红外光谱法及其应用

合集下载

药物分析中红外光谱法的应用

药物分析中红外光谱法的应用

药物分析中红外光谱法的应用红外光谱法是一种常见的药物分析技术,它通过检测药物分子在红外光区域的吸收和散射来进行分析。

红外光谱法具有非破坏性、快速、准确等特点,在药物研发、生产和质量控制等领域具有广泛的应用。

本文将探讨红外光谱法在药物分析中的应用,包括药物成分的鉴别、含量分析和质量评估等方面。

一、药物成分的鉴别红外光谱法可以帮助鉴别药物中的成分,特别是对于复杂的多成分药物来说。

通过测量样品在红外光谱区域的吸收和散射情况,可以得到红外光谱图,进而进行鉴别分析。

每种药物分子都有特定的红外光谱图,可以作为鉴别的基础。

不同药物的红外光谱图在吸收峰的频率、强度和形状上存在差异,通过对比样品和标准品的光谱特征,可以快速准确地判别药物的真伪和成分的相似性。

二、药物含量分析红外光谱法还可以用于药物的含量分析。

药物中各个成分的含量与其在红外光谱区域的吸收和散射强度有关。

通过建立标准曲线,测量样品在红外光谱区域的吸收峰高度或面积,再与标准品进行比较,可以计算出样品中各个成分的含量。

红外光谱法对于一些含量较低的成分或者特定药物成分的分析具有较好的灵敏度和选择性,可以有效地进行含量分析。

三、药物质量评估药物的质量评估是药物分析中重要的一环,红外光谱法可以用于对药物质量的评估。

通过测量药物样品的红外光谱图,可以分析药物的化学组成、结构特征和纯度等信息。

药物样品的红外光谱图可以与标准品进行比较,判断样品的质量是否符合要求。

红外光谱法还可以检测样品中的杂质或掺假成分,对于确保药物的安全性和质量稳定性具有重要意义。

四、红外光谱法与其他分析方法的比较红外光谱法与其他分析方法相比具有一些独特的优势。

首先,红外光谱法是非破坏性的,可以在不破坏样品的情况下进行分析。

其次,红外光谱法快速准确,可以在短时间内获取药物样品的红外光谱图,并进行分析。

此外,红外光谱法对样品的要求相对较低,不需要复杂的前处理过程,适用于常规的药物分析需求。

综上所述,红外光谱法在药物分析中具有广泛的应用前景。

红外光谱分析技术的应用前景

红外光谱分析技术的应用前景

红外光谱分析技术的应用前景引言:红外光谱分析技术是一种非常重要的分析方法,具有广泛的应用领域。

本文将探讨红外光谱分析技术的应用前景及其在不同领域中的具体应用。

1. 红外光谱分析技术的基本原理红外光谱分析技术是通过测量物质与红外辐射的相互作用来获取物质的结构及性质信息。

其基本原理是物质分子在受到红外辐射后,会发生特定的振动和转动,从而产生特定波长的红外光谱。

通过测量这些红外辐射的吸收光谱,可以确定物质的组成和结构。

2. 红外光谱分析技术的应用领域2.1 化学领域红外光谱分析技术在化学领域中得到广泛应用。

它可以用于分析有机化合物、高分子材料和无机材料等。

通过红外光谱分析,我们可以确定化合物的结构、官能团以及分子间的相互作用,从而对其性质进行准确的解析和判断。

2.2 药学领域在药学领域中,红外光谱分析技术被用于药物的质量控制和研究。

通过红外光谱分析,可以对药物的成分进行定性和定量的分析,判断其纯度和稳定性,并提供可靠的药物质量评估标准。

2.3 环境保护领域红外光谱分析技术在环境保护领域中具有重要意义。

它可以用于检测和分析环境中的有机物、无机物和污染物等。

通过红外光谱分析,可以准确鉴定和定量分析环境中的各种有害物质,为环境保护提供科学依据。

2.4 食品科学领域红外光谱分析技术在食品科学领域中也有广泛应用。

它可以用于食品的成分分析、品质评价和检测等。

通过红外光谱分析,可以精确分析食品中的脂肪、蛋白质、糖类等成分,从而为食品质量控制和食品安全提供重要参考。

3. 红外光谱分析技术的发展趋势随着科技的不断进步,红外光谱分析技术也在不断发展壮大。

具体体现在以下几个方面:3.1 仪器设备的改进随着光学技术和计算机技术的发展,红外光谱分析仪器设备将更加精密和高效。

仪器的分辨率和准确度将进一步提高,数据处理和谱图解析将更加智能化和自动化,使得红外光谱分析技术更加易于应用和操作。

3.2 数据库的建设建立和更新红外光谱数据库是红外光谱分析技术发展的重要方向。

红外光谱法的特点和应用1

红外光谱法的特点和应用1

红外光谱法的特点和应用1.红外光谱法的一般特点特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大2.对样品的要求①试样纯度应大于98%,或者符合商业规格Ø这样才便于与纯化合物的标准光谱或商业光谱进行对照Ø多组份试样应预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱互相重叠,难予解析②试样不应含水(结晶水或游离水)水有红外吸收,与羟基峰干扰,而且会侵蚀吸收池的盐窗。

所用试样应当经过干燥处理③试样浓度和厚度要适当使最强吸收透光度在5~20%之间 3.定性分析和结构分析红外光谱具有鲜明的特征性,其谱带的数目、位置、形状和强度都随化合物不同而各不相同。

因此,红外光谱法是定性鉴定和结构分析的有力工具①已知物的鉴定将试样的谱图与标准品测得的谱图相对照,或者与文献上的标准谱图(例如《药品红外光谱图集》、Sadtler标准光谱、Sadtler商业光谱等)相对照,即可定性使用文献上的谱图应当注意:试样的物态、结晶形状、溶剂、测定条件以及所用仪器类型均应与标准谱图相同②未知物的鉴定未知物如果不是新化合物,标准光谱己有收载的,可有两种方法来查对标准光谱:A.利用标准光谱的谱带索引,寻找标准光谱中与试样光谱吸收带相同的谱图B.进行光谱解析,判断试样可能的结构。

然后由化学分类索引查找标准光谱对照核实解析光谱之前的准备:Ø了解试样的来源以估计其可能的范围Ø测定试样的物理常数如熔沸点、溶解度、折光率、旋光率等作为定性的旁证Ø根据元素分析及分子量的测定,求出分子式Ø计算化合物的不饱和度Ω,用以估计结构并验证光谱解析结果的合理性解析光谱的程序一般为:A.从特征区的最强谱带入手,推测未知物可能含有的基团,判断不可能含有的基团B.用指纹区的谱带验证,找出可能含有基团的相关峰,用一组相关峰来确认一个基团的存在C.对于简单化合物,确认几个基团之后,便可初步确定分子结构 D.查对标准光谱核实③新化合物的结构分析红外光谱主要提供官能团的结构信息,对于复杂化合物,尤其是新化合物,单靠红外光谱不能解决问题,需要与紫外光谱、质谱和核磁共振等分析手段互相配合,进行综合光谱解析,才能确定分子结构。

红外光谱的原理及应用综述

红外光谱的原理及应用综述

红外光谱分析基本原理及应用摘要红外光谱分析技术具有很快速,非破坏性,低成本及同时测定多种成分等特点,在很多领域得到了广泛应用。

本文介绍了红外光谱技术的检测原理,红外光谱仪的构造,指出了其检测的优点与不足。

综述了红外光谱法的发展、应用以及对红外光谱研究前景的展望.关键词: 红外光谱原理构造发展1。

引言红外光谱法(infrared spectrometry,IR)是根据物质对红外辐射的选择性吸收特性而建立起来的一种光谱分析方法.分子吸收红外辐射后发生振动和转动能级跃迁。

所以,红外光谱法实质是根据分子内部振动原子间的相对振动和分子转动等信息来鉴别化合物和确定物质分子结构的分析方法.2。

红外光谱分析的基本原理2.1 红外光谱产生的条件物质分子吸收红外辐射发生振动和转动能级跃迁,必须满足以下两个条件:一是辐射光子的能量与发生转动和转动能级跃迁所需的能量相等;二是分子转动必须伴随有偶极距的变化,辐射与物质间必须有相互作用。

2.2 红外吸收光谱的表示方法红外吸收光谱一般用T_σ曲线或T_λ曲线来表示,λ与σ的关系式为:σ(cm-1)=1/λ(cm)=10^4/λ(μm)2.3 分子的振动与红外吸收2。

3.1 双原子分子的振动若把双原子分子(A—B)的两个原子看成质量分别为M1,M2的两个小球,中间的化学键看做不计质量的弹簧,那么原子在平衡位置附近的伸缩振动可以近似地看成沿键轴方向的简谐振动.量子力学证明,分子振动的总能量为:E=(u+1/2)hv当分子发生△v=1 的振动能级跃迁时(由基态跃迁到第一激发态)根据胡克(Hooke)定律它所吸收的红外光波数σ为:σ=(1/2пc)√(k/μ)其中:c—光速,3×10^8cm/s;k—化学键力常数N/cm;μ—两个原子的折合质量,g,μ=(m1。

m2)/(m1+m2)显然,振动频率σ与化学键力常数k成正比,与两个原子的折合质量成反比。

不同化合物k和μ不同,所以不同化合物有自己的特征红外光谱。

红外分光光度法

红外分光光度法

红外光谱法红外光谱法又称“红外分光光度分析法”。

简称“IR”,分子吸收光谱的一种。

利用物质对红外光区的电磁辐射的选择性吸收来进行结构分析及对各种吸收红外光的化合物的定性和定量分析的一法。

红外光谱法的一般特点特征性强、测定快速、不破坏试样、试样用量少、操作简便、能分析各种状态的试样、分析灵敏度较低、定量分析误差较大。

红外光谱法的应用1.定性分析和结构分析红外光谱具有鲜明的特征性,其谱带的数目、位置、形状和强度都随化合物不同而各不相同。

因此,红外光谱法是定性鉴定和结构分析的有力工具2.定量分析红外光谱法对试样的要求红外光谱的试样可以是液体、固体或气体,一般应要求:(1)试样应该是单一组份的纯物质,纯度应>98%或符合商业规格才便于与纯物质的标准光谱进行对照。

多组份试样应在测定前尽量预先用分馏、萃取、重结晶或色谱法进行分离提纯,否则各组份光谱相互重叠,难于判断。

(2)试样中不应含有游离水。

水本身有红外吸收,会严重干扰样品谱,而且会侵蚀吸收池的盐窗。

(3)试样的浓度和测试厚度应选择适当,以使光谱图中的大多数吸收峰的透射比处于10%~80%范围内。

目前主要有两类红外光谱仪:色散型红外光谱仪和傅立叶变换红外光谱仪。

一、色散型红外光谱仪1 . 光源红外光谱仪中所用的光源通常是一种惰性固体,同电加热使之发射高强度的连续红外辐射。

常用的是Nernst灯或硅碳棒。

Nernst灯是用氧化锆、氧化钇和氧化钍烧结而成的中空棒和实心棒。

工作温度约为1700℃,在此高温下导电并发射红外线。

但在室温下是非导体,因此,在工作之前要预热。

它的特点是发射强度高,使用寿命长,稳定性较好。

缺点是价格地硅碳棒贵,机械强度差,操作不如硅碳棒方便。

硅碳棒是由碳化硅烧结而成,工作温度在1200-1500℃。

2 . 吸收池因玻璃、石英等材料不能透过红外光,红外吸收池要用可透过红外光的NaCl、KBr、CsI、KRS-5(TlI 58%,TlBr42%)等材料制成窗片。

红外光谱技术在化学研究中的应用

红外光谱技术在化学研究中的应用

红外光谱技术在化学研究中的应用红外光谱技术是一种利用物质分子与红外辐射相互作用来确定物质的化学成分和结构的方法。

红外光谱法可以用来确定化学物质的组成和结构,并可以用来检测物质的化学反应和协同作用。

这种技术广泛用于各种化学研究中,并被广泛应用于环境、农业、医学和材料科学等领域。

红外光谱技术的原理红外光谱技术是一种分析光学技术,在这种技术中,分子相互作用的离散吸收峰会转换为、红外光谱图,从而提供化学组分、电子状态、桥接结构和分子运动的信息。

红外光谱技术中所谓的红外光谱是指物质中分子与红外辐射的相互作用信息的记录图表。

分子中原子的余震会通过吸收特定红外波长的光而发生振动。

在红外光谱中,穿过化学物质的光通过红外区域,从而使物质中存在的分子振动。

当化学物质在红外辐射下振动时,会发生红外光谱的特殊吸收。

这种吸收是由于分子吸收红外光的振动而引起的。

红外光谱在化学研究中的应用红外光谱技术广泛用于化学分析和研究,可提供从表面到内部的详细结构信息。

通过比较与基准谱,红外光谱法可以用来确定化学物质的分子结构和特定化学键的存在情况。

下面分析红外光谱技术在化学研究中的应用。

有机化学领域红外光谱对于有机化学研究非常重要。

通过测定红外图谱,可以推断出分子中的官能团、键类型和取代基的位置。

这种技术经常用于针对有机化合物的结构和组成进行分析和确定,红外光谱可以计算出分子结构和表征语境中生物分子的特征。

这种技术不仅对于有机化学研究非常重要,在药物研发中也发挥着无法替代的作用。

材料分析领域红外光谱广泛应用于材料分析领域,可以用于分析材料的组成和结构。

材料中的各种微观结构可以通过红外光谱法准确分析,包括化学品、塑料材料、涂料、表面活性剂和生物材料等。

通过红外光谱技术,可以分析材料的形状和组成,进一步提高材料性能,从而实现高效率、高性能和高标准的应用。

环境科学领域红外光谱在环境监测中也有广泛的应用。

通过红外光谱技术,可以实时分析空气、水和土地中的溶质。

红外光谱分析技术及其应用

红外光谱分析技术及其应用

红外光谱分析技术及其应用红外光谱是一种被广泛应用于分析化学和材料科学领域的技术。

该技术通过测量物质在红外区域的光吸收和散射来研究物质的结构和成分。

红外光谱分析技术在药物研发、环境监测、食品安全等众多领域都有重要应用。

本文将从红外光谱的原理、仪器设备以及应用领域等方面进行论述。

一、红外光谱的原理红外光谱分析是利用物体对红外辐射的吸收特性来研究物质的结构和成分。

物体中的化学键(如C-H、O-H等)能够在特定波长的红外光下发生共振吸收。

通过对吸收光谱的测定和解释,可以确定物质中存在的官能团以及分子结构。

红外光谱技术作为一种非破坏性的分析方法,对于固体、液体、气体等不同状态的物质都有适用性。

二、红外光谱仪的设备红外光谱仪是进行红外光谱分析的关键设备。

它由光源、样品区、光学元件、光谱仪和探测器等部分组成。

光源通常采用红外线辐射源,如热辐射源或者红外激光器。

样品区是红外光谱仪中样品放置的区域,通常采用透明的窗口材料,如钠氯化物盘、锂氟化镁片等。

光学元件的作用是将红外光束聚焦到样品上,并将经过样品的光线收集和分散。

常用的红外光学元件有平面反射镜、棱镜和光栅等。

其中,平面反射镜常用于固体样品的测量,棱镜和光栅常用于液体样品或气体样品的测量。

光谱仪用于解析红外光谱仪所收集到的光信号。

常见的光谱仪包括单色仪、分光仪和差分光谱仪等。

探测器用于将光信号转化为电信号,以供进一步的处理和分析。

常用的探测器有热电偶、焦平面阵列和光电二极管等。

三、红外光谱分析的应用红外光谱分析技术在各个领域都有广泛的应用。

以下将介绍几个常见的应用领域。

1. 化学领域:红外光谱分析技术在化学合成、反应动力学、物质结构以及化学品的成分分析中起到关键作用。

通过红外光谱分析,可以快速准确地确定化合物的官能团和分子结构,推测反应机理,并进行催化剂的表征。

2. 药物研发:红外光谱分析在药物研发过程中具有重要意义。

通过红外光谱分析,可以对药物中的活性成分、溶剂残留、纯度、晶型等进行检测和分析,保证药物的质量和安全性。

红外反射光谱的原理和应用

红外反射光谱的原理和应用

红外反射光谱的原理和应用1. 概述红外反射光谱是一种常用的非破坏性表征材料特性的技术,通过测量材料在红外波段的反射能力,可以获得材料的结构、成分、表面特性等信息。

本文将介绍红外反射光谱的原理以及其在各个领域的应用。

2. 原理红外反射光谱的原理基于材料对红外辐射的吸收和反射。

当红外辐射照射到材料表面时,一部分能量被材料吸收,一部分能量被材料反射。

吸收和反射的能量在不同波数下表现出不同的特征,通过分析这些特征可以了解材料的性质。

3. 红外反射光谱的方法红外反射光谱的方法主要包括FT-IR反射光谱法和ATR(全反射法)。

3.1 FT-IR反射光谱法FT-IR反射光谱法是一种基于菲涅耳反射定律的方法,通过测量被测物料表面的反射光强来获取红外光谱图。

在实验中,通过将样品与金刚石压片接触,利用光学原理和光学组件将反射光转换成可观测的信号,进而进行数据分析。

3.2 ATR反射光谱法ATR反射光谱法是一种全反射原理的方法,通过将样品与一块具有高折射率晶体(例如锗或气体)的特殊棱镜接触,在样品与棱镜的接触界面上产生一定的入射角,并利用全反射现象来测量样品的红外光谱。

4. 红外反射光谱的应用红外反射光谱在各个领域都具有广泛的应用,以下列举了其中的几个应用领域。

4.1 材料科学红外反射光谱可用于分析和鉴定材料的成分、结构和表面状态。

在材料科学领域中,可以通过红外反射光谱来研究材料的晶体结构、氧化还原状态以及表面的化学反应等。

4.2 生物医学红外反射光谱在生物医学领域中被广泛应用于研究生物分子的结构和功能。

通过红外反射光谱技术,可以对生物蛋白质、核酸和药物等进行分析,从而加深对生物体的理解。

4.3 环境监测红外反射光谱可以应用于环境监测领域,通过对大气中气体的红外反射光谱进行分析,可以检测到悬浮颗粒物、有机物、大气污染物等。

4.4 食品安全红外反射光谱可以用于检测食品中的添加剂、污染物和成分分析。

通过对食品样品的红外光谱进行测量和分析,可以实现食品质量和安全性的监测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(2)峰数与分子自由度有关.一个有n个原子组成的分子 其分子的基本振动(简正振动)数为3n-6,直线型分子为 3n-5,一般观察到的振动要少于简正振动,原因是: a分子的对称性,无瞬间偶基距变化时,无红外吸收; b两个或多个振动的能量相同时,产生简并。 c吸收峰强度太弱 d仪器测量波长范围窄
(3)峰强:
(二)分子振动频率方程式
1.双原子分子的简谐振动及其频率
分子是由各种原子以化学键相互连接而成,以双原子分子
为例,将分子看作一个简单的谐振子,假设化学键为失重
弹簧,化学键的振动类似于连接两个小球的弹簧,根据经 典力学原理,简谐振动遵循虎克定律。双原子分子只有沿 化学键的一种振动方式,当分子振动时,化学键的电荷分 布发生改变,若两个原子不同,分子的电荷中心于两个原 子核同步振荡,分子仿佛一个振荡的电偶极子,当偶极受 到连续波长的红外光照射时,分子可吸收某些波长的红外 光从而增大分子的振动能量,所吸收的红外光的频率与该 分子的振动能级一致。
红外光谱是由分子振动能级的跃迁而产生,但并不是 所有的振动能级的跃迁都能在红外光谱中产生吸收,物质 吸收红外光发生振动和转动能级跃迁必须满足两个条件: 1.辐射应具有能满足物质产生振动跃迁所需的能量; 2.分子振动时偶极矩的大小和方向必须有一定的变化,即 具有偶极矩变化的分子振动是红外活性振动。 。对称分子:没有偶极矩,辐射不能引起共振,无红外活 性。 如:N2、O2、Cl2 等。 非对称分子:有偶极矩,红外活性
作来回周期伸缩运动,键长发生变化而键角不 变 ,它又可分为对称与非对称伸缩
变形振动:原子垂直与价键方向的运动 ,基
团键角发生周期变化而键长不变,包括剪式
振动、平面摇摆、非平面摇摆以及扭曲振动。
亚甲基变形振动
亚甲基伸缩振动:
例2CO2分子 例1 水分子
2.峰位、峰数与峰强
(1)峰位:化学键的力常数K越大,原子折合质量越小, 键的振动频率越大,吸收峰将出现在高波数区(短波长 区);反之,出现在低波数区(高波长区)
化学键键能越强(即键的力常数K越大)原子折合质量 越小,化学键的振动频率越大,吸收峰将出现在高波数区。
例题: 由表中查知C=C键的K=9.5 ∼ 9.9 ,令其为9.6, 计算波数值
正己烯中C=C键伸缩振动频率实测值为1652 cm-1
(三)分子中基团的基本振动形式
1.两类基本振动形式 伸缩振动:指化学键两端的原子沿键轴方向
(二)分子振动频率方程式
分子的振动能级(量子化): E振=(V+1/2)hν V :化学键的 振动频率; ν:振动量子数。
任意两个相邻的能级间的能量差为: K化学键的力常数,与键能和键长有关,
μ为双原子的折合质量=m1m2/(m1+m2)
发生振动能级跃迁需要能量的大小取决于键两端原子的折合 质量和键的力常数,即取决于分子的结构特征
•υ (cm-1) =104/λ(μm),可以用峰数,峰位,峰形,峰 强来描述。
红外光谱法的划分及特点
红外区的划分
区域
λ/um σ/cm-1
能级跃迁类型
近红外区 0.75~2.5
中红外区 2.5~25 远红外区 25~1000
13300~4000 主要用于研究O-H、N-H、C -H键的的倍频和组合频吸收
红外光谱与有机化合物结构
红外光谱图:当用一束具有连续波长红外光照射物质时,该 物质的分子就会吸收一定波长的红外光的光能,并转化为分 子的振动能量和转动能量。以波长或波数为为横坐标,以百 分透过率或吸收率为纵坐标,记录其吸收曲线,即得到该物 质的红外吸收光谱。
红外光谱图: 纵坐标为吸收强度,横坐标为波长(λ μm )或波数1/λ 单位:cm-1,波长和波数的关系:
红外光谱法及其应用
• 一、红外光谱法的基本原理 • 二、红外分光光度计 • 三、红外光谱与分子结构的关系 • 四、红外谱图解析一般步骤
红外光谱的概述
红外光谱:系指2~25um之间的吸收光谱,分子中基团 的振动和转动能级跃迁产生的:振-转光谱,
光辐射→分子振动能级跃迁→红外光谱→官能团→分子结构
双原子分子的能级跃迁示意图
基频、倍频、振动的耦合
(4)由基态跃迁到第一激发态,产生一个强的吸收峰,基 频峰;
(5)由基态直接跃迁到第二、第三…激发态,产生一个弱 的吸收峰,倍频峰;
(6)振动的耦合:两个基团相邻且振动基频相差不大时,会 产生振动耦合,发生峰的裂分,偏离基频,一个移向高频, 一个移向低频。
费米共振:当倍频或组合频与某基频相近时,由于其相互作 用而产生的吸收带或发生的峰的裂分现象,称为费米共振
• 红外吸收峰的强度与分子振动时偶极矩变化值的平方成正 比,因此振动时瞬间偶极距变化越大,吸收峰越强;而偶 极矩由于分子结构的对称性有关,振动的对称性越高,偶 极矩变化就越小,谱带强度就越弱。因此键两端原子电负 性相差越大(极性越大),吸收峰越强;
• 问题:C=O 强;C=C 弱;为什么? • 吸收峰强度→跃迁几率→偶极矩变化 • 吸收峰强度 ∝ 偶极矩的平方 • 偶极矩变化——结构对称性; • 对称性差→偶极矩变化大→吸收峰强度大 • 符号:s(强);m(中);w(弱) • 红外吸收峰强度比紫外吸收峰小2~3个数量级
4000~400 振动的基频
400~10
骨架振动和转动,晶格振动
红外光谱的特点: 1可以鉴定未知物分子结构或确定其化学基团 2固体、气体、液体样品都可以直接测定。对一些表面涂层和 不溶、不熔融的弹性体也可直接测得其红外光谱 3样品用量少,不破坏试样,分析速度快,操作方便
一、红外光谱法的基本原理
(一)红外光谱产生的条件
(四)影响峰位变化的因素
化学键的振动频率不仅与其性质有关,还受分子的内部结构和外部 因素影响。相同基团的特征吸收并不总在一个固定频率上。而是在一定 范围内波动。了解影响峰位变化的因素将有助于推断分子中相邻部分的 结构。
化学键键能越强(即键的力常数K越大)原子折合质量越 小,化学键的振动频率越大,吸收峰将出现在高波数区。
某些键的伸缩力常数(毫达因/埃)
键类型 力常数 峰位
—C≡C — > —C =C — > —C — C —
15 ∼ 17 9.5 ∼ 9.9
4.5 ∼ 5.6
2200cm-1 1640 cm-1
1300 cm-1
相关文档
最新文档