红外吸收光谱分析

合集下载

第十章 红外光谱分析

第十章 红外光谱分析
第十章 红外吸收光谱分析
Infrared Absorption Spectrometry ,IR
2020/3/23
• 第一节 红外吸收光谱基本原理
一、红外光谱概述 二、红外吸收光谱产生条件 三、分子振动形式 四、红外光谱吸收强度
2020/3/23
一、红外光谱概述
红外吸收光谱(Infrared absorption spectroscopy, IR)又称为分子振动—转动光谱。
2020/3/23
1、红外光谱区域划分
习惯上按红外线波长,将红外光谱分成三个区域: (1)近红外区:0.78~2.5μm(12 820~4 000cm-1),主 要用于研究分子中的O—H、N—H、C—H键的振动倍频与组 频。 (2)中红外区:2.5~25μm(4 000~400cm-1),主要用 于研究大部分有机化合物的振动基频。 (3)远红外区:25~300μm(400~33cm-1),主要用于 研究分子的转动光谱及晶格的振动。
包含各种单键、双键和三键的伸缩振动及面内弯曲振动 特点:吸收峰稀疏、较强,易辨认 注:特征峰常出现在特征区 2. 指纹区: 指纹区: 1250~400cm-1的低频区,包含C—X(X:O,H, N)单键的伸缩振动及各种面内弯曲振动 特点:吸收峰密集、难辨认→指纹 注:相关峰常出现在指纹区
2020/3/23
2020/3/23
红外光谱的吸收带强度可用于定量分析,也是化合物定 性分析的重要依据。
2020/3/23
峰位、峰数、峰强 (1)峰位 化学键的力常数K越大,原子折合质量越小, 键的振动频率越大,吸收峰将出现在高波数区(短波区); 反之,出现在低波数区(长波区)。 (2)峰数 峰数与分子自由度有关。无瞬间偶基距变化 时,无红外吸收。

红外吸收光谱分析

红外吸收光谱分析

基团频率区旳划分
分区根据:因为有机物数目庞大,而构成有
机物旳基团有限;基团旳振动频率取决于K 和
m,同种基团旳频率相近。
划分措施
氢键区 ❖基团特征频率区 叁键区和累积双键区
双键区
❖指纹区
单键区
区域名称 频率范围
基团及振动形式
氢键区 4000~2500cm-1 O-H、C-H、N-H
等旳伸缩振动
叁键和
溶剂效应,极性基团旳伸缩振动频率随溶剂旳极性增 大而降低,但其吸收峰强度往往增强,一般是因为极 性基团和极性溶剂之间形成氢键旳缘故,形成氢键旳 能力越强吸收带旳频率就越低。如丙酮在环己烷中νC=O 为1727cm-1 ,在四氯化碳中为1720cm-1 ,在氯仿中为 1705cm-1 。
分子振动旳自由度
• 电子效应
①诱导效应 ②共轭效应
• 空间效应
①空间位阻 ②环张力
• 氢键
• 二.外部原因
• ①物态效应 • ②溶剂效应
❖电子效应
(1)诱导效应 经过静电诱导作用使分子中 电子云分布发生变化引起K旳变化,从而影 响振动频率。 如 C=O
吸电子诱导效应使羰基双键性增长,振动频 率增大。
(2)共轭效应 共轭效应使共轭体系中
Varian 680-IR
• 日本岛津: • 傅立叶变换红外光谱仪 IRAffinity-1 • 高信噪比:30,000:1 以上;配置自动除湿装
置,易于维护;外形小巧,占地面积小;标配 杂质分析程序;多种附件能够选择。 • 傅立叶变换红外光谱仪 IRPrestige-21 • 研究级傅立叶红外光谱仪。 • 岛津红外显微镜系统 AIM-8800 • 具有AIM VIEW先进控制系统;具有高敏捷度 旳不需维护旳MCT检测器;多种附件使应用范 围进一步扩展。

红外吸收光谱分析法

红外吸收光谱分析法

红外吸收光谱分析法
一、红外吸收光谱分析法概述
红外吸收光谱分析法是一种利用物质的红外光吸收能力来探测它们的物质组成的技术。

它特别适用于有机化合物和无机化合物的光谱分析。

通过分析红外吸收光谱,可以检测物质中的有机键、C-H键、C-O键或N-H 键的存在和位置,从而鉴定出物质的化学结构和性质。

红外光吸收法的原理是,物质中的分子、晶体或其他结构会在不同的波长处吸收光,产生光谱,这些吸收光谱是物质的独特特征,反映出物质的特性。

根据这种特性,分析用不同波长的光照射样品,并从所得到的光谱中提取出电子激发、分子振动等信息,从而得到物质的结构和性质。

二、红外吸收光谱分析法基本原理
红外吸收光谱分析法的原理是,当物质受到红外幅射的照射时,它的分子会产生振动和旋转,这些振动和旋转的能量会转化为更高能量的电子跃迁。

这些电子跃迁会引起物质材料吸收一些具有特定波长的红外光,从而产生在不同波长的吸收光谱,通过分析这些吸收光谱,就可以求取物质分子的结构和性质。

红外吸收光谱分析

 红外吸收光谱分析
指纹区(1350 650 cm-1 ) ,较复杂。 C-H,N-H的变形振动; C-O,C-X的伸缩振动; C-C骨架振动等。精细结构的区分。 顺、反结构区分;
基团吸收带数据
O-H
3630
基团吸收
活 泼 氢
N-H P-H
3350 2400
伸 缩
带数据
能级跃迁类型
近红外 0.76~2.5
1358~400 0
OH、NH、CH及SH倍频 吸收区
中红外
2.5~25
4000~400
分子振动-转动 (基本振动区)
远红外 25~1000 400~10 纯转动
第二节 红外吸收基本理 论
一、红外光谱产生的条件
(1) 辐射能应具有能满足物质产生振动跃迁所 需的能量;
3、炔烃
炔烃的特征吸收主要是C≡C伸缩振 动(2250~2100cm-1) 和炔烃 C-H伸缩振动(3300cm-1附近)
4、芳烃
芳烃的特征吸收分散在3个小频区:
(1600~1450cm-1)为C=C骨架振动, (2000~1667cm-1) 区域出现C-H 面外弯曲振动的泛频峰,虽然强度很弱, 但吸收峰形状和数目与芳环的取代类型 有关。利用该区的吸收峰与900~ 650cm-1区域苯环的C-H面外弯曲振动, 可确定苯环的取代类型。
(3)1900 1200 cm-1 双键伸缩振动区
(4)1200 670 cm-1 X—Y伸缩, X—H变形振动区
1. X—H伸缩振动区(4000 2500 cm-1 )
(1)—O—H 3650 3200 cm-1 确定 醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐,强
吸收;当浓度较大时,发生缔合作用,峰形较宽。

红外光谱分析 红外吸收光谱法

红外光谱分析 红外吸收光谱法
和键力常数之间的关系:
υ=
1
2
(1)
1
105 N
= 2c = 2c
Cm-1 (2)
K为键力常数,其含义是两个原子由平衡位置伸长0.1nm(lA0) 后的回复力,单位是 dyn/cm。
μ’ 为折合质量。 μ’=m1m2/(m1+m2) (m为原子质量)
原子质量用相对原子量代替:
m1=M1/N, m2=M2/N 。
举例:
例:由元素分析某化合物的分子式为 C其4H结6构O2。,测得红外光谱如图,试推测
解: 由分子式计算不饱和度U = 4-6/2+1= 2
特征区:3 070cm-1有弱的不饱和C—H伸缩振动吸收, 与1 650cm-1的vc=c 谱带对应表明有烯键存在,谱带较 弱,是被极化了的烯键。
1 76பைடு நூலகம்cm-1强吸收谱带表明有羰基存在,结合最强吸收 谱带1 230cm-1和1 140cm-1的C-O-C吸收应为酯基。
跃迁的几率与振动方式有关: 基频(V0→V1)跃迁几率大,所以吸收较强; 倍频(V0→V2)虽然偶极矩变化大,但跃率几率很低, 使峰强反而很弱。
3、振动的量子化处理
根据量子力学,其分子的振动能 E=(υ+1/2)h v振
在光谱学中,体系从能量E变到能量E1',要遵循 一定的规则,即选择定则,谐振子振动能级的选择定则 △υ=±1。由选择定则可知,振动能级跃迁只能发生在 相邻的能级间 。
2.基本概念
a..偶极矩:当化学键两端的电子电负性不同时,电中性的 分子便产生负电中心的分离,成为极性分子,极性大小用 偶极矩μ衡量,μ=r×q,即正、负电荷中心间的距离r和 电荷中心所带电量q的乘积。
b.基频:常温下分子处于最低振动能级,此时叫基态,V=0。 从基态V0跃迁到第一激发态V=1,V0V1产生的吸收带

红外吸收光谱分析

红外吸收光谱分析

最常见的溶剂效应:极性基团的伸缩振动频率随溶剂极
性的增大而向低波数方向位移—红移,吸收峰往往增强, 原因:极性基团和极性溶剂分子之间形成氢键。 消除溶剂效应方法:采用非极性溶剂,如CCl4,CS2 等, 并以稀溶液来获得红外吸收光谱。
(四)红外光谱仪
色散型IR谱仪:利用单色器作为色散元件 傅立叶IR谱仪:利用光的干涉作用进行测定, 没有色散元件 1.色散型IR谱仪
• •
光电导检测器
• •


碲镉汞检测器( HgTe-CdTe , MCT) 等 材料:光电导检测器采用半导体材料薄膜, 如Hg-Cd-Te或PbS或InSb,将其置于非 导电的玻璃表面密闭于真空舱内。 原理:吸收辐射后,非导电性的价电子跃迁 至高能量的导电带,从而降低半导体的 电阻,产生信号。 应用: 比热电检测器灵敏,在FT-IR及 GC/F400附近
中强
中强

⑤ ⑥ ⑦ ⑧ ⑨
700附近
2247 3090附近 1639 990 909

中强 弱 中强 中强 中强
影响谱带位置(位移)的因素
①内部因素
(1)诱导效应:力常数变大时,吸收峰发生紫移。
(2)共轭效应:由于分子中形成大Π键所引起的效应, 称为共轭效应。它使电子云密度平均化,造成双键略 有伸长,键的力常数变小,吸收峰红移。 (3)空间效应:张力大伸缩频率高。
C-H键的倍频吸收 分子中原子的 振动及分子转动 分子转动
晶格振动
如果波长以μm为单位,而1μm=10-4cm,波长与波数的 关系为: 4 1
/ cm
1 10 / cm / m
波数是波长的倒数,常用单位是cm-1,它表示1cm的距离 内光波的数目。 例如λ=50μm的红外光,用波数表示为:

红外吸收光谱分析

红外吸收光谱分析

第三章红外吸收光谱分析3.1概述3.1.1红外吸收光谱的基本原理红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物 结构分析的重要方法之一。

当一定频率的红外光照射分子时,若分子中某个基团 的振动频率和红外辐射的频率一致, 两者产生共振,光的能量通过分子偶极矩的 变化传递给分子,该基团就吸收了这个频率的红外光, 产生振动能级跃迁;如果 红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸 收。

如果用频率连续变化的红外光照射某试样, 分子将吸收某些频率的辐射,引 起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来, 就得到该试样 的红外吸收光谱,稀溶液谱带的吸光度遵守 Lambert-Beer 定律。

图3-1为正辛烷的红外吸收光谱。

红外谱图中的纵坐标为吸收强度,通常用 透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。

图中的各个吸 收谱带表示相应基团的振动频率。

各种化合物分子结构不同,分子中各个基团的 振动频率不同。

其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结 构分析、定性鉴定和定量分析。

图3-1正辛烷的红外光谱图几乎所有的有机和无机化合物在红外光谱区均有吸收。

除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱 一定不会相同。

吸收谱带出现的频率位置是由分子振动能级决定, 可以用经典力 学(牛顿力学)的简正振动理论来说明。

吸收谱带的强度则主要取决于振动过程中 偶极矩的变化和能级跃迁的概率。

也就是说,红外光谱中,吸收谱带的位置、形 状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的 含量有关。

因此,红外吸收光谱在化学领域中的应用,大体上可分为两个方面,即分子 结构的基础研究和用于化学组成的分析。

首先,红外光谱可以研究分子的结构和化学键。

利用红外光谱法测定分子的 键长和键角, 以此推断出分子的立体构型; 利用红外光谱法测定分子的力常数和 分子对称性等,CH 何沁阴巩匚出匚昭內 4t02960根据所得的力常数就可以知道化学键的强弱;由简正频率来计算热力学函数等等。

仪器分析 第四章--红外吸收光谱法

仪器分析  第四章--红外吸收光谱法

章节重点:
分子振动基本形式及自由度计算;
红外吸收的产生2个条件;
各类基团特征红外振动频率;
影响红外吸收峰位变化的因素。
第八章 红外吸收光谱分 析法
第三节 红外分光光度计
1. 仪器类型与结构
2. 制样方法
3. 联用技术
1. 仪器类型与结构
两种类型:色散型 干涉型(傅立叶变换红外光谱仪)
弯曲振动:
1.4 振动自由度
多原子分子振动形式的多少用振动自由度标示。

三维空间中,每个原子都能沿x、y、z三个坐标方向独 立运动,n个原子组成的分子则有3n个独立运动,再除 掉三个坐标轴方向的分子平移及整体分子转动。

非线性分子振动自由度为3n-6,如H2O有3个自由度。 线性分子振动自由度为3n-5,如CO2有4个自由度。
某些键的伸缩力常数:
键类型: 力常数: 峰位:源自-CC15 2062 cm-1
-C=C10 1683 cm-1
-C-C5 1190 cm-1
-C-H5.1 2920 cm-1
化学键键强越强(即键的力常数K越大),原子折合 质量越小,化学键振动频率越大,吸收峰在高波数区。
1.2 非谐振子
实际上双原子分子并非理想的谐振子!随着振动量子 数的增加,上下振动能级间的间隔逐渐减小!
(1)-O-H,37003100 cm-1,确定醇、酚、酸 在非极性溶剂中,浓度较小(稀溶液)时,峰形尖锐 ,强吸收;当浓度较大时,发生缔合作用,峰形较宽。
注意区分: -NH伸缩振动:3500 3300 cm-1 峰型尖锐
(2)饱和碳原子上的-C-H -CH3 2960 cm-1 2870 cm-1 反对称伸缩振动 对称伸缩振动
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章红外吸收光谱分析3.1概述3.1.1红外吸收光谱的基本原理红外吸收光谱法又称为分子振动转动光谱,属于分子光谱的范畴,是有机物结构分析的重要方法之一。

当一定频率的红外光照射分子时,若分子中某个基团的振动频率和红外辐射的频率一致,两者产生共振,光的能量通过分子偶极矩的变化传递给分子,该基团就吸收了这个频率的红外光,产生振动能级跃迁;如果红外辐射的频率和分子中各基团的振动能级不一致,该频率的红外光将不被吸收。

如果用频率连续变化的红外光照射某试样,分子将吸收某些频率的辐射,引起对应区域辐射强度的减弱,用仪器以吸收曲线的形式记录下来,就得到该试样的红外吸收光谱,稀溶液谱带的吸光度遵守Lambert-Beer定律。

图3-1为正辛烷的红外吸收光谱。

红外谱图中的纵坐标为吸收强度,通常用透过率或吸光度表示,横坐标以波数或波长表示,两者互为倒数。

图中的各个吸收谱带表示相应基团的振动频率。

各种化合物分子结构不同,分子中各个基团的振动频率不同。

其红外吸收光谱也不同,利用这一特性,可进行有机化合物的结构分析、定性鉴定和定量分析。

图3-1 正辛烷的红外光谱图几乎所有的有机和无机化合物在红外光谱区均有吸收。

除光学异构体,某些高分子量的高聚物以及一些同系物外,结构不同的两个化合物,它们的红外光谱一定不会相同。

吸收谱带出现的频率位置是由分子振动能级决定,可以用经典力学(牛顿力学)的简正振动理论来说明。

吸收谱带的强度则主要取决于振动过程中偶极矩的变化和能级跃迁的概率。

也就是说,红外光谱中,吸收谱带的位置、形状和强度反映了分子结构的特点,而吸收谱带的吸收强度和分子组成或官能团的含量有关。

因此,红外吸收光谱在化学领域中的应用,大体上可分为两个方面,即分子结构的基础研究和用于化学组成的分析。

首先,红外光谱可以研究分子的结构和化学键。

利用红外光谱法测定分子的键长和键角,以此推断出分子的立体构型;利用红外光谱法测定分子的力常数和分子对称性等,根据所得的力常数就可以知道化学键的强弱;由简正频率来计算热力学函数等等。

其次,红外光谱可对物质的化学组成进行分析,这是它最广泛和最重要的应用。

用红外光谱法可以根据光谱中吸收谱带的位置、形状和强度来推断未知物结构,依照特征吸收谱带的强度来测定官能团和混合物中各组分的含量。

总之,红外吸收光谱法是物质结构研究、定性鉴定和定量分析中不可缺少的工具,在诸多科学研究领域发挥着重要作用。

3.1.2 红外吸收光谱法的特点红外吸收光谱反映的是物质的分子结构,属于分子光谱的范畴,与其他仪器分析法相比较,红外光谱法有如下特点:(1)红外光谱是依据样品在红外光区吸收谱带的位置、强度、形状、个数,并参照谱带与溶剂、聚集态温度、浓度等的关系求化学键的力常数、键长和键角,推测分子的空间构型,判断分子中某种官能团的存在与否,以及各官能团的连接次序,从而确定化合物结构。

(2)红外光谱适用范围广,几乎所有的有机和无机化合物在红外光谱区均有吸收。

无论是纯净物,还是混合物都可以进行分析,并且对任何状态的样品,如气体、液体、可研细的固体或薄膜物质等都适用,对不透光样品还可采用反射技术等等,测定方便,制样简单。

(3)红外光谱特征性高。

由于红外光谱信息多,可以对不同结构的化合物给出特征性的谱图,从“指纹区”就可以确定化合物的异同。

对于一些同分异构体、几何异构体和互变异构体也可以鉴定。

(4)分析时间短。

一般红外光谱做一个样可在10~30min内完成,傅里叶变换技术的采用更是为快速分析、在线分析和化学动力学研究提供了重要手段。

(5) 红外光谱所需样品用量少,一次用样量约1~5mg,有时甚至可以低到几十微克,而且不破坏样品,可以回收。

3.1.3 红外光谱法的应用根据仪器及应用不同,习惯上又将红外光区分为近红外光区、中红外光区、和远红外光区三个区域。

近红外光区的波长范围为12800~4000cm-1(0.78~2.5μm),该光区的吸收谱带主要是由低能电子跃迁、含氢原子团(如O-H、N-H、C-H)伸缩振动的倍频及组合频吸收产生的,可用来研究稀土和其他过渡金属离子的化合物,并适用于水、醇、某些高分子化合物以及含氢原子团化合物的定量分析,测量准确度及精密度与紫外、可见吸收光谱相当。

中红外光区波长范围为4000~200cm-1(2.5~50μm),绝大多数有机化合物和无机离子的基频吸收带都出现在中红外光区。

由于基频振动是分子中吸收最强的振动,所以该区最适于进行化合物的定性和定量分析。

随着傅里叶变换技术的出现,该光谱区也开始用于表面的显微分析,通过衰减全反射、漫反射以及光声测定法等对固体试样进行分析。

由于中红外光谱仪最为成熟、简单,而且已经积累了该区大量的标准谱图数据,因此它是应用最为广泛的光谱区。

通常所说的红外光谱就是指中红外区的光谱。

远红外光区波长范围为200~10cm-1(50~1000μm),气体分子中的纯转动跃迁、振动-转动跃迁、液体和固体中重原子的伸缩振动、骨架振动以及晶体中的晶格振动都在此区。

由于低频骨架振动能灵敏地反映出结构的变化,所以对异构体的研究特别方便。

此外,由于参与金属-配位体振动的原子质量比较大或由于振动力常数比较低,使金属原子与无机及有机配体之间的伸缩振动和弯曲振动的吸收出现在<200cm-1的波长范围,故该区特别适合研究无机化合物,提供晶格能及半导体材料的跃迁能量;还能用于金属有机化合物(包括配合物)、氢键、吸附现象的研究。

但此区能量弱,应用受到了极大的限制。

然而随着傅里叶变换仪器的出现,这个区域的研究又变得活跃起来。

3.2 红外吸收光谱仪3.2.1 色散型红外光谱仪色散型红外光谱仪的基本结构和工作原理如图3-2所示,主要由光源、单色器、检测器、放大器和记录仪等部件组成。

图3-2 色散型光学零位平衡式红外光谱仪示意图作为红外光谱仪的光源,要求能发射出稳定的高强度的连续红外光,中红外区通常使用能斯特灯和硅碳棒。

能斯特灯是由氧化锆、氧化钇和氧化钍等粉末按一定比例混合压制成棒状,并在高温下烧结而成。

能斯特灯在室温下是非导体,加热到700℃以上才成为导体,因此.需由一个辅助加热器预热,当能斯特灯被点燃后,辅助加热器停止加热。

该灯的优点是发出的光强度高,使用寿命较长,可达2000h。

缺点是性脆易碎,且在光源线路上还需加一限制电流的稳流装置。

硅碳棒是由硅碳砂压制成型后经高温烧结而成,在室温下是一导体,工作前不需预热,工作温度为1000℃左右,成品坚固耐用,寿命比能斯特灯长,缺点是电极接触部分需用水冷却。

单色器是由色散元件(光栅或棱镜)、入射与出射狭缝以及准直反射镜等组成。

其功能是将连续光色散为一组波长单一的单色光,然后将单色光按波长大小依次由出射狭缝射出。

红外光谱仪中目前大多采用闪耀光栅,在进行光谱级次分离时采用滤光片或棱镜。

大部分的红外光学材料易吸湿(KRS-5除外),因此,红外光谱仪放置和使用环境应保持干燥。

红外光谱仪常用真空热电偶、高莱槽或测辐射热计等作检测器。

检测器受到红外光照射时,将产生的热效应转变为十分微弱的电信号经放大器放大后,带动伺服马达工作,记录红外吸收光谱,记录方式有光学零位式和比例记录式两类。

这些检测器具有对红外辐射接受灵敏度高,响应快,热容量小等特点。

3.2.2 傅里叶变换红外光谱仪傅里叶变换红外光谱仪(FTIR)是20世纪70年代出现的新—代红外光谱测量技术和仪器。

它没有色散元件,主要由光学检测系统和数据处理系统组成。

取代色散元件的是FTIR的光学检测系统,由光源、主干涉仪、激光干涉仪、检测器和各种红外反射镜组成,其中主干涉仪是FTIR的核心部分,最常用的是迈克尔逊干涉仪,包括分束器、定镜、动镜和动镜驱动结构,其结构和工作原理如图3-3所示。

1.动镜驱动机构;2.动镜;3.顶镜;4. 分束器;5. 光源;6.激光检测器;7.红外检测器迈克逊干涉仪的作用是获得样品干涉图,激光干涉仪的作用是实现干涉图的等间隔取样、动镜速度和移动距离的监控和采样初始位置的确定。

样品干涉图经计算机进行傅里叶变换而得到红外光谱图。

在FI'IR中常用的检测器有通用型的热释电检测器,如TGS(硫酸三甘肽)、DTGS(氘代TGS)、LATGS(L-丙氨酸TGS)、DLATGS(氘代LATGS)),高灵敏的光电导检测器,如MCT(汞镉碲)、锑化铟,和氦冷式热辐射计等。

计算机通过接口与光学测量系统电路相连,把检测器得到的信号经放大器、滤波器等处理,然后送到计算机接口,再经处理后送到计算机数据处理系统,计算结果输出给显示器或打印机。

另外,由键盘输入仪器控制指令,对干涉仪动镜等光学系统进行自动控制。

傅里叶变换红外光谱仪不用狭缝机构和分光系统,消除了狭缝对光谱能量的限制,使光能的利用率大大提高。

使仪器具有测量时间短、高通量、高信噪比、高分辨的特性。

与色散型仪器的扫描不同,傅里叶红外光谱仪能同时测量记录全波段光谱信息,使得在任何测量时间内都能够获得辐射源的所有频率的全部信息。

傅里叶变换红外光谱仪价格贵,环境要求高,但是它具有分辨率高,波数准确度高,扫描时间短,灵敏度高,测量范围宽、极低的杂散光等特点,使得它可用于快速化学反应的追踪、研究瞬间的变化,同时又特别适合与各种仪器联机,如与色谱仪联用的GC- FTIR,与超临界色谱联用的SFC- FTIR,与热重联用的FTIR-TGA,因而发展迅速,并逐步取代色散型红外光谱仪。

3.3 操作要领下面以美国热电公司Nexus470 FTIR为例介绍FTIR仪器的操作要领。

1. 开机:打开仪器光学台(主机)的电源开关;打开计算机的电源开关,双击OMNIC图标.打开OMNIC应用软件。

2. 检查光谱仪的工作状态在OMNIC窗口的Bench Status(光学台状态)指示显示绿色“√”,即为正常。

3. 设定光谱收集参数:在Collect命令下单击Experiment Setup,弹出如下菜单,按实验要求设置包括采集的波数范围、扫描次数、光谱分辨率、显示所收集数据的形式等参数,也可以在实验设置下拉列表框中选择已有的实验方法。

实验设置下拉列表框采集背景按钮采集样品按钮4. 采集试样的光谱图,按软件的提示,在确认光路中没有试样时,采集背景的干涉图;将制好的试样插入光路,采集试样的干涉图。

计算机将自动进行傅里叶变换和背景扣除处理,最后给出扣除背景后的试样红外光谱图。

5. 光谱处理:对试样光谱图进行基线校正、平滑和标峰等处理。

6. 从试样架上移走试样。

7. 结果的处理:建立或选取摸板,按要求填入谱图和其他必要信息,而后以报告的形式打印出来,或加入笔记本中保存。

采集谱图工具谱图处理工具谱库工具报告工具选择工具 区间工具 坐标工具 峰高工具 峰面积工具 标峰工具8. 复原并关闭仪器和辅助设施。

相关文档
最新文档