仿生材料
仿生材料

又叫水瓜,寒瓜 , 夏瓜,因在汉代从西 域引入,故称“西瓜”。西瓜味道甘甜 多汁,清爽解渴,是盛夏的佳果,既能 祛暑热烦渴,因此有“天然的白虎汤” 之称。西瓜除不含脂肪和胆固醇外,几 乎含有人体所需的各种营养成分,是一 种富有营养,纯净,食用安全的食品。
仿生材料最新研究领域
光子晶体材料:是一类特殊 的晶体,其原理很像半导体, 有一个光子的能力。蛋白石 就是其中的典型,它的组成 仅仅是宏观透明的二氧化硅, 其立方密堆积结构的周期性 使其具有了光子能带结构丽的色彩 。(这种材料的研发
仿生材料
仿生材料
仿生材料定义:仿生材料指模仿生物的各种特点或特性而开发 的材料。仿生材料学是仿生学的一个重要分支,是化学、材料 学、生物学、物理学等学科的交叉。受生物启发或者模仿生物 的各种特性而开发的材料称仿生材料,仿生材料在21世纪将为 人类做出更大的贡献。 自然界中的物质和天然生物材料,如贝壳,骨骼等经过上 亿年进化的产物,具有适应环境与功能需求的最佳结构,表现 出传统人工合成材料无法比拟的优异强韧性,功能适应性以及 愈合能力。在生物医疗领域,仿照天然生物材料制备出具有生 物功能,甚至是生物活性的材料成为生物材料科学极为活跃的 前沿研究领域。
仿生高超强韧材料:贝壳的成 分主要是碳酸钙和少量的壳基 质构成,这些物质是由外套膜 上皮细胞分泌形成的。贝壳的 结构一般可分为 3 层:最外一层 为角质层,很薄,透明,有光 泽,由壳基质构成,不受酸碱 的侵蚀,可保护贝壳。中间一 层为壳层,又称棱柱层,占贝 壳的大部分,由极细的棱柱状 的方解石(CaCO3, 三方晶系) 构成。最内一层为壳底 , 即珍珠 质层,富光泽,由小平板状的 结构单元累积而成、成层排列, 组成成分是多角片型的文石结 晶体(CaCO3, 斜方晶系)。
仿生材料的研究进展及应用前景

仿生材料的研究进展及应用前景随着科技的不断发展,人类对于仿生学的研究也越来越深入。
仿生学是指生物学、物理学和工程学等相关学科在结构、形态、力学等方面模仿自然界中生物的形态和功能,从而研制出仿生产品和器件的学科。
仿生学在人们生产生活中的作用越来越大,而仿生材料是其中的重要组成部分,具有巨大的应用前景。
一、仿生材料的定义及特点仿生材料是一种通过仿照生物体的结构、形态、功能和制造方法,用人工材料来代替或模拟生物体某些功能的人造材料。
仿生材料是科学家研究生物仿生学的一个重要领域,与生物学、材料学、力学等多学科交叉,具有以下特点:1.符合生物体的结构、形态和力学等特性;2.比人造材料更具可塑性、可调性和适应性;3.具有多种特殊功能和性能;4.可以在多个领域应用。
二、仿生材料的研究进展随着仿生学的不断发展,仿生材料的研究也在不断深入。
目前,仿生材料的研究重点主要集中在以下方面:1.仿生材料的结构设计及制造方法研究。
通过仿照生物体的结构设计,结合现代材料制造技术,开发出具有类似结构的仿生材料。
2.仿生材料的性能研究。
通过模拟生物体的特殊功能和性能,研究仿生材料的相应性能,如生物材料的力学性能、光学性能、磁性能等。
3.仿生材料的应用研究。
通过对仿生材料的研究,探究其在医药、新材料、机器人等多个领域的应用。
三、仿生材料的应用前景仿生材料的应用前景十分广泛,未来有望在以下几个方面得到广泛应用:1.医学领域仿生材料可以用于修复、再生人体组织,分析生物体的分子作用和制备仿生医学材料等。
例如,仿生骨料可以代替天然骨骼,用于义肢制造和人造骨骼修复等。
2.材料科学领域仿生材料的结构和性能特殊,可以制造出更加高效的电池、太阳能电池等能源材料。
3.机器人领域仿生材料能够帮助机器人更好地仿照生物体的结构,并具备生物体的一些特殊功能。
例如,仿生蛇机器人可以模仿蛇的蠕动方式,更好地适应不同的地形。
总结:作为仿生学中的重要领域,仿生材料在科技领域中发挥着越来越重要的作用。
仿生材料的研发与应用

仿生材料的研发与应用随着现代科技的发展,仿生材料已成为人们关注的重点领域。
仿生材料通过模仿生物体的结构和功能,将其应用于工程技术领域,成为了一种新兴的纳米材料。
在此,本文将介绍仿生材料的定义、分类、研发和应用。
一、仿生材料的定义和分类仿生材料是一种新型的材料,它可以模拟人体器官、动物、植物的结构和功能,具有较优异的性能。
它的定义为通过仿生学的思想来制造材料,集成了生物学、物理学、力学学、化学等学科的内容,以实现新材料的自主发展和实用。
仿生材料从材料结构上来分可分为有机仿生材料和无机仿生材料。
有机仿生材料常见的是蛋白质、多肽、纤维蛋白、胶原蛋白等;无机仿生材料包括磷酸钙、氢氧磷灰石、钙钛矿等化合物,而合成纳米材料可以是与自然界中所存在的要素、化合物相同的特殊制造材料。
二、仿生材料的研发仿生材料的研发主要有三个方面:仿生生物、仿生结构和仿生功能。
仿生生物主要是通过对于生物体的模拟和分析,找到生物体的特性、功能和功能的体现方式;仿生结构则是通过对于生物体的结构和形态的拟合,以实现材料的组成和结构的调整;仿生功能主要是对于仿生结构和生物体功能的拟合制取得功能模拟。
三、仿生材料的应用仿生材料的应用领域非常广泛。
在医学领域,仿生材料可以用于修复和再生组织,开发新型的漏斗、植入物、射频可升级装置等,能改善生物组织和身体的局部结构,使其更好地适应环境或机器的操作;在建筑领域,仿生材料可以模拟表面结构、多孔结构、导热性和声学性状,改善相应的建筑性能和环境效应,从而更好地适应环境和节能减排。
在国防、交通等领域,仿生材料也有着许多应用。
总之,仿生材料具有广泛的应用前景。
在仿生材料的研究和开发上,我们需要多领域的交叉和协调,采用智能化的设计理念和方法,做好材料性能和应用的配合、优化,不断创新寻找最佳解决办法,为民族经济的发展和社会的需求做出新的贡献。
仿生材料:模仿大自然

仿生材料:模仿大自然仿生材料是一种受到大自然启发而设计制造的材料,它模仿生物体的结构、功能和性能,具有优异的特性和广泛的应用前景。
大自然是最伟大的设计师,亿万年的进化造就了各种生物体的复杂结构和功能,这些优秀的设计激发了人类对仿生材料的探索和研究。
通过模仿大自然,科学家们开发出了许多具有前瞻性和创新性的材料,为人类社会的发展带来了巨大的推动力。
一、仿生材料的定义和特点仿生材料是指受到生物体结构、功能和性能启发而设计制造的材料。
它具有以下几个特点:1. 模仿生物体:仿生材料通过模仿生物体的结构和功能,实现类似生物体的性能和效果。
2. 多样性:仿生材料可以模仿各种生物体,如植物、动物、微生物等,具有多样性和广泛性。
3. 创新性:仿生材料的设计和制造需要创新思维和技术手段,具有前瞻性和创新性。
4. 应用广泛:仿生材料在医学、工程、材料科学等领域有着广泛的应用前景。
二、仿生材料的研究领域1. 医学领域:仿生材料在医学领域有着重要的应用,如仿生人工关节、仿生心脏瓣膜等,为医疗技术的发展提供了重要支持。
2. 工程领域:仿生材料在工程领域有着广泛的应用,如仿生结构材料、仿生润滑材料等,提高了工程设备的性能和效率。
3. 材料科学领域:仿生材料在材料科学领域有着重要的研究价值,如仿生纳米材料、仿生智能材料等,为材料科学的发展带来了新的思路和方法。
三、仿生材料的成功案例1. 莲花效应:仿生材料模仿莲花叶片表面微纳结构,设计制造出具有自清洁功能的材料,应用于建筑玻璃、汽车涂层等领域。
2. 鲨鱼皮纹理:仿生材料模仿鲨鱼皮纹理设计制造出减阻纹理材料,应用于飞机表面、船体涂层等领域,降低了流体阻力。
3. 蜻蜓翅膀结构:仿生材料模仿蜻蜓翅膀结构设计制造出具有抗菌、抗污染功能的材料,应用于医疗器械、环境保护等领域。
四、仿生材料的未来发展1. 多功能性:未来的仿生材料将具有更多的功能性,如自修复、自感知、自适应等,为人类社会带来更多的便利和创新。
仿生材料及其应用在制造工业中

仿生材料及其应用在制造工业中随着科技的不断发展和人们对于生命体验的深入探索,仿生技术作为一种新兴技术得以快速普及。
其中,仿生材料作为仿生技术的重要组成部分之一,已经应用于多种领域,尤其是制造工业。
在本文中,我们将讨论仿生材料及其在制造工业中的应用。
一、什么是仿生材料仿生材料是指能够模拟和运用自然界生物材料的理化特征,而具有类似功能和性能的新型材料。
仿生材料的研究,是通过对自然界中的各种生物体的形态、结构、生理功能和物理化学特性等进行深入探究,从中汲取灵感,自主创新研发出的一系列新型材料。
其中,仿生材料的种类多种多样,包括生物材料、人造材料、复合材料等等。
生物材料是从生物体内提取或人工合成的物质,如骨骼、肌肉和皮肤等;人造材料是通过人工合成的材料,如高分子材料、金属材料、陶瓷材料等;而复合材料则是两种或两种以上材料的组合体。
二、仿生材料在制造工业中的应用1. 制造3D打印产品随着3D打印技术的迅猛发展,仿生材料的应用也越来越广泛。
3D打印机可以使用多种材料进行印刷,其中仿生材料可以模拟生物体的软硬度、弹性、黏性、强度等特性,氢骨、肌肉、纳米管等仿生材料被广泛用于3D打印产品的制造上。
随着3D打印技术的推广,仿生材料的应用也将会越来越广泛。
2. 制造假肢仿生材料的应用还体现在人体假肢制造上。
常见的假肢材料有铝合金、钛合金、碳纤维等,但是这些材料往往比人体自身的材料硬度大很多,给佩戴者带来极大的不适。
而仿生材料的应用,可以实现类似于人体自身的柔韧度,使得假肢更加逼真、真实。
3. 制造航空器仿生材料的应用也广泛存在于制造航空器上。
生物体的形态、结构以及特性,往往能够启发飞机设计的创造性思维。
如仿生材料的使用可以使得飞机内部结构更加舒适、减轻飞机自身重量、降低噪音等等,改善旅客体验,增加旅途舒适度。
4. 制造智能材料随着智能化的不断发展,智能材料的应用日益广泛。
仿生材料的概念也逐渐与智能科技进行融合,芯片、传感器等技术的应用,使得仿生材料也能实时感知环境的变化,完成相应的功能性响应。
仿生材料(精)

目录
仿生材料的环境性能
仿生材料简介 环境和生物性能
生物材料的结构与性能
仿生材料的应用
生物陶瓷及复合材料
组织工程材料 仿生智能材料
一、仿生材料的环境性能
1、仿生材料简介
一、仿生材料的环境性能
一、仿生材料的环境性能
荷叶效应
自清洁材料
一、仿生材料的环境性能
• 纤维素是分布最广、含量最多 的一种多糖,其主要是作为动 植物或细菌细胞的外壁支撑和 保护物质。 • 生物软组织是由多糖和蛋白质 复合而成的,如粘液、软体动 物骨架、皮肤等。生物软组织 的σ -ε 性质、断裂韧性、刚度 等性能及随环境的变化都是非 生物材料难以比拟的。
二、生物材料的结构与性能
、环境与生物性能
仿生材料 生物性能 生物相容 性 环境协调 性
材料反应
宿主反应
生态设计
环境友好 加工
一、仿生材料的环境性能
评价材料生物相容性的指标
宿主反应
适应性反应
全身反应 血液反应
材料反应
腐蚀 吸收 降解 磨损 膨胀 浸析
二、生物材料的结构与性能
常见天然生物材料种类
二、生物材料的结构与性能
致密羟基磷灰石、玻 熟石膏、β—双相钙磷 璃陶瓷等 陶瓷等 化学键合 临时填充作用,可通 过新陈代谢化解,最 终被替换
优点
缺点
组织和植入体机械嵌 合
三、仿生材料的应用
2、组织工程材料
• 用于代替生物体组织器官或者恢复、维持其 功能的仿生材料。
三、仿生材料的应用
3、仿生智能材料
• 能模仿生命系统,同时具有感知和驱动双重功 能的材料。 • 这类材料的性能不仅与材料的成分、结构和形 态有关,而且与材料所处的环境有关,具有生 物特性。 • 目前主要有智能高分子凝胶材料、智能药物释 放体系以及仿生薄膜材料等。
仿生材料

• 仿生材料是指模仿生物的各 种特点或特性而研制开发的 材料。通常把仿照生命系统 的运行模式和生物材料的结 构规律而设计制造的人工材 料称为仿生材料。
• 自然界中的动植物经过45亿年的物竞天择 的优化,其结构和功能已经到达了近乎完 美的程度。自然界是人类各种科学技术原 理及发明的源泉。 • • • • 鸟类飞行——飞机 昆虫单复眼——复眼照相机 蝙蝠回声定位4内视镜
• 手触摸含羞草的叶片,它就会像动物那样收缩。在这 一种启发下,日本奥林巴斯公司的植田康弘研制了一 种可以伸到小肠里的内视镜,他在内视镜的筒状部分 使用了一种与含羞草叶片表面结构相似的弹性膜材料, 它在肠道流体的压力下,会沿着轴向自动伸长或弯曲, 从而使内视镜的筒状部分与肠道保持同一形状。
No2.人造骨
• 卵是鸟类和爬虫类生 育在体外的动物的最 大细胞。它的壳,是石 灰质构成的,内部有卵 白和卵黄,卵壳的形 成过程与牙齿和骨头 的发育过程相同,被称 之为钙化过程,与无机 和有机的界面化学相 关,人们通过卵壳制 造人造骨。
No3.竹纤维仿生材料
从竹子的断面来看,一种 称之为纤维束的组织密 布在竹子的表皮,竹子的 内部却很稀少,这样的结 构形成了一种高强度的 复合材料(竹纤维仿生 材料)。
原物 乌龟壳 青蛙眼睛
做一做
仿生材料 电子蛙眼 潜艇
蛛丝
海豚 白蚁
降落伞绳索
干胶炮弹 薄壳建筑
No1.薄膜材料
在陆地上生活的动物有 肺,能够分离空气中的氧 气,水里的鱼有鳃,能够 分离溶解在水中的氧气, 供给身体使用。人们仿 造这种特性,制作了薄膜 材料,用于制造高浓度氧 气、分离超纯水等,以达 到节省能源以及高分离 率的目的 。
第七章 仿生材料

环境协调化的发展阶段,复合材料的仿生设 计与探索正好体现了这一特点。
总结生物体的有用规律,建立模型,为复合 材料的研究和设计提供依据是一种有效的方 法。随着材料科学和仿生学的发展,作为交 叉学科的仿生材料学经过不断积累和发展, 在材料科学家、生物学家、医学专家的密切 配合下,材料的仿生制备研究必将成为当今 材料科学研究最活跃的前沿领域之一。
二、骨骼的分级结构与多孔结构
骨骼主要有松质骨和密质骨两种。 骨骼是一种典型的、复杂的复合材料。 在骨的生长过程中,伴随骨的增长和增粗, 体内每块骨的形态结构都在进行不断的改建, 使之与自身的生长相一致。松质骨中最初形 成的骨小梁排列方向乱,支持功能差,经改 建后骨小梁的方向与各骨所承受的压力和张 力方向——致,从而增强了骨的坚固性。同 时骨骼的机械性能源于其结构,在骨的多级 结构中,羧基磷灰石(通常是含碳的磷
器官材料的规律而设计制造的人工材料。 生物仿生材料学是一门新型的交叉学科, 包括了材料科学与工程、分子生物学、生 物化学、物理学及其他学科内容。
一、仿生材料研究内容
目前,仿生材料学的研究内容主要包括以 下几个方面: (1)天然生物材料的结构、物理性质和化学 性质分析(如骨、木、珍珠、皮肤等);
(2)模仿生物体组成、结构及性能的材料制备 与开发; (3)利用生物加工技术制备材料的力学行为分 析; (4)在模仿过程中受到启发,以所得到的新概 念,进行新型合成材料的设计; (5)仿生材料和结构在新领域中的应用,如在 机器人和航空结构等方面; (6)在生物结构的力学分析指导下,对现有结 构设计的优化; (7)生物材料及结构在进化过程中,所用设计 标准的分析; (8)模仿生物体所进行的某些系统的开发。
纤维是细长的空心管子,对于结定的强度和刚度 要求,它所需的材料比实杆少。离中心线越远, 材料受力越大,空心管子的材料受力几乎都集中 在离中心线很远的边缘上,因此,比一根同样重 的实心杆的刚度大很多。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
one
内置液芯胶囊法
LOGO two
three
内掺有机化合物法
多孔纤维网修复法
3.2.1.1 内置液芯胶囊法
将内含粘结剂的空心胶囊或玻璃纤 维掺入混凝土材料中,一旦混凝土在 外力作用下发生开裂,部分胶囊或空 心纤维破裂,粘结液流出深入裂缝, 粘结液可使混凝土裂缝重新愈合。
仿生智能材 料
2.1 生物陶瓷及其复合材料
生物陶瓷是指用作特定的生物或生理功能的一类陶瓷材料, 即直接用于人体或与人体相关的生物、医用、生物化学等的陶 瓷材料。广义讲,凡属生物工程的陶瓷材料统称为生物陶瓷。
氧化铝生物陶瓷材料 复合生物陶瓷材料
磷酸钙生物陶瓷材料
A
B 被动修复混凝土
主动修复
自修复混凝土
3.3.2 自修复混凝土概论
智能自修复混凝土,是利用形状记忆合金(SMA) 的超弹性特性,结合修复胶粘剂对裂缝面的填充、 粘结功能现混凝土损伤、裂缝适时快速地自修复。
记忆合金充当骨架,连结液充当血肉
22
3.3.3 自修复混凝土效果
同时有SMA和纤维修复时 修复后的变形趋势与修复前基本一致,修复后试件的开裂荷载有一定 的提高。这表明:试件在第一次试验破坏后其性能得到了恢复;开裂区 混凝土强度得到了提高。
3.3.4 自修复混凝土优缺点
这款泳衣自投入市场以来,一路伴 随着泳坛的革命,已作古的44项世界 纪录中,居然有40项跟它有关。
3.1 鲨鱼皮泳衣
鲨鱼皮:鱼的皮肤表面有许多粗糙的V形褶皱,这种褶皱可以分开
水流,使其高速从身体周围流过,减少游泳过程中水流产生的阻力。
3.2 自愈合混凝土
自然界的生物可以利用自修复 对已经损坏的组织进行修复。
自愈合混凝土能对裂纹的自我 修复,使混凝土能够主动、自 主的对损伤部位进行修复,恢 复并提高混凝土材料的性能。
3.2.1 自愈合混凝土
自愈合混凝土是在自然自愈合的基础上使用一些工程技术提高混凝土 的自愈合能力。
3.3.3 自修复混凝土制备
修复纤维采用玻璃纤维,修复胶 粘剂采用低粘度的环氧树脂胶粘剂。
形状记忆合金及纤维管分布如图 所示。
3.3.3 自修复混凝土效果
只有SMA修复时
梁在跨中竖向荷载作用下,裂缝宽度 随着试件挠度的增加不断增加。(a)、 (b)分别为试件在最大挠度时和卸载 以后的裂缝图案。从图中可以清楚的 看到:卸载以后,裂缝基本上闭合。
形状记忆合金大大地提高了梁的变形能力,提高了混凝土的变形抗力 在荷载作用下,在梁的跨中附近出现裂缝, 裂缝宽度随着载荷 的增加不断增大;卸载后,裂缝基本上闭合 纤维管破裂、修复剂胶粘剂流入到裂缝中以后,将裂缝面重新粘结在 一起,修补了裂缝,使混凝土性能得到了恢复。
工程造价提高
1995年神户地震
2004年新泻地震
2008年汶川地震
2010年智利地震
2015年尼泊尔地震
3.2 自愈合混凝土
混凝土结产生损伤积累和抗力衰减,从而不可避免地会产 生微开裂 。损伤的不断积累,导致了混凝土的微裂纹的产 生,如果不能及时修复,可能由此诱发宏观裂缝生成,降低 结构承受能力,甚至直接导致混凝土工程的崩塌。
实验表明, 第二次弯曲实验中, 被粘结剂愈合 后的试件将能承受更大的荷载, 并且材料的 延展性、柔韧性也得到了较大的改善。
第一次测试( 化学粘结剂释放之前) 第二次测试( 粘结剂释放进基体之后)
3.2.1.3 内掺有机物化合物法
在硅酸盐水泥中掺人特殊有机化合物,并搅 拌均匀.生成所谓“生物水泥”。
将不含固化剂的环氧树脂, 在碱性的环境下, 环氧树脂具有缓慢硬化的特征,未硬化的环氧树脂被 已硬化的包住,而形成自封的微胶囊,一旦断裂产生, 微胶囊破裂愈合裂纹
3.2.2 缺点探究
受到龄期、环境介质、
A
温湿度和外加剂等的影 响,耗时长,效果不明
显。
不足
C 施工过程中比较麻烦。
B 修复胶黏剂一般具有
毒性,很大程度上影响 了研究成果在工程中的 应用
3.3.1自修复混凝土
模仿动物的骨骼组织结构受创伤后 的再生恢复机理,采用修复装置和混凝 土材料相复合的方法,研究出对损伤破 坏具有自修复和再生功能的材料,恢复 甚至可提高材料性能的一种新型高新 技术
L/O/G/O
仿生物材料
Contents
1
仿生材料简介
2
仿生材料的分类
3 仿生材料的应用举例
1.1 仿生材料学的提出
1960年9月 J.Steele 正式提出仿生学的概念。他被定义为模仿生物 系统的原理来建造技术系统,或者使人造技术具有或类似于生物系统 表征的科学。
1.3 仿生材料的研究内容
仿生材料和结构在新领 域中的应用 ,如在机器 人和航空结A构dd等Yo方ur 面Text
在生物结构的 力学分析A指dd导Yo下ur T,对ext 现有结构设计的优化
直接模仿生物体进行的材料制备与开发
仿生材料学
模仿生物体所进行的某些系 统的开发, 如超灵敏度机械接 收器等
在模仿过程中受到启发, 以所得 到的结构、化学等新概念, 进行 新Ad型d Y合ou成r Te材xt料的设计
Add Your Te利xt用生物加工技术制备材料的力学行 为分析
2.分类
仿生物材 料
生物陶瓷及 其复合材料
组织工程材 料
2.3 仿生智能材料
仿生智能材料是指模仿生命系统,同时具有感知和驱动双重功能的的材料。
高分子凝胶材料
仿生智能材料
智能药物释放体系
仿解薄膜
3.1 鲨鱼皮泳衣
鲨鱼皮泳衣,Speedo公司出产的一种模仿鲨鱼皮肤制作的高科技泳衣。 1999年10月,国际泳联正式允许运动员穿鲨鱼皮泳衣参赛。(2010年禁止使 用)
鲨鱼皮泳衣:仿造鲨鱼皮结构,表面结构模仿V形皱褶,纵向排列V
形纹理。包裹了全身的泳衣有效地降低了水流和皮肤的摩擦力。采用 超声缝合技术,做到完全密封,无针脚。表面覆盖聚亚安酯,减小摩擦 增大浮力
效果:鲨鱼皮泳衣能降10%的水中阻力减少5%的氧消耗,提高2%的
成绩 。
3.2 自愈合混凝土
1976年唐山地震
20年来,人们已经成功把木,骨和韧带的力学性能及其结构应用到 聚合物和符合材料等方面。对仿生学的研究不在局限于生物方面,仿 生学就被扩展成为一个涉及面非常广的科学,其中仿生学在材料科学 中的分支称为仿生材料学。
1.2 仿生材料定义
仿生材料是一类模仿生物的各种特点或特性而开发的材料,通常 我们把仿照生命系统的运行模式和生物材料的结构规律而设计制造的 人工材料成为仿生材料。
L/O/G/O
Thank You!
Step 2
Step 3
高聚物反应释放水 分与水泥反应
Step 1
多孔(含有粘结剂) 纤维网包埋混凝土。
裂缝发生,纤维断
裂引发反应形成高 聚物。
Step 4 修补完成
3.2.1.2多孔纤维网修复法
试验将空心玻璃纤维中注入高分子溶液作 为粘结剂, 埋入混凝土中,荷载导致修复纤 维开裂并释放粘结剂进入混凝土基体
羟基磷灰石生物陶瓷材料 涂层生物陶瓷材料
2.2 组织工程材料
组织工程材料是由于替代某些生物体组织器官或恢复、维持 以及改善其功能的一类仿生材料。
应用类型
植入装置 体外装置 原位生长和修复
举例
人工血管 骨和软骨 人工胰脏 甲状腺 肾上腺
生物人工肝 神经再生 人工皮肤
Step 1
Step 2
Step 1 Step 2 Step 3
将内含粘结剂的空心胶囊包埋在混凝土中。 裂缝发生,胶囊破裂,释放粘结剂。 修复裂纹。
Step 3
3.2.1.2多孔纤维网修复法
在含有单聚物的磷酸钙水泥基 材中加人多孔的编制纤维网。一旦 混凝土在外力作用下发生开裂,部 分纤维网破裂,粘结液流出深入裂 缝,粘结液可使混凝愈合。