变压器无线电干扰技术要求
高压变电站继电保护抗干扰技术

高压变电站继电保护抗干扰技术高压变电站继电保护是电力系统的重要组成部分,它的主要任务是在电力系统发生故障时,迅速切除故障区域,保证电力系统的稳定运行。
然而,在实际运行过程中,高压变电站继电保护还面临着频繁的电磁干扰,这些干扰会引起保护逻辑误动作或不动作,对电力系统的安全稳定运行造成威胁。
因此,高压变电站继电保护的抗干扰技术至关重要。
1. 电气干扰:是由高压设备或其他电气设备引起的,例如电机启动、变压器切换等。
2. 辐射干扰:是由辐射源引起的,例如雷电、广播电台、手机等。
3. 导联干扰:是由电缆或同轴电缆引起的,例如噪声叠加、串扰等。
1. 纹波滤波器纹波滤波器能够去除电力系统中的高频干扰,通过将保护装置的输入信号经过滤波器滤波,去除高频杂音,从而提高保护装置的抗干扰能力。
2. 天线在高压变电站继电保护系统中设置天线,能够有效的屏蔽掉外部的辐射干扰和电气干扰,从而保证系统的稳定运行。
3. 信号放大器信号放大器能够将保护装置的输入信号放大,提高信号的功率,从而提高信号的抗干扰能力。
4. 继电保护装置的结构优化在继电保护装置的设计过程中,应该采用合理的结构组织,将主要电路和干扰电路分离,从而降低干扰的影响。
5. 抗干扰算法一般来说,在继电保护系统中采用抗干扰算法可以防止噪音或失真信号对其造成的干扰,从而保证了系统的可靠性。
在实际运行中,采用上述抗干扰技术可以有效的保障高压变电站继电保护系统的稳定可靠运行。
在进行高压变电站继电保护装置的选型和工程设计时,需要综合考虑整个电力系统的特性,选择适合的抗干扰技术解决方案,提高高压变电站的抗干扰能力。
总之,高压变电站继电保护抗干扰技术的研究与应用是电力系统保障安全运行的必要手段,同时也是提高系统可靠性和稳定性的重要途径。
电控中的干扰与抗干扰措施

数字信号处理技术:利 用数字信号处理算法, 如FFT、FIR等,对信号 进行滤波、降噪等处理。
智能控制技术:利用人 工智能算法,如神经网 络、模糊控制等,实现 对干扰的智能识别和自
适应控制。
集成电路技术:通过集 成电路设计,实现抗干 扰功能的集成,提高系 统的可靠性和稳定性。
A
B
C
软件抗干扰 设计:采用 软件滤波、 数字信号处 理等技术, 提高系统的 抗干扰能力。
电控抗干扰的效 果评估
测试方法:采用模拟干扰源,测 试系统在干扰条件下的性能
测试环境:需要模拟实际工作环 境,包括温度、湿度、电磁环境
等
A
B
C
D
测试指标:包括抗干扰能力、误 码率、传输速率等
测试结果分析:根据测试结果, 分析抗干扰措施的有效性和局限
D
自适应抗干扰技术:根 据环境变化自动调整抗
干扰策略
智能滤波技术:利用人 工智能算法进行滤波,
提高抗干扰性能
智能预测技术:预测干 扰信号,提前采取措施
避免干扰
智能控制技术:利用人 工智能算法进行控制, 提高系统的抗干扰能力
01
02
03
04
绿色抗干扰技 术:采用环保 材料和工艺, 降低对环境的 影响
射频干扰:由射频信号产生的 干扰,如手机信号、无线电信 号等
电源干扰:由电源电压波动或 噪声产生的干扰,如电源线噪 声、电源电压波动等
接地干扰:由接地不良或接地 环路产生的干扰,如接地电阻 过大、接地环路等
电控干扰的传播
传导干扰是指通过导线、电路 板等物理介质传播的干扰信号。
传导干扰的来源包括电源线、 信号线、地线等。
01
02
输、变电设备电磁辐射、噪声相关规定和标准

输、变电设备电磁辐射、噪声相关规定和标准一.电磁辐射1.1有关电磁辐射的规定国家及有关部门有关电磁辐射的规定如下:国家环保总局1997年18号令《电磁辐射环境保护管理办法》国家环保总局HJ/T24-1998《500kV超高压送变电工程电磁辐射环境影响评价技术规范》中华人民共和国标准GB 9175-88《环境电磁波卫生标准》中华人民共和国标准GB 15707-1995《高压交流架空送电线无线电干扰限值》中华人民共和国标准GB16203-1996《作业场所工频电场卫生标准》中华人民共和国标准GB/T12720-1991《工频电场测量》电力行业标准DL/T799.6-2002《电力行业劳动环境监测技术规范第6部分:微波辐射监测》电力行业标准DL/T799.7-2002《电力行业劳动环境监测技术规范第7部分:极低频电磁场监测》1.2电磁辐射限制值国内暂未制定有关居民区工频电场评价标准,可引用国家环保总局HJ/T24-1998《500kV超高压送变电工程电磁辐射环境影响评价技术规范》中规定的推荐值作为指引标准。
规范中“推荐暂以4kV/m作为居民区工频电场评价标准,推荐暂以应用国际辐射保护协会关于对公众全天辐射时的工频限值0.1mT作为磁感应强度的评价标准。
”根据中华人民共和国标准GB16203-1996《作业场所工频电场卫生标准》规定“作业场所工频电场强度8h最高容许量为5kV/m”;根据电力行业标准DL/T799.7-2002规定“0.1mT作为作业场所工频磁场的最高容许量”。
1.3 什么是电磁辐射电磁辐射是指电磁能量从辐射源放射到空间并以电磁波的形式在空间传播的现象,电磁辐射能量的大小与波源的频率有关,频率越高,即波长越短,越容易产生电磁辐射并形成电磁波。
电磁辐射在我们的生活中却很普遍。
能制造电磁辐射污染的污染源无处不在,有电视广播发射塔、雷达站、通信发射台、变电站,高压电线、还有电脑、手机、微波炉、电磁灶,甚至我们乘坐的地铁列车等等都能制造电磁辐射污染。
电力设备的电磁干扰与屏蔽技术

电力设备的电磁干扰与屏蔽技术电力设备的广泛应用使得我们的生活变得更加便捷和舒适,然而,与此同时,电力设备还带来了一个严重的问题,即电磁干扰。
电磁干扰不仅影响到其他电子设备的正常工作,还可能对人体健康产生不良影响。
因此,研究和采用电磁干扰屏蔽技术成为电力设备设计和应用的重要任务之一。
一、电磁干扰的来源电磁干扰是由电力设备发出的电磁波引起的。
电力设备的工作原理决定了它们会产生电磁辐射,这种辐射同样会干扰周围的电子设备。
例如,变压器、变频器、开关电源等电力设备都会产生电磁干扰。
二、电磁干扰的影响电磁干扰对电子设备和通信系统的正常运行造成了很大的影响。
首先,电磁干扰会导致通信信号的丢失或变形,从而降低了通信质量。
其次,电磁干扰还可能导致电子设备的故障和损坏,降低了设备的可靠性和寿命。
此外,电磁干扰还对人体健康构成潜在威胁,长期接触电磁辐射可能引发一系列健康问题。
三、电磁干扰的屏蔽技术为了减少电磁干扰,我们需要采用一些屏蔽技术来控制和抑制电磁辐射。
以下是几种常见的电磁干扰屏蔽技术:1. 电磁屏蔽材料:电磁屏蔽材料是一种能吸收或反射电磁波的特殊材料。
通过在电力设备周围或设备内部使用电磁屏蔽材料,可以有效地减少电磁辐射的发生。
目前市场上有各种不同的电磁屏蔽材料可供选择。
2. 接地技术:接地是一种常用的屏蔽技术。
通过将电力设备与地面或其他良好导电的物体连接,可以将电磁辐射导向地面,从而减少其对其他设备的干扰。
合理的接地系统设计可以显著提高电磁屏蔽效果。
3. 屏蔽箱或屏蔽房间:对于一些特别敏感的电子设备或场合,可以采用屏蔽箱或屏蔽房间的方式来实现电磁屏蔽。
屏蔽箱或屏蔽房间是由电磁屏蔽材料构成的封闭空间,可以将电磁辐射隔离在内部,有效地屏蔽干扰。
4. 滤波器:滤波器是一种可以削弱或滤除特定频率电磁波的装置。
通过在电力设备的电源线或信号线上安装滤波器,可以减少电磁干扰信号的传输,从而减少干扰的影响。
四、电磁干扰监测和预防除了采用屏蔽技术,我们还需要进行电磁干扰监测和预防工作。
18.无线电干扰电压(RIV)测量

无线电干扰电压(RIV)测量1.适用范围三相和单相电力变压器(包括自藕变压器)。
2.试验种类特殊试验。
3.试验依据GB 1094.1—1996《电力变压器第一部分总则》GB 11604—1989《高压电器设备无线电干扰测量方法》JB/T501—1991《电力变压器试验导则》产品技术条件4.试验设备2000kV A发电机组(电动机500kW)额定电压3150V;额定电流。
TESA—500感应调压器输入额定电压380V,输入额定电流945A;输出电压0~650V,输出额定电流444A。
TESA—250感应调压器输入额定电压380V,输入额定电流445A;输出电压0~650V,输出额定电流222A。
S9—3000/35中间变压器分接高压电压(V) 高压电流(A) 接法1 3150 550 直送2 1100 157 D3 1100 157 D4 22000 79 D5 38100 45 Y6 38100 45 Y7 40730 43 延D低压:额定电压3000V,额定电流577A接法D。
标准电压互感器40kV电压等级:比数(40、30、20、15、10/√3)/(0.1/√3)3kV电压等级:比数(3/√3)/(0.1/√3)0.5kV电压等级:比数(0.5/√3)/(0.1/√3)标准电流互感器40kV电压等级:比数(800、600、400、200、100、80、40、20、10)/5A1kV电压等级:比数(0.5/√3)/(0.1/√3)5.测量仪器D6000功率分析仪;COSφ=0.1低功率因数功率表;平均值电压表;方均根值电压表;电流表;Protek3200射频场强分析仪。
6.一般要求试验应在10℃~40℃环境温度,变压器的温度接近试验时的环境温度。
通常由被试品的低压侧施加额定频率的额定电压(应尽可能为对称的正弦波电压),其余绕组开路;如果施加电压的绕组是带有分接的,应使分接开关处于主分接的位置;如果被试品绕组中有开口三角形连接绕组,应使其闭和。
开关电源的电磁干扰和射频干扰及电气安全标准

开关电源的电磁干扰和射频干扰及电气安全标准一、电磁干扰和射频干扰(EMI-RFI)美国及国际标准化组织已对电磁干扰和射频干扰制定了若干标准,要求电子设备的生产厂商将其产品的辐射和传导干扰降低到可接受的程度。
在美国,权威的指导性文件是FCC Dock-et20780,在国际上,德国的Verband Deutscher Elek-tronotechniker(VDE)安全标准则得到了广泛的采用。
FCC和VDE两个标准,主要是针对最终产品提出的,而不是组装产品的部件,但使用开关电源的整机产品,必须符合EMI-RFI的有关条款,了解这一点是非常重要的。
正是因为如此,既便开关电源已经使用了一个输入滤波器,这个滤波器对无源负载电路是匹配的,但对有源动态电子电路供电时,其抑制干扰的能力会发生剧烈的变化。
本文试图引导大家了解一些RFI的难题,并给出减小这些干扰的措施,这无论对电源设计或最终产品的设计均是需要遵循的。
1.FCC和VDE标准关于噪声抑制的条款FCC和VDE两项标准对由交流供电且由高频数字电路构成的设备的RFI抑制均提出了相应要求。
VDE标准把它的条款分成二类:第一类是工作在0~10kHz 的设备产生的无意性高频干扰。
它们的标准号分别是VDE-0875和VDE-0879;第二类是用于要求那些使用10kHz以上频率的设备所产生的有意性高频干扰,它们的标准号是VDE-0871和VDE-0872。
与此不同的是,FCC则针对产生或使用定时脉冲信号大于10kHz的所有设备提出RFI限制的有关条款。
图1所示给出了FCC和VDE对RFI的各项要求。
注:IEC为国际电子技术委员会的英文缩写;CISPR为国际无线电干扰特别委员会的英文缩写;EEC为电子设备的英文缩写。
FCC对EMI-RFI的有关条款与VDE的有关条款十分接近,其CLASS A部分要求商业、贸易和工业环境的设备,其电磁干扰辐射应在几分贝/微伏,所有能达到VDE 0875/N或VDE-0871/A,C标准规定的设备,几乎都能达到FCC的这一要求。
变电站抗电磁干扰的措施

变电站抗电磁干扰的措施摘要:变电站抗电磁干扰是一项提高变电站安全、可靠稳定运行水平,降低运行维护成本,提高经济效益及提供高质量电能服务的重要手段。
故笔者结合多年工作经验,结合电磁干扰的三个要素对变电站抗电磁干扰的措施进行了总结,以供参考。
关键词:变电站电磁干扰共抗耦合敏感度前言:电磁干扰源的能量通过各种途径以传导或辐射方式耦合至变电站的一次系统和二次回路,表现为在电力线、信号线、控制回路和自动化系统上的干扰电压和干扰电流的水平或电场和磁场的水平。
因此,电磁兼容是至关重要的问题。
但电磁环境是千变万化的,要真正达到经济上和技术上的电磁兼容,保证一、二次设备运行的可靠性,必须根据具体情况,灵活运用各种技术和措施。
消除或抑制干扰应针对电磁干扰的三要素进行,即:消除或抑制干扰源;切断电磁耦合途径;降低装置本身对电磁于扰的敏感度。
对于变电站综合自动化系统来说,重点应放在后两方面。
1。
抑制干扰源的影响外部干扰源是变电站综合自动化系统外部产生的,无法消除。
但这些干扰往往是通过连接导线由端子串入自动化系统的,因此可从两方面抑制干扰源的影响:1.1 屏蔽措施(1)一次设备与自动化系统输入、输出的连接采用带有金属外皮(屏蔽层)的控制电缆,电缆的屏蔽层两端接地,对电场耦合和磁耦合都有显著的削弱作用。
当屏蔽层一点接地时,屏蔽层电压为零,可显著减少静电感应(电容耦合)电压;当两点接地时,干扰磁场在屏蔽层中感应电流,该电流产生的磁通与干扰磁通方向相反,互相抵销,因而显著降低磁场耦合感应电压.两端接地可将感应电压降到不接地时感应电压的1%以下.(2)二次设备内,综合自动化系统中的测量和微机保护或自控装置所采用的各类中间互感器的一、二次绕组之间加设屏蔽层,这样可起电场屏蔽作用,防止高频干扰信号通过分布电容进入自动化系统的相应部件。
(3)机箱或机柜的输入端子上对地接一耐高压的小电容,可抑制外部高频干扰。
由于干扰都是通过端子串入的,当高频干扰到达端子时,通过电容对地短路,避免了高频干扰进入自动化系统内部.(4)变电站综合自动化系统的机柜和机箱采用铁质材料,本身也是一种屏蔽。
无线电发射设备干扰规避技术要求

无线电发射设备干扰规避技术要求
随着无线电技术的不断发展,无线电发射设备的使用越来越广泛。
但是,无线电发射设备也会对周围的电子设备产生干扰,影响其正常工作。
因此,为了保证无线电发射设备的正常使用,需要采取一些规避技术来避免干扰。
需要对无线电发射设备进行合理的布局。
无线电发射设备应该远离其他电子设备,尽量避免与其他设备共用电源线路。
同时,无线电发射设备的天线也应该远离其他设备,以减少干扰。
需要对无线电发射设备进行合理的调试。
在调试无线电发射设备时,应该遵循相关的技术规范,确保其发射频率、功率等参数符合要求。
同时,还需要对无线电发射设备进行频谱分析,以确保其发射频率不会与其他设备的频率产生冲突。
还需要对周围的电子设备进行合理的防护。
在无线电发射设备周围,应该采用屏蔽材料来防止干扰信号的泄漏。
同时,还可以采用滤波器等设备来过滤掉干扰信号,保证其他设备的正常工作。
需要对无线电发射设备进行定期的维护和检修。
无线电发射设备在长期使用过程中,可能会出现一些故障,导致其发射的信号产生干扰。
因此,需要定期对无线电发射设备进行检修和维护,确保其正常工作。
无线电发射设备干扰规避技术是保证无线电设备正常工作的重要保障。
只有采取合理的规避技术,才能有效地避免干扰信号的产生,保证无线电设备的正常使用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
变压器无线电干扰技术要求
一.试验条件:
试验应在下列大气条件下进行:
——温度为5℃~35℃;
——气压为0.870×105Pa~1.070×105Pa;
——相对湿度为45%~75%。
注1:经用户与制造方协商同意,试验可以在其它的大气条件下进行。
注2:GB/T1 6927.1所述的大气条件修正系数,不适用于无线电干扰试验。
二.试验标准:
GB 11604-1989 高压电器设备无线电干扰测试方法.
CISPR 16-1:1993 无线电干扰和抗干扰测量设备及方法的技术要求第1
部分:无线电干扰和抗干扰测量设备
JB/T 3567-1999 高压绝缘子无线电干扰试验方法
IEC 60437:1997
三.试验回路:
图1: 无线电干扰电压测量电路
T1:被试变压器; S:防晕罩; C1:耦合电容; L1: 耦合电感; G:保护间隙; K: 切换开关; L2:支撑电感; R1:高压臂电阻; R2:低压臂电阻; M2:无线电干扰接收机;M3高频信号发生器;
四.试验设备:
1.无线电干扰测量仪器M2
1.1主要技术参数
测量范围:150KHz~30MHz
整机通带:9KHz 200Hz
输入阻抗:50Ω
检波器时间常数: 平均值:充放电时间常数小于100μS
准峰值:充电时间常数1ms±0.5ms
放电时间常数小于160ms 表头机械时间常数:160ms±80ms
过载系数检波前:≥30dB; 检波后:≥12dB
2.测量装置M1
2.1 支撑电感L2
2.2 放电保护间隙G
2.3分压电阻高压臂R1 高压无电阻
2.4分压电阻低压臂R2 高压无感电阻,
3.测试耦合阻抗Z1
3.1耦合电容器C1 无晕电容器,电容量:1000pF,可以用变压器的套管电容
当耦合电容
3.2耦合电感L1 根据耦合电容电容量的变化L1的值要不断地调整
4.高频信号发生器M3
能发生500kHz的高频脉冲信号,电压0到10V可调整,内阻最好在20k左右.
五.试验方法及要求
5.1 试验导线与地之间的阻抗Z1+(R1+R2)在测量频率下应为300Ω±40Ω,相
位角不超过20°。
5.2 耦合电感L1随着变压器套管电容的变化而可以调整.。