材料热稳定性的测定
热稳定剂热稳定性能评价的相关标准

聚氯乙烯热稳定剂热稳定性能评价及相关标准聚氯乙烯(PVC) 由于分子链上存在叔碳氯原子、烯丙基氯原子等不稳定氯原子,受热时容易分解。
为保证PVC配混料具有良好的加工性能和赋于PVC制品合宜的使用性能,就必须在PVC配混料中加入热稳定剂,以保证加工和再加工过程能够顺利进行, 并满足制品在受热环境下的使用要求。
-. 热稳定性分类热稳定性是热稳定剂的最基本功能, 从使用要求看,热稳定性能可分为初期热稳定性、长期热稳定性和残余热稳定性。
初期热稳定性也称初期变色性,或称颜色保持稳定性(Color-Hold Stability),它是保证任一生产周期内,同一PVC制品自始至终的颜色稳定性,以及不同生产周期间,该PVC制品的色差保持在可允许范围内的热稳定性。
长期热稳定性则是保证在生产过程中,因某些偶然故障造成生产不能顺利进行,导致PVC物料虽已分解变色, 但不致于停机清理模具或螺杆的热稳定性。
而所谓残余热稳定性, 是满足制品在受热环境下的使用要求的稳定性, 也就是说,当以PVC制成品作为试样时, 对其所评价的热稳定性就是残余热稳定性。
从测试方法看,热稳定性能可分为静态热稳定性和动态热稳定性。
静态热稳定性是指在只有热或在热和空气的共同作用下, 热稳定剂阻滞PVC热分解的能力。
动态热稳定性是指在热、空气和剪切力的共同作用下,热稳定剂抵抗PVC热分解的能力。
现行测试热稳定性能的相关标准见表1。
表1 有关标准及其所采用的相关标准二. 热稳定性评价1.静态热稳定性PVC配混料在加工或再加工过程都会在较高温度的设备中停留-定时间, PVC制品在使用过程中也会经受-定的环境温度, 这就要求热稳定剂能赋予PVC以合适的静态热稳定性。
根据PVC热分解导致物料颜色变化或释放出氯化氢的特征, 建立了变色法和脱氯化氢法两类评价静态热稳定性的方法。
1 变色法测定变色法的国家标准是GB/T 9349—2002 《聚氯乙烯、相关含氯均聚物和共聚物及其共混物热稳定性的测定变色法》。
材料热学性能之材料的热稳定性

• 这一现象按强度-应力理论就不能解释。应 从断裂力学观点出发,以应变能一断裂能为判 据的理论。
书山有路勤为径, 学海无涯苦作舟
•2.抗热应力损伤因子R″′ 、R″″
• 对于通常在对流及辐射传热条件下观察到的比较低的 表面传热系数,S.S.Manson发现 [ ]max=0.31 。即
•
,另
,
•令
所以
书山有路勤为径, 学海无涯苦作舟
——第二热应力因子(J/(cm·s)),
见图3.17。
书山有路勤为径, 学海无涯苦作舟
• 3.冷却速率引起材料中 的温度梯度及热应力
见图3.15。
书山有路勤为径, 学海无涯苦作舟
根据广义虎克定律:
解得:
• 在t=0的瞬间,
,如果此时达到材料
的极限抗拉强度σf,则前后二表面将开裂破坏,代入上 式:
书山有路勤为径, 学海无涯苦作舟
•对于其它非平面薄板状材料制品
•式中:S=形状因子(shape factor),μ=泊松比。
•三、抗热冲击断裂性能
书山有路勤为径, 学海无涯苦作舟
• 当平板表面以恒定速率 冷却时,温度分布呈抛物线
,表面Ts比平均温度Ta低, 表面产生张应力σ+,中心温 度Tc比Ta高,所以中心是压 应力σ-。假如样品处于加热 过程,则情况正好相反。
• 实际无机材料受三向热应力,三个方向都会有涨缩 ,而且互相影响,下面分析一陶瓷薄板的热应力状态,
书山有路勤为径, 学海无涯苦作舟
• 例如,一块玻璃平板从373K的沸水中掉入273K的 冰水溶中,假设表面层在瞬间降到273K,则表面层趋 于的收缩,然而,此时内层还保留在373K,并无收缩 ,这样,在表面层就产生了一个张应力。而内层有一 相应的压应力,其后由于内层温度不断下降,材料中 热应力逐渐减小,见图3.14。
复合材料的热稳定性与性能评估

复合材料的热稳定性与性能评估在当今的材料科学领域,复合材料因其独特的性能组合而备受关注。
其中,热稳定性是评估复合材料性能的关键指标之一。
热稳定性不仅关系到复合材料在高温环境下的使用安全性和可靠性,还对其在各种应用中的性能表现产生重要影响。
复合材料通常由两种或两种以上不同性质的材料组成,通过特定的工艺方法结合在一起,从而获得单一材料所不具备的优异性能。
常见的复合材料包括纤维增强复合材料(如碳纤维增强复合材料、玻璃纤维增强复合材料)、颗粒增强复合材料(如碳化硅颗粒增强铝基复合材料)以及层状复合材料等。
热稳定性在复合材料中的重要性不言而喻。
当复合材料暴露在高温环境中时,可能会发生一系列物理和化学变化,如热膨胀、热分解、氧化等。
这些变化会导致材料的性能下降,甚至失效。
例如,在航空航天领域,飞机发动机部件所使用的复合材料需要在高温、高压和高速的恶劣环境下稳定工作,如果热稳定性不足,可能会引发严重的安全事故。
在电子领域,集成电路封装所使用的复合材料需要具备良好的热稳定性,以保证电子元件的正常运行和长寿命。
那么,如何评估复合材料的热稳定性呢?这需要综合考虑多个因素,并采用一系列的测试方法和分析手段。
热重分析(TGA)是一种常用的评估方法。
通过测量材料在加热过程中的质量变化,可以了解材料的热分解温度、分解速率以及残留质量等信息。
例如,对于聚合物基复合材料,可以通过 TGA 确定聚合物基体的分解温度和分解过程,从而评估其热稳定性。
差示扫描量热法(DSC)也是重要的评估手段之一。
它可以测量材料在加热或冷却过程中的热量变化,从而确定材料的玻璃化转变温度、结晶温度和熔融温度等。
这些温度参数对于评估复合材料的热稳定性和使用温度范围具有重要意义。
热膨胀系数的测定也是必不可少的。
复合材料在受热时会发生膨胀,热膨胀系数过大可能会导致材料在温度变化时产生内应力,从而影响其性能和寿命。
通过热机械分析(TMA)等方法可以准确测量复合材料的热膨胀系数。
(整理)GB19466《塑料原料的热稳定性测定 氧化诱导期法》编制说明

《塑料原料的热稳定性测定氧化诱导期法》编制说明1. 制标任务来源本标准系国家认证认可监督管理委员会2007年标准制修订项目计划2007B050《塑料原料的热稳定性测定氧化诱导期法》,现已完成。
2. 标准制定的目的、意义塑料是中国四大基础建材之一。
我国是塑料制品的生产和消费大国。
塑料在国民经济和日常生活中得到了广泛应用,市场空间十分广阔,尤其是电子电器、交通运输及建筑业的发展对塑料零部件和各种制品提出越来越高的要求,迫使塑料的产业升级和产品的更新换代,塑料实现高性价比、节能、环保及使用安全。
因此,塑料行业作为朝阳产业,仍有很大的发展空间。
聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)、丙烯睛一丁二烯一苯乙烯共聚物(ABS)并称世界五大通用树脂,在塑料行业中占有重要地位,今年在中国的市场需求增速最高的有望达到2.1%。
聚烯烃材料具有相对密度小、耐化学药品性、耐水性好;良好的机械强度、电绝缘性等特点。
可用于薄膜、管材、板材、各种成型制品、电线电缆等。
在农业、包装、电子、电气、汽车、机械、日用杂品等方面有广泛的用途。
2009年5月出台的《石化产业调整和振兴规划》为乙烯产业带来了新的发展发展机遇,根据规划,到2011年,我国乙烯产量将达到1550万吨,届时自给率将大幅度提高。
另有分析指出,随着下游需求的增长,预计到2015年,我国乙烯表观需求量达2200万吨,2020年达2600万吨,我国塑料原料树脂将有较快增长,合成树脂将随之大幅度增加,为塑料制品工业发展提供充足的原料基础。
需要特别关注的是,塑料材料在贮存、加工和日常使用中受光、热和氧气等的作用,极易引起高分子材料的老化反应,使材料的物理机械性能变坏,缩短使用寿命。
因此在塑料的新产品开发和性能测试中正确评价抗氧剂添加的效果具有重要的意义。
而氧化诱导时间和氧化诱导温度本身可作为高聚物热氧化稳定性的一种度量,近年来广泛被采用。
随着测试技术和测试仪器的发展,采用差示扫描量热法(DSC)测定材料氧化诱导时间和氧化诱导温度已成为评价塑料热稳定性的重要方法。
材料的热稳定性

中的σ 中的σ
用弹性应变释放率G表示。 用弹性应变释放率G表示。
πcσ 2 将,G = E
R′ = GE
即 σ=
GE πc
代入第二热应力
断裂抵抗因子表示式,得: 断裂抵抗因子表示式,
λ 1 G λ × (1 − µ ) = × (1 − µ ) πc Eα πc E α G λ 表达裂纹抗破坏的能力。 表达裂纹抗破坏的能力。 × E α
式中:2γeff为断裂表面能(J/m2)。 R″′ 实际上是材料的弹性应变能释放率的倒数, 用来比较具有相同断裂表面能的材料。 R″″ 用来比较具有不同断裂表面能的材料。 R″′ 或R″″ 值高的材料抗热应力损伤性好。
3.裂纹安定性因子
D.P.H.Hasselman曾试图统一上述二种理论。 Hasselman曾试图统一上述二种理论。 曾试图统一上述二种理论
(3)高温陶瓷热稳定性的评定及测试方法
高温陶瓷材料是以加热到一定温度后, 高温陶瓷材料是以加热到一定温度后 , 在水中 急冷, 急冷 , 然后测其抗折强度的损失率来评定它的热 稳定性。 稳定性。
二、热应力
式中:σ=内应力(thermal stress),E=弹性模量 (elastic modulus),α=热膨胀系数(heat expansion coefficient), =弹性应变(elastic strain)。
1.抗热应力断裂抵抗因子的局限性
抗热冲击断裂是从热弹性力学的观点出发, 以强度-应力为判据,认为材料中热应力达到抗 张强度极限后,材料就产生开裂,一旦有裂纹 成核就会导致材料的完全破坏。 而实际上有些材料在热冲击下产生裂纹,即 使裂纹是从表面开始,在裂纹的瞬时扩张过程 中也可能被微孔、晶界或金属相所阻止,而不 致引起材料的完全断裂。 这一现象按强度-应力理论就不能解释。应从 断裂力学观点出发,以应变能一断裂能为判据 的理论。
GB19466《塑料原料的热稳定性测定 氧化诱导期法》编制说明

《塑料原料的热稳定性测定氧化诱导期法》编制说明1. 制标任务来源本标准系国家认证认可监督管理委员会2007年标准制修订项目计划2007B050《塑料原料的热稳定性测定氧化诱导期法》,现已完成。
2. 标准制定的目的、意义塑料是中国四大基础建材之一。
我国是塑料制品的生产和消费大国。
塑料在国民经济和日常生活中得到了广泛应用,市场空间十分广阔,尤其是电子电器、交通运输及建筑业的发展对塑料零部件和各种制品提出越来越高的要求,迫使塑料的产业升级和产品的更新换代,塑料实现高性价比、节能、环保及使用安全。
因此,塑料行业作为朝阳产业,仍有很大的发展空间。
聚乙烯(PE)、聚丙烯(PP)、聚苯乙烯(PS)、聚氯乙烯(PVC)、丙烯睛一丁二烯一苯乙烯共聚物(ABS)并称世界五大通用树脂,在塑料行业中占有重要地位,今年在中国的市场需求增速最高的有望达到2.1%。
聚烯烃材料具有相对密度小、耐化学药品性、耐水性好;良好的机械强度、电绝缘性等特点。
可用于薄膜、管材、板材、各种成型制品、电线电缆等。
在农业、包装、电子、电气、汽车、机械、日用杂品等方面有广泛的用途。
2009年5月出台的《石化产业调整和振兴规划》为乙烯产业带来了新的发展发展机遇,根据规划,到2011年,我国乙烯产量将达到1550万吨,届时自给率将大幅度提高。
另有分析指出,随着下游需求的增长,预计到2015年,我国乙烯表观需求量达2200万吨,2020年达2600万吨,我国塑料原料树脂将有较快增长,合成树脂将随之大幅度增加,为塑料制品工业发展提供充足的原料基础。
需要特别关注的是,塑料材料在贮存、加工和日常使用中受光、热和氧气等的作用,极易引起高分子材料的老化反应,使材料的物理机械性能变坏,缩短使用寿命。
因此在塑料的新产品开发和性能测试中正确评价抗氧剂添加的效果具有重要的意义。
而氧化诱导时间和氧化诱导温度本身可作为高聚物热氧化稳定性的一种度量,近年来广泛被采用。
随着测试技术和测试仪器的发展,采用差示扫描量热法(DSC)测定材料氧化诱导时间和氧化诱导温度已成为评价塑料热稳定性的重要方法。
化学材料性能测试

化学材料性能测试化学材料性能测试是评估材料在特定条件下的性能和特性的重要手段。
通过对化学材料的性能测试,我们可以得到材料的力学性能、热性能、化学稳定性等相关数据,这些数据对于材料的研究、开发以及相关行业的应用和生产具有重要意义。
一、力学性能测试力学性能测试是评估材料力学特性的关键测试方法之一。
常见的力学性能测试包括拉伸试验、弯曲试验和硬度测试等。
拉伸试验是通过应变和应力之间的关系来评估材料的强度和延展性。
而弯曲试验则用于评估材料的弯曲强度和耐疲劳性。
硬度测试可以测量材料的硬度,从而评估其耐磨性和抗变形性能。
二、热性能测试热性能测试是评估材料热传导、热膨胀和热稳定性等方面性能的关键手段。
常用的热性能测试包括热导率测试、热膨胀系数测试和热稳定性测试等。
热导率测试可以测量材料的热传导能力,对于热导体的选用和热障涂层的研究具有重要意义。
热膨胀系数测试则用于评估材料在温度变化下的尺寸稳定性。
而热稳定性测试可以评估材料在高温环境下的性能和稳定性。
三、化学稳定性测试化学稳定性测试是评估材料在不同化学环境下的稳定性和耐腐蚀性的重要手段。
常见的化学稳定性测试包括酸碱稳定性测试、耐腐蚀性测试和溶解度测试等。
酸碱稳定性测试可以评估材料在酸碱环境下的稳定性和耐久性。
耐腐蚀性测试用于评估材料在特定腐蚀介质下的抗腐蚀性能。
溶解度测试则用于评估材料在不同溶剂中的溶解情况以及溶解性能。
综上所述,化学材料性能测试是评估材料性能和特性的重要手段。
通过力学性能测试、热性能测试和化学稳定性测试等方法,我们可以全面了解材料的性能,为材料研究、开发和应用提供科学依据。
化学材料的性能测试对于材料的品质控制、工艺改进以及相关领域的发展都具有重要的推动作用。
在未来的研究中,我们需要进一步完善化学材料性能测试方法,提高测试的准确性和可靠性,为材料科学和工程领域的进步做出更大的贡献。
以上为化学材料性能测试的简要介绍,希望对您有所帮助!。
化学技术中材料热稳定性的测定方法

化学技术中材料热稳定性的测定方法引言:化学材料的热稳定性是指在高温环境下材料的稳定性能。
在化学工业和材料科学领域,了解材料的热稳定性对于设计和制备高温工艺中的材料至关重要。
本文将介绍化学技术中常用的几种材料热稳定性的测定方法。
一、热重分析法热重分析法是一种常用的材料热稳定性测定方法。
它通过在恒定的加热速率下测量材料的质量变化,来评估材料在高温下的稳定性。
热重仪会将样品加热到一定温度区间,并通过称重系统记录样品的质量变化。
通过分析质量变化曲线,可以确定材料的失重温度、热分解温度等参数,从而评估材料的热稳定性。
二、差示扫描量热法差示扫描量热法是一种通过测量样品在加热过程中吸放热的方法。
这种方法依赖于样品和参比物在同样条件下的热性质差异。
差示扫描量热仪同时对样品和参比物进行加热,通过比较它们之间的热量差异来确定样品的热性能。
该方法常用于研究材料的相变、热分解、燃烧等过程,并通过分析峰值温度、峰值面积等参数来评估材料的热稳定性。
三、热重-差示扫描量热法热重-差示扫描量热法(TG-DSC)是将热重分析法与差示扫描量热法结合起来的一种综合分析方法。
在该方法中,样品通过热重仪进行加热,同时使用差示扫描量热仪对样品和参比物进行热量的测量。
通过综合分析样品的质量变化和热量变化,可以更全面地评估材料的热稳定性。
TG-DSC方法常用于分析材料的热分解机理、热降解路径等,并能提供有关材料热稳定性的综合信息。
四、热氧化法热氧化法是一种通过将材料在高温空气中进行氧化反应来评估其热稳定性的方法。
该方法通常使用恒温炉或氧化炉对材料进行加热,并通过分析样品重量损失、氧化产物等来评估材料的抗氧化性。
热氧化法常用于材料的耐热性评估、氧化降解性研究等领域。
结论:材料热稳定性的测定是化学技术中的重要课题。
热重分析法、差示扫描量热法、热重-差示扫描量热法和热氧化法是常用的测定方法。
通过这些方法能够确定材料在高温环境下的稳定性能并提供相关的热稳定性参数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
材料热稳定性的测定
一、实验目的
1、了解陶瓷测定热稳定性的实际意义。
2、了解影响热稳定性的因素及提高热稳定性的措施。
3、掌握热稳定性的测定原理及测定方法。
二、实验原理
热稳定性(抗热震性)是指陶瓷材料能承受温度剧烈变化而不破坏的性能。
普通陶瓷材料由多种晶体和玻璃相组成,因此在室温下具有脆性,在外应力作用下会突然断裂。
当温度急剧变化时,陶瓷材料也会出现裂纹或损坏。
测定陶瓷的热稳定性可以控制产品的质量,为合理应用提供依据。
陶瓷的热稳定性取决于坯釉料配方的化学成分、矿物组成、相组成、显微结构、坯釉料制备方法、成型条件及烧成制度等工艺因素以及外界环境。
由于陶瓷内外层受热不均匀,坯料与釉料的热膨胀系数差异而引起陶瓷内部产生应力,导致机械强度降低,甚至发生分裂现象。
一般陶瓷的热稳定性与抗张强度成正比,与弹性模量、热膨胀系数成反比。
而导热系数、热容、密度也在不同程度上影响热稳定性。
釉的热稳定性在较大程度上取决于釉的热膨胀系数。
要提高陶瓷的热稳定性首先要提高釉的热稳定性。
陶瓷坯体的热稳定性则取决于玻璃相、莫来石、石英及气孔的相对含量、粒径大小及其分布状况等。
陶瓷制品的热稳定性在很大程度上取决于坯釉的适应性,所以它也是带釉陶瓷抗后期龟裂性的一种反映。
陶瓷热稳定性测定方法一般是把试样加热到一定的温度,接着放入适当温度的水中,判定方法为:
1)根据试样出现裂纹或损坏到一定程度时,所经受的热变换次数;
2)经过一定次数的热冷变换后机械强度降低的程度来决定热稳定性;
3)试样出现裂纹时经受的热冷最大温差来表示试样的热稳定性,温差愈大,热稳定性愈好。
陶瓷热稳定性的测定方法一般是将试样(带釉的瓷片或器皿)置于电炉内逐渐升温到220℃,保温30分钟,迅速将试样投入染有红色的20℃水中10分钟,取出试样擦干,检查有无裂纹。
或将试样置于电炉内逐渐升温,从150℃起,每隔20℃将试样投入20±2℃的水中急冷一次,直至试样表面发现有裂纹为止,并将此不裂的最高温度为衡量瓷器热稳定性的数据。
也有将试样放在100℃沸水中煮半小时到1小时,取出投入不断流动的20℃的水中,取出试样擦干,检查有无裂纹。
如没有裂纹出现,则重复上述试验,直至出现裂纹为止。
记录水煮次数,以作为衡量瓷器热稳定性的数据。
热交换次数越多,说明该陶瓷样品的热稳定性越好。
本实验采用前面两种方法来测定试样的热稳定性。
三、实验仪器与材料
1、实验仪器:普通陶瓷热稳定性测定仪(由加热炉体、恒温水槽、送试样机构、控温仪表四部分组成)、万能材料试验机。
2、实验材料:市场购买的瓷砖样品、红墨水或黑墨水。
四、实验步骤
(一)方法一
1、检查被测定的样品完好无损;
2、将被测定的样品放入干燥箱中,设定干燥箱温度与室内温度相差150℃,并保温20分钟;
3、将试样取出迅速投入室温下的水中急冷,保持5分钟;
4、将水中的试样取出,并观察是否有裂纹,若无裂纹,将样品继续放入干燥箱中,然后继续重复前面操作,直到样品出现裂纹为止,记录此时样品所经受的热变换次数。
(一)方法二
1、检查被测定的样品完好无损;
2、将被测定的样品放入干燥箱中,设定干燥箱温度与室内温度相差150℃,并保温20分钟;
3、将试样取出迅速投入室温下的水中急冷,保持5分钟;
4、将水中的试样取出,取部分样品进行抗弯强度的测试,其余的样品继续重复前面操作。
直至剩余样品全部出现裂纹即强度性能测试停止。
5、每次做3~5个测试,取平均值作为测试结果。
五、记录与计算
1、以表格的形式做好相关实验数据记录。
2、对实验结果绘制相应的曲线图及其进行相应的分析。
六、思考题
1、影响测定材料热稳定性的因素及防止措施?
2、影响陶瓷材料热稳定性的因素有哪些?。