定频率正确,计算频数即可确定错误的数据是11,正确的硬是12;(3)样本数据应体现机会均等由此得到乙同学所抽取的样本更好,再根据部分计算总体的公式即可得到答案.【详解】(1)表1中30位同学植树情况的中位数是9棵,故答案为:9;(2)表2的最后两列中,错误的数据是11,正确的数据应该是30×0.4=12;故答案为:11,12;(3)乙同学所抽取的样本能更好反映此次植树活动情况,(3×6+6×7+3×8+12×9+6×10)÷30×400=3360(棵),答:本次活动400位同学一共植树3360棵.【点睛】此题考查统计的计算,掌握中位数的计算方法,部分的频数的计算方法,依据样本计算总体的方法是解题的关键.。
福建省南平市2020年中考数学一模试卷A卷

福建省南平市2020年中考数学一模试卷A卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)(2019·广西模拟) cos45°的值等于()A .B .C .D .2. (2分)如图,E是▱ABCD边AB延长线上的一点,AB=4BE,连接DE交BC于F,则△DCF与四边形ABFD面积的比是()A . 4:5B . 2:3C . 9:16D . 16:253. (2分) (2020九下·龙江期中) 关于反比例函数y=图象,下列说法正确的是()A . 必经过点(1,1)B . 两个分支分布在第二、四象限C . 两个分支关于x轴成轴对称D . 两个分支关于原点成中心对称4. (2分)若关于y的一元二次方程ky2-4y-3=3y+4有实根,则k的取值范围是()A . k>-B . k≥-且k≠0C . k≥-D . k>且k≠05. (2分) (2016九下·赣县期中) 如图,在⊙O中,直径AB,弦CD,且AB⊥CD于点E,CD=4,OE=1.5,则⊙O的半径是()A . 2.5B . 2C . 2.4D . 36. (2分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列结论中正确的是()A . ac>0B . 当x>1时,y随x的增大而增大C . 2a+b=1D . 方程ax2+bx+c=0有一个根是x=37. (2分)(2019·白银) 下列四个几何体中,是三棱柱的为().A .B .C .D .8. (2分) (2016高一下·辽宁期末) 如图,P是反比例函数图象在第二象限上的一点,且矩形PEOF的面积为8,则反比例函数的表达式是()A .B .C .D .9. (2分) (2020七下·武鸣期中) 如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),那么A2020坐标为()A . (2020,1)B . (2020,0)C . (1010,1)D . (1010,0)10. (2分)(2018·舟山) 用尺规在一个平行四边形内作菱形ABCD,下列作法中错误的是()A .B .C .D .二、填空题 (共4题;共4分)11. (1分) (2019八下·浏阳期中) 若矩形的对角线长为2cm,两条对角线相交所成的一个夹角为60°,则该矩形的面积为________ .12. (1分)把抛物线y=-3x2先向左平移1个单位,再向上平移2个单位后所得的函数解析式为________ 。
福建省南平市2020年中考数学试卷(I)卷

福建省南平市2020年中考数学试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2020七上·浦北期末) 以下结论中,正确的是()①没有最大负数;②没有最大负整数;③负数的偶次幂是正数;④任何有理数都有倒数;⑤两个负数的乘积仍然是负数()A . ①③B . ①③④C . ①③④⑤D . ①②③④⑤2. (2分) (2017七下·萧山期中) 用科学记数方法表示0.00000601,得()A . 0.601×10-6B . 6.01×10-6C . 60.1×10-7D . 60.1×10-63. (2分)(2018·牡丹江) 如图,E为矩形ABCD的边AB上一点,将矩形沿CE折叠,使点B恰好落在ED上的点F处,若BE=1,BC=3,则CD的长为()A . 6B . 5C . 4D . 34. (2分)设一元二次方程两个实根为x1和x2 ,则下列结论正确的是()A . x1+x2=2B . x1+x2=-4C . x1·x2=2D . x1·x2=45. (2分)若干桶方便面摆放在桌子上,实物图片左边所给的是它的三视图,则这一堆方便面共有()A . 5桶B . 6桶C . 9桶D . 12桶6. (2分)小红、小刚、小敏、小明四位同学在过去两学期10次数学成绩的平均数和方差如下表:学生小红小刚小敏小明平均数136136136136方差0.320.180.240.27则这四人中数学成绩最稳定的是()A . 小红B . 小刚C . 小敏D . 小明7. (2分)(2018·南山模拟) 如图,将线段AB绕点O顺时针旋转90°得到线段A'B',那么A(-2,5)的对应点A′的坐标是()A . (2,5)B . (5, 2)C . (2,-5)D . (5,-2)8. (2分)(2020·河西模拟) 在平面直角坐标系内,抛物线与线段有两个不同的交点,其中点,点 .有下列结论:①直线的解析式为;②方程有两个不相等的实数根;③a的取值范围是或 .其中,正确结论的个数为()A . 0B . 1C . 2D . 3二、填空题 (共8题;共8分)9. (1分)(2019·南京) 分解因式的结果是________.10. (1分) (2019七下·江门月考) 已知:直线l1∥l2 ,将一块含30°角的直角三角板如图所示放置,若∠1=25°,则∠2=________度.11. (1分) (2020九上·玉环期末) 将抛物线向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线解析式为________.12. (1分) (2019九上·象山期末) 如图,在中,弦BC,DE交于点P,延长BD,EC交于点A,,,若,则DP的长为________.13. (1分) (2018九上·大连月考) 某种药品经过两次降价,由每盒元调至元,若设平均每次降价的百分率为,则由题意可列方程为________.14. (1分)不等式组的解集是________.15. (1分) (2019八上·哈尔滨期中) 如图,O是矩形ABCD对角线的交点,DE平分∠ADC交BC于点E,若∠BDE=15°,则∠COE=________度16. (1分)(2017·银川模拟) 如图,矩形ABCD中,AD=4,∠CAB=30°,点P是线段AC上的动点,点Q是线段CD上的动点,则AQ+QP的最小值是________.三、解答题 (共8题;共80分)17. (10分) (2019九上·重庆开学考) 计算:(1)(2)18. (5分) (2018八上·江海期末) 已知:如图,M是AB的中点,∠1=∠2,MC=MD.求证:∠A=∠B.19. (15分)(2017·平谷模拟) 阅读以下材料:2017年1月28日至2月1日农历正月初一至初五,平谷区政府在占地面积6万平方米的琴湖公园举办主题为“逛平谷庙会乐百姓生活”的平谷区首届春节庙会.本次庙会共设置了文艺展演区、非遗展示互动区、特色商品区、儿童娱乐游艺区、特色美食区等五个不同主题的展区.展区总面积1720平方米.文艺展演区占地面积600平方米,占展区总面积的34.9%;非遗展示区占地190平方米,占展区总面积的11.0%;特色商品区占地面积是文艺展演区的一半,占展区总面积的17.4%;特色美食区占地200平方米,占展区总面积的11.6%;还有孩子们喜爱的儿童娱乐游艺区.此次庙会本着弘扬、挖掘、展示平谷春节及民俗文化,以京津冀不同地域的特色文化为出发点,全面展示平谷风土人情及津冀人文特色.大年初一,来自全国各地的约3.2万人踏着新春的脚步,揭开了首届平谷庙会的帷幕.大年初二尽管天气寒冷,市民逛庙会热情不减,又约有4.3万人次参观了庙会,品尝特色美食,观看绿都古韵、秧歌表演、天桥绝活,一路猜灯谜、赏图片展,场面火爆.琳琅满目的泥塑、木版画、剪纸、年画等民俗作品也让游客爱不释手,纷纷购买.大年初三,单日接待游客约4万人次,大年初四风和日丽的天气让庙会进入游园高峰,单日接待量较前日增长了约50%.大年初五,活动进入尾声,但庙会现场仍然人头攒动,仍约有5.5万人次来园参观.(1)直接写出扇形统计图中m的值;(2)初四这天,庙会接待游客量约________万人次;(3)请用统计图或统计表,将庙会期间每日接待游客的人数表示出来.20. (5分) (2017七上·闵行期末) “新禧”杂货店去批发市场购买某种新型儿童玩具,第一次用1200元购得玩具若干个,并以7元的价格出售,很快就售完.由于该玩具深受儿童喜爱,第二次进货时每个玩具的批发价已比第一次提高了20%,他用1500元所购买的玩具数量比第一次多10个,再按8元售完,问该老板两次一共赚了多少钱?21. (5分)(2018·黄梅模拟) 如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)22. (10分) (2020九上·临颍期末) 如图,直线y1=3x﹣5与反比例函数y2= 的图象相交A(2,m),B(n,﹣6)两点,连接OA,OB.(1)求k和n的值;(2)求△AOB的面积;(3)直接写出y1> y2时自变量x的取值范围.23. (15分) (2016·安顺) 如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的圆O与AD、AC 分别交于点E、F,且∠ACB=∠DCE.(1)判断直线CE与⊙O的位置关系,并证明你的结论;(2)若tan∠ACB= ,BC=2,求⊙O的半径.24. (15分)如图,在平面直角坐标系中,Rt△ABC的顶点A,C分别在y轴,x轴上,∠ACB=90°,OA= ,抛物线y=ax2-ax-a经过点B(2, ),与y轴交于点D(1)求抛物线的表达式;(2)点B关于直线AC的对称点是否在抛物线上?请说明理由·参考答案一、单选题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共80分)17-1、17-2、18-1、19-1、19-2、19-3、20-1、21-1、22-1、22-2、22-3、23-1、23-2、24-1、24-2、。
福建省南平市2020版中考数学一模试卷C卷

福建省南平市2020版中考数学一模试卷C卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列数中,是无理数的是()A . -3B . 0C .D .2. (2分)在数轴上到原点的距离是4个单位长度的点所表示的数是()A . 4B . -4C . 0D . ±43. (2分)(2018·重庆模拟) 下列四个图案中,是轴对称图形,但不是中心对称图形的是()A .B .C .D .4. (2分)七名学生在一分钟内的跳绳个数分别是:150、140、100、110、130、110、120,设这组数据的平均数是a,中位数是b,众数c,则有()A . c>b>aB . b>c>aC . c>a>bD . a>b>c5. (2分) (2019七下·长垣期末) 已知点在坐标轴上,则点P的坐标为()A .B .C . ,D . ,6. (2分) (2020八上·绵阳期末) 如图,在Rt△ABC 中,∠BAC=90°,AD⊥BC 于 D,BE 平分∠ABC 交 AC 于 E,交 AD 于 F,FG∥BC,FH∥AC,下列结论:①AE=AF;②ΔABF≌ΔHBF;③AG=CE;④AB+FG=BC,其中正确结论有()A . ①②③B . ①③④C . ①②③④D . ①②④7. (2分)如图,点P为弦AB上的一点,连接OP,过点P作PC⊥OP,PC交⊙O于C.若AP=8,PB=2,则PC 的长是()A . 4B .C . 5D . 无法确定8. (2分)(2019·西藏) 如图,从一张腰长为,顶角为的等腰三角形铁皮中剪出一个最大的扇形,用此剪下的扇形铁皮围成一个圆锥的侧面(不计损耗),则该圆锥的底面半径为()A .B .C .D .9. (2分)在△ABC和△A′B′C′中,已知∠A=∠A′,AB=A′B′,添加下列条件中的一个,不能使△ABC≌△A′B′C′一定成立的是().A . AC=A′C′B . BC=B′C′C . ∠B=∠B′D . ∠C=∠C′10. (2分)某厂一月份的总产量为500吨,三月份的总产量达到为720吨。
2020年福建省南平市浦城县中考数学一模试题(word版含答案)

2020年福建省南平市浦城县中考数学一模试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列基本几何体中,从正面、上面、左面观察都是相同图形的是( ) A .圆柱B .三棱柱C .球D .长方体2.两三角形的相似比是2:3,则其面积之比是( )A B .2:3 C .4:9 D .8:27 3.如图,在边长为1的小正方形组成的网格中,△ABC 的三个顶点均在格点上,则tan ∠ABC 的值为( )A .35B .34C .5D .1 4.如图,无法保证△ADE 与△ABC 相似的条件是( )A.∠1=∠C B.∠A=∠C C.∠2=∠B D.AD AE AC AB=5.已知:22sin32cosα1+=,则锐角α等于()A.32B.58C.68D.以上结论都不对6.如图,ABCD中,点E是边AD的中点,EC交对角线BD于点F,则:EF FC等于()A.11:B.12:C.13:D.23:7.如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的左视图是()A.B.C.D.8.如图,点C、D在线段AB上,△PCD是等边三角形,当△ACP∽△PDB时,∠APB 的度数为()A.100°B.120°C.115°D.135°9.如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A.B.C.D.10.如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=12,则AB的长是()A.4 B.C.8 D.二、填空题11.已知α为锐角,且sin(α﹣10°)α等于_____度.12.在一盏路灯旁的地面上竖直立着两根木杆,两根木杆在这盏路灯下形成各自的影子,则将它们各自的顶端与自己的影子的顶端连线所形成的两个三角形_____相似.(填“可能”或“不可能”).13.如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为___.14.如图,在△ABC中,DE∥BC,1=2ADDB,则ADEBCED的面积四边形的面积=_____.15.在△ABC 中,∠C=90°,sinA=45,则tanB=________. 16.如图,D 是BC 的中点,M 是AD 的中点,BM 的延长线交AC 于N ,则AN:NC =________.三、解答题17.计算:(1)sin 45cos30sin 60(1sin 30)32cos 60︒︒︒︒︒+---;(21124cos30||2-︒-+-. 18.如图是由几个小立方块所搭几何体从上面看到的图形,小正方形中的数字表示在该位置小立方块的个数,请画出相应几何体从正面、从左面看到的图形.19.如图,A ,B ,C 在圆上,弦AE 平分∠BAC 交BC 于D .求证:BE 2=ED •EA .20.如图,在Rt △ABC 中,设a ,b ,c 分别为∠A ,∠B ,∠C 的对边,∠C =90°,b=8,∠A 的平分线AD ∠B ,a ,c 的值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年福建省南平市浦城县中考数学一模试卷一、选择题(每小题4分,共40分)1.(4分)下列基本几何体中,从正面、上面、左面观察都是相同图形的是()A.圆柱B.三棱柱C.球D.长方体2.(4分)两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:273.(4分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.1B.C.D.4.(4分)如图,无法保证△ADE与△ABC相似的条件是()A.∠1=∠C B.∠A=∠C C.∠2=∠B D.5.(4分)已知:sin232°+cos2α=1,则锐角α等于()A.32°B.58°C.68°D.以上结论都不对6.(4分)如图,▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC 等于()A.1:1B.1:2C.1:3D.2:37.(4分)如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的左视图是()A.B.C.D.8.(4分)如图,点C、D在线段AB上,△PCD是等边三角形,当△ACP∽△PDB时,∠APB的度数为()A.100°B.120°C.115°D.135°9.(4分)如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A.B.C.D.10.(4分)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4B.2C.8D.4二、填空题(每小题4分,共24分)11.(4分)已知α为锐角,且sin(α﹣10°)=,则α等于度.12.(4分)在一盏路灯旁的地面上竖直立着两根木杆,两根木杆在这盏路灯下形成各自的影子,则将它们各自的顶端与自己的影子的顶端连线所形成的两个三角形相似.(填“可能”或“不可能”).13.(4分)如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为.14.(4分)如图,在△ABC中,DE∥BC,=,则=.15.(4分)在△ABC中,∠C=90°,sin A=,则tan B=.16.(4分)如图,D是BC的中点,M是AD的中点,BM的延长线交AC于N,则AN:NC =.三、解答题(本题共86分)17.(8分)计算:(1);(2).18.(8分)如图是由几个小立方块所搭几何体从上面看到的图形,小正方形中的数字表示在该位置小立方块的个数,请画出相应几何体从正面、从左面看到的图形.19.(8分)如图,A,B,C在圆上,弦AE平分∠BAC交BC于D.求证:BE2=ED•EA.20.(8分)如图,在Rt△ABC中,设a,b,c分别为∠A,∠B,∠C的对边,∠C=90°,b=8,∠A的平分线AD=,求∠B,a,c的值.21.(8分)在△ABC中,AB=12,点E在AC上,点D在AB上,若AE=6,EC=4,.(1)求AD的长;(2)试问能成立吗?请说明理由.22.(10分)如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.23.(10分)一架外国侦察机沿ED方向侵入我国领空进行非法侦察,我空军的战斗机沿AC 方向与外国侦察机平行飞行,进行跟踪监视,我机在A处与外国侦察机B处的距离为50米,∠CAB为30°,这时外国侦察机突然转向,以偏左45°的方向飞行,我机继续沿AC方向以400米/秒的速度飞行,外国侦察机在C点故意撞击我战斗机,使我战斗机受损.问外国侦察机由B到C的速度是多少?(结果保留整数,参考数据=1.414,=1.723)24.(12分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.25.(14分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)2020年福建省南平市浦城县中考数学一模试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)下列基本几何体中,从正面、上面、左面观察都是相同图形的是()A.圆柱B.三棱柱C.球D.长方体【解答】解:A、从正面看是长方形,从上面看是圆,从左面看是长方形;B、从正面看是两个长方形,从上面看是三角形,从左面看是长方形;C、从正面、上面、左面观察都是圆;D、从正面看是长方形,从上面看是长方形,从左面看是长方形,但三个长方形的长与宽不相同.故选:C.2.(4分)两三角形的相似比是2:3,则其面积之比是()A.:B.2:3C.4:9D.8:27【解答】解:∵两三角形的相似比是2:3,∴其面积之比是4:9,故选:C.3.(4分)如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,则tan∠ABC的值为()A.1B.C.D.【解答】解:在Rt△ABD中,BD=4,AD=3,∴tan∠ABC==,故选:D.4.(4分)如图,无法保证△ADE与△ABC相似的条件是()A.∠1=∠C B.∠A=∠C C.∠2=∠B D.【解答】解:由图得:∠A=∠A,故当∠B=∠2或∠C=∠1或AE:AB=AD:AC时,△ABC与△ADE相似;也可AE:AD=AC:AB.B选项中∠A和∠C不是成比例的两边的夹角.故选:B.5.(4分)已知:sin232°+cos2α=1,则锐角α等于()A.32°B.58°C.68°D.以上结论都不对【解答】解:∵sin2α+cos2α=1,α是锐角,∴α=32°.故选:A.6.(4分)如图,▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC 等于()A.1:1B.1:2C.1:3D.2:3【解答】解:∵四边形ABCD为平行四边形,∴AD∥BC,AD=BC;∴△DEF∽△BCF,∴;∵点E是边AD的中点,∴BC=AD=2DE,∴.故选B.7.(4分)如图是由几块小立方块所搭成的几何体的俯视图,小正方体中的数字表示该位置小立方块的个数,则该几何体的左视图是()A.B.C.D.【解答】解:由题意得,左视图有2列,每列小正方形数目分别为3,1.故选:D.8.(4分)如图,点C、D在线段AB上,△PCD是等边三角形,当△ACP∽△PDB时,∠APB的度数为()A.100°B.120°C.115°D.135°【解答】解:∵△ACP∽△PDB,∴∠A=∠BPD,∵△PCD是等边三角形,∴∠PCD=∠CPD=60°,∴∠PCD=∠A+∠APC=60°,∴∠APC+∠BPD=60°,∴∠APB=∠APC+∠CPD+∠BPD=120°.故选:B.9.(4分)如图是某工厂要设计生产的正六棱柱形密封罐的立体图形,它的主视图是()A.B.C.D.【解答】解:根据主视图的定义,可得它的主视图为:,故选:A.10.(4分)如图,以点O为圆心的两个圆中,大圆的弦AB切小圆于点C,OA交小圆于点D,若OD=2,tan∠OAB=,则AB的长是()A.4B.2C.8D.4【解答】解:连接OC,∵大圆的弦AB切小圆于点C,∴OC⊥AB,∴AB=2AC,∵OD=2,∴OC=2,∵tan∠OAB=,∴AC=4,∴AB=8,故选:C.二、填空题(每小题4分,共24分)11.(4分)已知α为锐角,且sin(α﹣10°)=,则α等于70度.【解答】解:∵α为锐角,sin(α﹣10°)=,sin60°=,∴α﹣10°=60°,∴α=70°.12.(4分)在一盏路灯旁的地面上竖直立着两根木杆,两根木杆在这盏路灯下形成各自的影子,则将它们各自的顶端与自己的影子的顶端连线所形成的两个三角形可能相似.(填“可能”或“不可能”).【解答】解:∵中心投影是由点光源发出的光线形成的投影,∴当两根木杆距离点灯距离相等时它们各自的顶端与自己的影子的顶端连线所形成的两个三角形相似,否则不相似,故答案为:可能.13.(4分)如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为8π.【解答】解:这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,所以这个几何体的侧面展开图的面积=×4π×4=8π.故答案为:8π.14.(4分)如图,在△ABC中,DE∥BC,=,则=.【解答】解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C,∴△ADE∽△ABC,∴=()2=()2=,∴===.故答案为:.15.(4分)在△ABC中,∠C=90°,sin A=,则tan B=.【解答】解:∵sin A==,∴设BC=4x,AB=5x,由勾股定理得:AC==3x,∴tan B===,故答案为:.16.(4分)如图,D是BC的中点,M是AD的中点,BM的延长线交AC于N,则AN:NC =1:2.【解答】解:作DE∥BN交AC于E,∵DE∥BN,M是AD的中点,∴N是AE的中点,∵DE∥BN,D是BC的中点,∴E是NC的中点,∴AN:NC=1:2,故答案为:1:2.三、解答题(本题共86分)17.(8分)计算:(1);(2).【解答】解:(1)原式=﹣(1﹣)=﹣×=;(2)原式=2+﹣4×+=2+﹣2+=1.18.(8分)如图是由几个小立方块所搭几何体从上面看到的图形,小正方形中的数字表示在该位置小立方块的个数,请画出相应几何体从正面、从左面看到的图形.【解答】解:如图所示:.19.(8分)如图,A,B,C在圆上,弦AE平分∠BAC交BC于D.求证:BE2=ED•EA.【解答】证明:∵AE平分∠BAC,∴∠BAE=∠EAC,∵∠EAC=∠EBC,∴∠BAE=∠EBC,又∵∠AEB=∠DEB,∴△ABE∽△BDE,∴,∴BE2=ED•EA.20.(8分)如图,在Rt△ABC中,设a,b,c分别为∠A,∠B,∠C的对边,∠C=90°,b=8,∠A的平分线AD=,求∠B,a,c的值.【解答】解:∵∠C=90°,b=8,∠A的平分线AD=,∴cos∠CAD==,∴∠CAD=30°,∴∠CAB=60°,∴∠B=30°,∴c=2b=16,a===8,即∠B=30°,a=8,c=16.21.(8分)在△ABC中,AB=12,点E在AC上,点D在AB上,若AE=6,EC=4,.(1)求AD的长;(2)试问能成立吗?请说明理由.【解答】解:(1)∵.∴,∴AD=7.2;(2)能,理由如下:∵,∴,∴,∴.22.(10分)如图,已知四边形ABCD内接于⊙O,A是的中点,AE⊥AC于A,与⊙O及CB的延长线交于点F、E,且.(1)求证:△ADC∽△EBA;(2)如果AB=8,CD=5,求tan∠CAD的值.【解答】(1)证明:∵四边形ABCD内接于⊙O,∴∠CDA=∠ABE.∵,∴∠DCA=∠BAE.∴△ADC∽△EBA;(2)解:∵A是的中点,∴∴AB=AC=8,∵△ADC∽△EBA,∴∠CAD=∠AEC,,即,∴AE=,∴tan∠CAD=tan∠AEC===.23.(10分)一架外国侦察机沿ED方向侵入我国领空进行非法侦察,我空军的战斗机沿AC 方向与外国侦察机平行飞行,进行跟踪监视,我机在A处与外国侦察机B处的距离为50米,∠CAB为30°,这时外国侦察机突然转向,以偏左45°的方向飞行,我机继续沿AC方向以400米/秒的速度飞行,外国侦察机在C点故意撞击我战斗机,使我战斗机受损.问外国侦察机由B到C的速度是多少?(结果保留整数,参考数据=1.414,=1.723)【解答】解:过点B作BF⊥AC于点F,∵∠CBD=45°,∴∠CBF=∠C=45°,∵∠A=30°,AB=50,∴BF=25m,AF=25m,∴FC=25m,则BC=25m,∴AC=25+25≈68(m),68÷400≈0.17(秒),故25÷0.17≈208(m/s),答:外国侦察机由B到C的速度是208m/s.24.(12分)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.25.(14分)已知四边形ABCD的一组对边AD、BC的延长线交于点E.(1)如图1,若∠ABC=∠ADC=90°,求证:ED•EA=EC•EB;(2)如图2,若∠ABC=120°,cos∠ADC=,CD=5,AB=12,△CDE的面积为6,求四边形ABCD的面积;(3)如图3,另一组对边AB、DC的延长线相交于点F.若cos∠ABC=cos∠ADC=,CD=5,CF=ED=n,直接写出AD的长(用含n的式子表示)【解答】解:(1)如图1中,∵∠ADC=90°,∠EDC+∠ADC=180°,∴∠EDC=90°,∵∠ABC=90°,∴∠EDC=∠ABC,∵∠E=∠E,∴△EDC∽△EBA,∴=,∴ED•EA=EC•EB.(2)如图2中,过C作CF⊥AD于F,AG⊥EB于G.在Rt△CDF中,cos∠ADC=,∴=,∵CD=5,∴DF=3,∴CF==4,∵S△CDE=6,∴•ED•CF=6,∴ED==3,EF=ED+DF=6,∵∠ABC=120°,∠G=90°,∠G+∠BAG=∠ABC,∴∠BAG=30°,∴在Rt△ABG中,BG=AB=6,AG==6,∵CF⊥AD,AG⊥EB,∴∠EFC=∠G=90°,∵∠E=∠E,∴△EFC∽△EGA,∴=,∴=,∴EG=9,∴BE=EG﹣BG=9﹣6,∴S四边形ABCD=S△ABE﹣S△CDE=(9﹣6)×6﹣6=75﹣18.(3)如图3中,作CH⊥AD于H,则CH=4,DH=3,∴tan∠E =,作AG⊥DF于点G,设AD=5a,则DG=3a,AG=4a,∴FG=DF﹣DG=5+n﹣3a,∵CH⊥AD,AG⊥DF,∠E=∠F,易证△AFG∽△CEH,∴=,∴=,∴a =,∴AD=5a =.第21页(共21页)。