三角函数诱导公式一览表
三角函数诱导公式大全

三角函數誘導公式大全三角函数诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
三角函数诱导公式一览表

三角函数诱导公式一览表三角函数诱导公式是求解三角函数的重要工具之一,常用于简化复杂的三角函数表达式。
接下来,我们将一览表的形式,列举出常用的三角函数诱导公式及其推导过程。
一、正弦函数的诱导公式:1. 正弦函数的诱导公式之和差公式:sin(A±B) = sinAcosB±cosAsinB2. 正弦函数的诱导公式之倍角公式:sin2A = 2sinAcosA3. 正弦函数的诱导公式之半角公式:sin(A/2) = ±√[(1-cosA)/2]其中取正号的情况适用于A/2在第一、二象限,取负号的情况适用于A/2在第三、四象限。
二、余弦函数的诱导公式:1. 余弦函数的诱导公式之和差公式:cos(A±B) = cosAcosB∓sinAsinB2. 余弦函数的诱导公式之倍角公式:cos2A = cos^2A - sin^2A = 2cos^2A - 1 = 1 - 2sin^2A3. 余弦函数的诱导公式之半角公式:cos(A/2) = ±√[(1+cosA)/2]其中取正号的情况适用于A/2在第一、四象限,取负号的情况适用于A/2在第二、三象限。
三、正切函数的诱导公式:1. 正切函数的诱导公式之和差公式:tan(A±B) = (tanA±tanB)/(1∓tanAtanB)2. 正切函数的诱导公式之倍角公式:tan2A = (2tanA)/(1-tan^2A)3. 正切函数的诱导公式之半角公式:tan(A/2) = ±√[(1-cosA)/(1+cosA)]其中取正号的情况适用于A/2在第一象限,取负号的情况适用于A/2在第三象限。
四、余切函数、正割函数和余割函数的诱导公式:1. 余切函数的诱导公式:cot(A±B) = cotAcotB∓ 12. 正割函数的诱导公式:sec(A±B) = secAsecB±13. 余割函数的诱导公式:csc(A±B) = cscAcscB∓1以上是常用的三角函数诱导公式一览表,通过这些公式的推导,我们可以在复杂的三角函数表达式中简化计算,提高计算效率。
三角函数诱导公式大全

三角函数诱导公式大全三角函数诱导公式常用的诱导公式有以下几组:公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于k·π/2±α(k∈Z)的个三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan. (奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。
(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。
三角函数诱导公式

高一数学三角函数的诱导公式1、正、余弦的诱导公式公式一:sin(α+k²360°)=sinαcos(α+k²360°)=cosα(k∈Z)公式二:sin(180°+α)=-sinαcos(180°+α)=-cosα公式三:sin(-α)=-sinα cos(-α)=cosα公式四:sin(180°-α)=sinαcos(180°-α)=-cosα公式五:sin(360°-α)=-sinαcos(360°-α)=cosα总结:α+k²360°(k∈Z),-α,180°±α,360°-α的三角函数,等于α的同名函数值,前面加上一个把α看成锐角时原函数值的符号。
注:正切等其余的函数的诱导公式可通过同角三角函数关系式推导出。
2、诱导公式的推导:诱导公式二、三可由单位圆中的三角函数线来导出,即寻求180°+α(或-α)与α的同名三角函数值之间的关系,公式四、五可由公式一、二、三推导.由五组诱导公式,可将任意角的三角函数值转化为0°~90°的三角函数值,从而利用数学用表查值.利用诱导公式可以把任意角的三角函数转化为锐角三角函数,即:1、已知则sinα+cosα=()A.B.C. D.2、已知函数f(x)=asinx+btanx+1,满足f(5)=7,则f(-5)的值是()A.5 B.-5 C.6 D.-63、设,则()A.b>a>c B.a>b>c C.b>c>a D.a>c>b4、已知sin(α-360°)-cos(180°-α)=m,则sin(180°+α)²cos(180°-α)等于()A. B.C. D.-5、设的值等于()A.B.-C.D.-6、f(cosx)=cos2x,则f(sin15°)=()A.-B.C.D.-例1、推导出180°+α,-α,180°-α,360°-α的正切、余切的诱导公式. 例2、设的值为()A.B.C.-1 D.1例3、计算=____________.例4、已知A、B、C为△ABC的三个内角,求证:(1)cos(2A+B+C)=-cosA;(2)13、已知sin(α+β)=1,则sin(2α+β)+sin(2α+3β)= _____________.14、求下列各式的值.(1)已知求的值;(2)若且|tan(3π-α)|=-tanα,求cos(α-3π).16、求证:已知cos(α+β)+1=0,求证:sin(2α+β)+sinβ=0.。
三角函数的诱导公式【六公式】

)/ )
九倍角
sin9A=(sinA*(-3+4*sinA^2 )* ( 64*sinA^6-96*sinA^4+36*sinA^2-3 ))
cos9A=(cosA*(-3+4*cosA^2 )* ( 64*cosA^6-96*cosA^4+36*cosA^2-3 ))
tan9A=tanA* ( 9-84*tanA^2+126*tanA^4-36*tanA^6+tanA^8 ) / (1-36*tanA^2+126*tanA^4-84*tanA^6+9*tanA^8 )
例. c^3=c*c^2=c* (1-s^2 ), c^5=c*(c^2 ) ^2=c* ( 1-s^2 ) ^2 )
特殊公式
(sina+sin θ) * ( sina- sin θ) =sin (a+θ) *sin ( a- θ)
证明:(sina+sin θ) *( sina- sin θ) =2 sin[ (θ +a)/2] cos[(a - θ)/2] *2 cos[ (θ +a)/2] sin[(a- θ) /2]
tan (α +β+γ) =(tan α+tan β+tan γ - tan α· tan β· tan γ) / (1- tan α· tan β - tan β· tan γ - tan α· tan γ)
(α +β+γ≠π /2+2k π,α、β、γ≠π /2+2k π)
积化和差的四个公式
sina*cosb=(sin(a+b)+sin(a-b))/2
cosa*sinb=(sin(a+b)-sin(a-b))/2
三角函数诱导公式大全

三角函数诱导公式大全三角函数是比较困难的一个章节,对于同学们来说不是很好掌握。
下面是小编为大家整理的关于三角函数诱导公式大全,希望对您有所帮助。
欢迎大家阅读参考学习!常用的诱导公式有以下几组:三角函数诱导公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα三角函数诱导公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三角函数诱导公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα三角函数诱导公式四:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)三角函数诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα三角函数诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
12个诱导公式

12个诱导公式
诱导公式是三角函数中一个重要的部分,用于将任意角的三角函数转化为已知的锐角三角函数。
以下是12个常用的诱导公式:
1. 公式一:sin(π + α) = -sinα
2. 公式二:cos(π + α) = -cosα
3. 公式三:tan(π + α) = tanα
4. 公式四:sin(π/2 + α) = cosα
5. 公式五:cos(π/2 + α) = -sinα
6. 公式六:tan(π/2 + α) = -cotα
7. 公式七:sin(π - α) = sinα
8. 公式八:cos(π - α) = -cosα
9. 公式九:tan(π - α) = -tanα
10. 公式十:sin(3π/2 - α) = -cosα
11. 公式十一:cos(3π/2 - α) = sinα
12. 公式十二:tan(3π/2 - α) = -cotα
这些公式可以通过三角函数的周期性和对称性进行推导,是解决三角函数问题的重要工具。
在解题时,可以根据需要选择合适的诱导公式进行转化。
例如,可以将角度转换为锐角,或将正弦、余弦、正切函数进行互化。
除了这12个诱导公式外,还有一些其他常用的三角函数公式,如两角和与差公式、倍角公式等。
这些公式可以进一步扩展和深化三角函数的知识体系,为解决复杂的三角函数问题提供更多工具。
三角函数诱导公式大全

三角函数诱导公式大全三角函数是比较困难的一个章节,对于同学们来说不是很好掌握。
下面是小编为大家整理的关于三角函数诱导公式大全,希望对您有所帮助。
欢迎大家阅读参考学习!常用的诱导公式有以下几组:三角函数诱导公式一:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα三角函数诱导公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三角函数诱导公式三:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα三角函数诱导公式四:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)三角函数诱导公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα三角函数诱导公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)注意:在做题时,将a看成锐角来做会比较好做。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数诱导公式一览表 The Standardization Office was revised on the afternoon of December 13, 2020
三角函数诱导公式一览表
公式一:设α为任意角,终边相同的角的同一三角函数的值相等:1、sin(2kπ+α)=sinα 2、cos(2kπ+α)=cosα
3、tan(2kπ+α)=tanα
4、cot(2kπ+α)=cotα
公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:
1、sin(π+α)=-sinα
2、cos(π+α)=-cosα
3、tan(π+α)=tanα
4、cot(π+α)=cotα
公式三:任意角α与 -α的三角函数值之间的关系:
1、sin(-α)=-sinα
2、cos(-α)=cosα
3、tan(-α)=-tanα
4、cot(-α)=-cotα
公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:
1、sin(π-α)=sinα
2、cos(π-α)=-cosα
3、tan(π-α)=-tanα
4、cot(π-α)=-cotα
公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:
1、sin(2π-α)=-sinα
2、cos(2π-α)=cosα
3、tan(2π-α)=-tanα
4、cot(2π-α)=-cotα
公式六:π/2±α与α的三角函数值之间的关系:
1、sin(π/2+α)=cosα
2、cos(π/2+α)=-sinα
3、tan(π/2+α)=-cotα
4、cot(π/2+α)=-tanα
5、sin(π/2-α)=cosα
6、cos(π/2-α)=sinα
7、tan(π/2-α)=cotα 8、cot(π/2-α)=tanα
公式七:3π/2±α与α的三角函数值之间的关系:
1、sin(3π/2+α)=-cosα
2、cos(3π/2+α)=sinα
3、tan(3π/2+α)=-cotα
4、cot(3π/2+α)=-tanα
5、sin(3π/2-α)=-cosα
6、cos(3π/2-α)=-sinα
7、tan(3π/2-α)=cotα 8、cot(3π/2-α)=tanα
诱导公式记忆口诀:“奇变偶不变,符号看象限”。
“奇、偶”指的是π/2的倍数的奇偶,“变与不变”指的是三角函数的名称的变化:“变”是指正弦变余弦,正切变余切。
(反之亦然成立)“符号看象限”的含义是:把角α看做锐角,不考虑α角所在象限,看n·(π/2)±α是第几象限角,从而得到等式右边是正号还是负号。
符号判断口诀:
“一全正;二正弦;三两切;四余弦”。
这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内只有正切和余切是“+”,其余全部是“-”;第四象限内只有余弦是“+”,其余全部是“-”。