红外光谱解析
《红外光谱解析方法》课件

确定分子结构 鉴别化合物
反应机理研究 生物大分子研究
红外光谱能够提供分子中官能团 和化学键的信息,有助于确定分 子的结构。
红外光谱可以用于研究化学反应 机理,通过分析反应前后红外光 谱的变化可以推断出反应过程和 机理。
02
红外光谱解析方法分类
Chapter
基线校正法
基线校正法是一种常用的红外光谱解析方法,主要用 于消除基线漂移和噪声干扰,提高光谱的准确性和可
傅里叶变换法
傅里叶变换法是一种通过傅里 叶变换将时域信号转换为频域 信号,从而解析红外光谱的方
法。
傅里叶变换法能够将复杂的光 谱信号分解为多个简单的正弦 波和余弦波的叠加,便于解析
和识别各种成分的特征峰。
傅里叶变换法需要高精度的光 谱仪和计算机硬件,因此成本 较高。
傅里叶变换法的优点是能够准 确解析各种成分的特征峰,适 用于复杂混合物和生物样品的 分析。
《红外光谱解析方法》ppt课件
目录
• 红外光谱解析方法简介 • 红外光谱解析方法分类 • 红外光谱解析步骤 • 红外光谱解析实例 • 红外光谱解析的未来发展
01
红外光谱解析方法简介
Chapter
红外光谱的基本原理
红外光谱的产生
红外光谱是由于分子振动和转动能级跃迁而产生的 ,不同物质具有不同的能级分布,因此红外光谱具 有特征性。
生物大分子的红外光谱解析在研究其结构和功能方面具有 重要作用。通过分析生物大分子的红外光谱,可以了解其 分子结构和分子间的相互作用,进而研究其在生命过程中 的功能和作用机制。例如,在蛋白质的红外光谱中,可以 观察到蛋白质二级结构的信息,这对于研究蛋白质的结构 和功能具有重要意义。
05
红外光谱解析的未来发展
红外光谱解析

10 (cm ) (m)
1
4
各种振动方式及能量
分子振动方式分为:
伸缩振动 -----对称伸缩振动 s ----反对称伸缩振动 as 弯曲振动 ----面内弯曲振动 ----剪式振动 s -----平面摇摆 -----面外弯曲振动- ----非平面摇摆 -----扭曲振动 按能量高低为: as >
的,只有在立体结构上互相靠近的基团之间才能产生F效应, 例如:
环己酮 4,4-二甲基环己酮 2-溴-环己酮 4,4-二甲基-2-溴-环己酮
C=O
1712
1712
1716
1728
-氯代丙酮的三个异构体的C=O 吸收频率不同
氢键效应
氢键使吸收峰向低波数位移,并使吸收强度加强,
例如: - 和-羟基蒽醌
二氧化碳的IR光谱
O=C=O
对称伸缩振动 不产生吸收峰
O=C=O
反对称伸缩振动 2349
O=C=O
面内弯曲振动 667
O=C=O
面外弯曲振动 667
因此O=C=O的 IR光谱只有2349 和 667/cm 二个吸收峰
二、IR光谱得到的结构信息
IR光谱表示法:
红外光谱谱图解析完整版

X—Y伸缩, X—H变形振动区
2020/4/1
2、确定分子官能团和基团的吸收峰
(1) X—H伸缩振动区(4000 2500 cm-1 ) ① —O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强吸收;
中红外区: 远红外区:纯转动能 级跃迁,变角、骨架 振动;异构体、金属 有机物、氢键
2020/4/1
一、认识红外光谱图
2020/4/1
1、红外光谱图
峰强:Vs(Very strong): 很强;s(strong):强; m(medium):中强; w(weak):弱。 峰形:表示形状的为宽峰、尖峰 、肩峰、双峰等类型
变形振动 亚甲基
2020/4/1
甲基的振动形式
伸缩振动 甲基:
对称 υs(CH3) 2870 ㎝-1
变形振动 甲基
2020/4/1
对称δs(CH3)1380㎝-1
不对称 υas(CH3) 2960㎝-1
不对称δas(CH3)1460㎝-1
二、解析红外光谱图
2020/4/1
一个未知化合物仅用红外光谱解析结构是十分困难的。一般在光谱解析
前,要做未知物的初步分析 红外光谱谱图的解析更带有经验性、灵活性。 解析主要是在掌握影响振动频率的因素及各类化合物的红外特征吸收谱
带的基础上,按峰区分析,指认某谱带的可能归属,结合其他峰区的相关 峰,确定其归属。
在此基础上,再仔细归属指纹区的有关谱带,综合分析,提出化合物的 可能结构。
必要时查阅标图谱或与其他谱(1H NMR,13C NMR,MS)配合, 确证其结构。
2020/4/1
红外光谱图解析方法大全

红外光谱图解析大全一、预备知识(1)根据分子式计算不饱和度公式:不饱和度Q = n4+1+(n3-n i)/2 其中:n4:化合价为4价的原子个数(主要是C原子),n3:化合价为3价的原子个数(主要是N原子),n i:化合价为1价的原子个数(主要是H,X原子)(2)分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1 为不饱和碳C-H 伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1 一般为饱和C-H 伸缩振动吸收;(3)若在稍高于3000cm-1有吸收,则应在2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔2200~2100 cm-1,烯1680~1640 cm-1 芳环1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);( 4)碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;( 5)解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820, 2720和1750~1700cm-1的三个峰,说明醛基的存在。
二、熟记健值1. 烷烃:C-H 伸缩振动( 3000-2850cm-1) C-H 弯曲振动( 1465-1340cm-1) 一般饱和烃C-H 伸缩均在3000cm-1 以下,接近3000cm-1 的频率吸收。
2. 烯烃:烯烃C-H 伸缩(3100~3010cm-1),C=C 伸缩(1675~1640 cm-1),烯烃C-H 面外弯曲振动( 1000~675cm-1)。
3. 炔烃:炔烃C-H伸缩振动(3300cm-1附近),三键伸缩振动(2250~2100cm-1)。
4. 芳烃:芳环上C-H 伸缩振动3100~3000cm-1, C=C 骨架振动1600~1450cm-1, C-H 面外弯曲振动880~680cm-1。
红外光谱解析

generally absorbs only weakly. Hence, trained observer would not
interpret a strong peak at 1670 cm-1 to be a C=C double bond, nor would they interpret a weak absorption at this frequency to be due to a carbonyl group.
3
How to approach the analysis of a spectrum?
When analyzing the spectrum of an unknown, concentrate your first effort on determining the presence (or absence) of a few major functional groups. The C=O, OH, NH, CO, C=C, CC, CN, and NO2 peaks are the most conspicuous and give immediate structural information if they are present. Do not try to make a detailed analysis of the CH absorptions near 3000 cm-1; almost all compounds have these absorptions. Do not worry about subtleties of the exact environment in which the functional group is found. Following is a major checklist of the important gross features. 1. Is a carbonyl group present?
手把手教你红外光谱谱图解析

手把手教你红外光谱谱图解析一、红外光谱的原理[1]1. 原理样品受到频率连续变化的红外光照射时,分子吸收其中一些频率的辐射,分子振动或转动引起偶极矩的净变化,是振-转能级从基态跃迁到激发态,相应于这些区域的透射光强减弱,透过率T%对波数或波长的曲线,即为红外光谱。
辐射→分子振动能级跃迁→红外光谱→官能团→分子结构2.红外光谱特点红外吸收只有振-转跃迁,能量低;除单原子分子及单核分子外,几乎所有有机物均有红外吸收;特征性强,可定性分析,红外光谱的波数位置、波峰数目及强度可以确定分子结构;定量分析;固、液、气态样均可,用量少,不破坏样品;分析速度快;与色谱联用定性功能强大。
3.分子中振动能级的基本振动形式红外光谱中存在两类基本振动形式:伸缩振动和弯曲振动。
图一伸缩振动图二弯曲振动二、解析红外光谱图1.振动自由度振动自由度是分子独立的振动数目。
N个原子组成分子,每个原子在空间上具有三个自由度,分子振动自由度F=3N-6(非线性分子);F=3N-5(线性分子)。
为什么计算振动自由度很重要,因为它反映了吸收峰的数量,谱带简并或发生红外非活性振动使吸收峰的数量会少于振动自由度。
U=0→无双键或环状结构U=1→一个双键或一个环状结构U=2→两个双键,两个换,双键+环,一个三键U=4→分子中可能含有苯环U=5→分子中可能含一个苯环+一个双键2.红外光谱峰的类型基频峰:分子吸收一定频率红外线,振动能级从基态跃迁至第一振动激发态产生的吸收峰,基频峰的峰位等于分子或者基团的振动频率,强度大,是红外的主要吸收峰。
泛频峰:分子的振动能级从基态跃迁至第二振动激发态、第三振动激发态等高能态时产生的吸收峰,此类峰强度弱,难辨认,却增加了光谱的特征性。
特征峰和指纹峰:特征峰是可用于鉴别官能团存在的吸收峰,对应于分子中某化学键或基团的振动形式,同一基团的振动频率总是出现在一定区域;而指纹区吸收峰特征性强,对分子结构的变化高度敏感,能够区分不同化合物结构上的微小差异。
4-3红外光谱解析

面外变形(=C-H) 1000-700 cm-1 (有价值)
(=C-H)
R1
H
CC
970 cm-1(强)
H
R2
R1
R3 CC
790-840 cm-1
R2
H (820 cm-1)
R1
R2 (=C-H)
H
CC H
800-650 cm-1 (690 cm-1)
R1 C C H 990 cm-1
H
H 910 cm-1 (强)
1195 cm-1
C H3 C C H3 CH
3
1405-1385cm-1 1372-1365cm-1
1:2 1250 cm-1
c) CH2面外变形振动—(CH2)n—,证明长碳链的存在。 n=1 770~785 cm-1 (中 ) n=2 740 ~ 750 cm-1 (中 )
n=3 730 ~740 cm-1 (中 ) n≥ 720 cm-1 (中强 )
1300cm-1 ~ 910 cm-1区域是C-O、C-N、C-F、C-P、C-S、 P-O、Si-O等单键的伸缩振动、C=S、S=O、P=O等双键 的伸缩振动、部分含氢基团的变形振动吸收。
910 ~ 650 cm-1区域是烯烃、芳烃的C-H的面外弯曲振动吸 收位置,对结构敏感,吸收峰可用来确认化合物的顺反构 型或苯环的取代类型。
第三节 红外光谱解析
一、官能团区和指纹区
红外光谱
官能团区:4000~1300cm-1(1350) 2.5~7.7μm
指纹区:1300~600cm-1(1350~650) 7.7~16.7μm
官能团区:X-H的伸缩振动以及各种双键、叁键的伸缩 振动吸收峰出现的区域,此区域内峰较稀疏,是鉴定 工作最有价值的区域。
[物理]红外光谱解析
![[物理]红外光谱解析](https://img.taocdn.com/s3/m/3f769b01ed630b1c59eeb5cf.png)
分析 IR 时,可将IR 谱分成二个区:
4000-1300cm -1为官能团区, 各种基团及化学键的特征吸收 峰均在此。 1300-660 cm -1 为指纹区。
1、羟基:醇、酚、羧酸、结晶水
OH
3700-3200cm –1。
1)游离型在3700-3500cm -1 ;
2)如有氢键缔合则于3550~3200 cm –1, 且峰形宽。 3)羧酸中的νOH在3300~2500 cm-1间形成 一个宽而强的吸收峰,中心在3000cm-1 左右。
伸缩振动(): 对称伸缩振动(s) 不对称伸缩振动(as) 变形振动(): 面内变形振动 (包括面内摇摆和剪式振动) 和面外变形振动(包括面外摇摆和扭曲振动)
振动形式
H2O分子的振动:
,(1545)
s ( 3652 ),as( 3756 )
CO2分子的振动 亚甲基的振动
三、不饱和度的计算
从已知分子式计算不饱和度的公式:
Ω=1+n4+(n3-n1)/2
n4为四价元素(碳)的原子数
n3为三价元素(氮)的原子数 n1为一价元素(氢或卤素)的原子数 二价元素,如氧或硫不参加计算
三、IR的应用
IR的用途有二个:
一 鉴定已知化合物 (1)与已知物 IR对照,是否叠谱. (2) 与标准图谱对照,是否一致. 二 鉴定未知化合物 (1)简单化合物依据分子式,不饱和度和IR 可以推导出结构式, (2)复杂化合物可找出主要基团(OH , C=0, 苯环等)和结构片断
气态时的乙醇红外图谱
乙醇红外图谱
芫荽萜醇的红外图谱
苯乙酸的红外图谱
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
综上,可能为乙酸乙烯酯或丙烯酸甲酯。
第二章 红外光谱
有机化合物波谱分析
(10) 分子式为 C6H14 ,红外光谱如下,试推其结构。
C
第二章 红外光谱
有机化合物波谱分析
(1)不饱和度Ω=1+6+0.5(0-14)=0,所以 C6H14 为饱和烃。
(3)1378.64cm-1为单峰,表明含有孤立-CH3。又 1462.39cm-1,2951.54cm-1,2928.12cm-1,286.43cm-1等 表明含有-CH3和-CH2-。综上,该化合物为1-辛烯。
第二章 红外光谱
有机化合物波谱分析
(7)未知物分子式为C3H6O,其红外图如下图 所示,试推其结构。
(2)3366.10cm-1和3387.67cm-1是NH2的伸缩振动, 1274.97cm-1,是C-N伸缩振动,3258.02cm-1和 3193.02cm-1强度近似的双峰,表明是伯胺。
(3)749.67cm-1的单峰表明苯环的邻二取代。
综上,该化合物为邻苯二胺。
第二章 红外光谱
有机化合物波谱分析
中-(CH2)n-,n=14>4)。
第二章 红外光谱
(3)C8H7N,确定结构
有机化合物波谱分析
1380
第二章 红外光谱
有机化合物波谱分析
解:(1)不饱和度Ω=1+8+0.5(1-7)=6
(2)3030cm-1,1607cm-1,1580cm-1和1450cm-1的峰 表明含有苯环,用去4个不饱和度。
综上,该化合物为CH2=CHCH2OH.
第二章 红外光谱
有机化合物波谱分析
(8)未知物分子式为C6H8N2,其红外图如下图所 示,试推其结构。
第二章 红外光谱
有机化合物波谱分析
解:(1)不饱和度Ω=1+6+0.5(2-8)=4 3030.70cm-1,1592.66cm-1,1502.26cm-1的峰表明 含有苯环。
(2)3100~3000cm-1,1630cm-1,1500cm-1,1450cm-1 处的峰表明含有苯环。
(3)770cm-1和700cm-1处双峰显示苯环为单取代, 并且990cm-1和910cm-1处强峰表明含有端乙烯基, 因此,该结构为苯乙烯。
综上,该化合物为苯乙烯。
第二章 红外光谱
根据(2)得苯环结构和817cm-1强峰,表明该物 质为苯的对二取代物。
(4)1380cm-1的单峰和2920cm-1表明含有-CH3, 则不含有碳碳三键。
根据(4)和2217cm-1处强峰,显示含有碳氮三键。
综上,该化合物为对甲基苯甲氰。
第二章 红外光谱
(4)推测C4H8O2的结构
有机化合物波谱分析
在1381cm-1出现单峰,表明存在孤立甲基,无偕 三甲基或偕二甲基。
3000~2700cm-1为处的吸收表明含有甲基和亚甲基。
1464cm-1处的表明显示有亚甲基。
综上,该化合物为CH3-(CH2)4-CH3或3-甲基戊 烷。
第二章 红外光谱
有机化合物波谱分析
解:(1)不饱和度Ω=1+3+0.5(0-6)=1 又 3013.92cm-1的弱峰和1647.23cm-1表明含有碳碳双 键。
(2)993.42cm-1和918.64cm-1处强峰表明含有端乙 烯基。
分子式中含有氧原子,在3337.98cm-1处有吸收峰, 表明含有-OH。又因为1028.21cm-1的峰,表明为 伯醇。
第二章 红外光谱
有机化合物波谱分析
解:(1)不饱和度Ω=1+4+0.5(0-8)=1 1740cm1表示含有C=O。高频区没有出现宽的强吸收峰, 表明没有-OH,又因为1740cm-1的峰位于相对高 频峰。因此,该化合物为酯类化合物。
(2)3000~2800cm-1的峰为νCH(-CH3,-CH2-), 1380cm-1处孤峰表明有孤立-CH3,1460cm-1说明 含有-CH2-。因此,含有孤立-CH3和
有机化合物波谱分析
(6)未知物分子式为C8H16,其红外图谱如下 图所示,试推其结构。
第二章 红外光谱
有机化合物波谱分析
解:(1)不饱和度Ω=1+8+0.5(0-16)=1 又因为 3078.65cm-1和1641.79cm-1的峰,可以肯定该物质 是单烯烃。
(2)992.87cm-1和909.74cm-1处强峰表明含有端乙 烯基。
第二章 红外光谱
有机化合物波谱分析
(2)指明棕榈酸红外光谱各峰归属。
第二章 红外光谱
答案
有机化合物波谱分析
解:(1)3000~2700cm-1的峰为νCH(-CH3,-CH2-); (2)1700cm-1的峰为νC=O(酸); (3)1470cm-1左右的峰为δas(-CH2-); ()1380cm-1的峰δC-H; (5)720~725cm-1的峰为δC-H(面外)(分子
(9) 分子式为 C4H6O2,红外光谱如下,试推其结构。
第二章 红外光谱
有机化合物波谱分析
解:(1)不饱和度Ω=1+4+0.5(0-6)=2
(2)1762cm-1表明含有C=O,且3700~3200cm-1 无尖锐吸收峰,表明不含-OH,-COOH。在 2720~2750cm-1无吸收峰,表明不含-CHO。又因 为在2830~2810cm﹣1没有吸收峰,所以没有— OCH3。
第二章 红外光谱
有机化合物波谱分析
红外光谱作业
第二章 红外光谱
有机化合物波谱分析
(1)指明丙戊酰胺红外光谱各峰归属。
第二章 红外光谱
答案
有机化合物波谱分析
解:(1)3400cm-1左右的峰为νNH; (2)3000~2700cm-1的峰为νCH(-CH3,-CH2-); (3)1600cm-1左右的强峰为νC=O; (4)1380cm-1的峰为δC-H; (5)1470~1430cm-1的峰为δC-H。
-CH2-。因而,可能有三种结构,甲酸丙酯,乙酸 乙酯,丙酸甲酯。但图中没有甲酸丙酯的醛基 2720~2750cm-1的特征峰。
综上,可能为乙酸乙酯或丙酸甲酯。
第二章 红外光谱
(5)推测C8H8纯液体
有机化合物波谱分析
第二章 红外光谱
有机化合物波谱分析
(1)不饱和度Ω=1+8+0.5(0-8)=5