必修四第二章测试题
高一数学必修四第二章综合能力检测

第二章综合能力检测一、选择题(本大题共12个小题,每小题5分,共60分) 1.下列命题中正确的是( ) A .若a ·b =0,则a =0或b =0 B .若a ·b =0,则a ∥bC .若a ∥b ,则a 在b 上的投影为|a |D .若a ⊥b ,则a ·b =(a ·b )2 答案:D解析:若a ∥b ,则a 在b 上的投影为|a |或-|a |,平行时分夹角为0°和180°两种情况;a ⊥b ⇒a ·b =0,(a ·b )2=0.2.已知AB →=a +5b ,BC →=-2a +8b ,CD →=3(a -b ),则( ) A .A 、B 、C 三点共线 B .A 、B 、D 三点共线 C .B 、C 、D 三点共线 D .A 、C 、D 三点共线答案:B解析:由题意,知AB →=BC →+CD →=BD →,所以A 、B 、D 三点共线. 3.在平行四边形ABCD 中,AC 为一条对角线.若AB →=(2,4),AC →=(1,3),则BD →=( )A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)答案:B解析:在平行四边形ABCD 中, AC →=AB →+AD →,BD →=AD →-AB →,∴BD →=(AC →-AB →)-AB → =(1,3)-2(2,4)=(1,3)-(4,8)=(-3,-5).4.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=( )A. 3 B .2 3 C .4 D .12答案:B解析:a =(2,0),∴|a |=2. |a +2b |2=a 2+4a ·b +4b 2=4+4×2×1×cos60°+4×1=12, ∴|a +2b |=2 3.5.[2011·广东卷]若向量a 、b 、c 满足a ∥b 且a ⊥c ,则c ·(a +2b )=( )A. 4B. 3C. 2D. 0 答案:D解析:由a ∥b 且a ⊥c , 得b ⊥c ,所以a ·c =0,b ·c =0. 所以,c ·(a +2b )=a ·c +2b ·c =0.6.已知向量OB →=(2,0),OC →=(2,2),CA →=(-1,-3),则OA →和OB →的夹角为( )A.π4B.5π12C.π3D.π12答案:A解析:由题意,得OA →=OC →+CA →=(1,-1), 则|OA →|=2,|OB →|=2,OA →·OB →=2, ∴cos 〈OA →,OB →〉=OA →·OB →|OA →||OB →|=22.又0≤〈OA →,OB →〉≤π,∴〈OA →,OB →〉=π4.故选A.7.已知平面向量a 、b 、c 满足|a |=1,|b |=2,|c |=3,且a 、b 、c 两两所成的角相等,则|a +b +c |等于( )A. 3 B .6或 2 C .6 D .6或 3答案:D解析:由题意,得a 、b 、c 两两所成的角均为120°或0°,当夹角为120°时,a ·b =-1,b ·c =-3,a ·c =-32,则|a +b +c |2=|a |2+|b |2+|c |2+2(a ·b +b ·c +a ·c )=3;当夹角为0°时,|a +b +c |=|a |+|b |+|c |=6.故选D.8.已知命题:“若k 1a +k 2b =0,则k 1=k 2=0”是真命题,则下面对a 、b 的判断正确的是( )A .a 与b 一定共线B .a 与b 一定不共线C .a 与b 一定垂直D .a 与b 中至少有一个为0 答案:B解析:根据平行四边形法则及向量共线的条件可知,a 与b 一定不共线.9.在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP =2PM ,则P A →·(PB →+PC →)等于( )A .-49 B .-43 C.43 D.49答案:A解析:由题意可知,P 是△ABC 的重心, ∴P A →+PB →+PC →=0, ∴P A →·(PB →+PC →)=-P A →2 =-(23MA →)2=-49.10.与向量a =(1,3)的夹角为30°的单位向量是( ) A .(12,32)或(1,3) B .(32,12) C .(0,1) D .(0,1)或(32,12) 答案:D解析:设单位向量为e =(x ,y ),则cos30°=x +3y 2=32,x 2+y 2=1,验证即得D.11.对向量a =(x 1,y 1),b =(x 2,y 2)定义一种新的运算“*”的意义为a *b =(x 1y 2,x 2y 1),仍是一个向量;则对任意的向量a ,b ,c 和任意实数λ,μ,下面命题中:①a *b =b *a②(a *b )*b =a *(b *b ) ③(λa )*(μb )=(λμ)(a *b ) ④(a +b )*c =a *c +b *c 其中正确命题的个数为( ) A .3 B .2 C .1 D .0答案:B解析:可结合向量的运算性质加以验证知③④正确.12.设过点P (x ,y )的直线分别与x 轴的正半轴和y 轴的正半轴交于A 、B 两点,点Q 与点P 关于y 轴对称,O 点为坐标原点,若BP →=2P A →,且OQ →·AB →=1,则P 点的轨迹方程是( )A .3x 2+32y 2=1(x >0,y >0)B .3x 2-32y 2=1(x >0,y >0)C.32x 2-3y 2=1(x >0,y >0) D.32x 2+3y 2=1(x >0,y >0) 答案:D解析:设P (x ,y ),则Q (-x ,y ).设A (x A,0),x A >0,B (0,y B ),y B >0,BP →=(x ,y -y B ),P A →=(x A -x ,-y ).∵BP →=2P A →,∴x =2(x A -x ),y -y B =-2y , ∴x A =32x ,y B =3y (x >0,y >0).又∵OQ →·AB →=1,(-x ,y )·(-x A ,y B )=1, ∴(-x ,y )·(-32x,3y )=1, 即32x 2+3y 2=1(x >0,y >0).二、填空题(本大题共4个小题,每小题5分,共20分) 13.已知向量a =(4,-3),b =(x,2),且a ∥b ,则x =________. 答案:-83解析:由题意,得4×2+3x =0,得x =-83.14.[2011·重庆卷]已知单位向量e 1,e 2的夹角为60°,则|2e 1-e 2|=________.答案: 3解析:|2e 1-e 2|=(2e 1-e 2)2=4e 21+e 22-4e 1e 2=4+1-4×1×1 cos 60° = 3.15.设向量OA →=(3,1),OB →=(-1,2),向量OC →⊥OB →,且向量BC →∥OA →,当OD →+OA →=OC →时,OD →的坐标是______.答案:(11,6)解析:设OD →=(x ,y ),则由OD →+OA →=OC →,可得OC →=(3+x ,y +1),所以BC →=OC →-OB →=(4+x ,y -1),因为OC →⊥OB →及BC →∥OA →,可得⎩⎪⎨⎪⎧(3+x )·(-1)+(y +1)·2=0(4+x )-3(y -1)=0, 解之得⎩⎪⎨⎪⎧x =11,y =6.16.已知向量a =(6,2),b =(-4,12),直线l 过点A (3,-1),且与向量a +2b 垂直,则直线l 的方程为____.答案:2x -3y -9=0解析:设B (x ,y )为直线l 上的任意一点,则l 的方向向量为AB →=(x -3,y +1).又a +2b =(-2,3),直线l 与向量a +2b 垂直,所以(x -3,y +1)·(-2,3)=0,展开化简得2x -3y -9=0.三、解答题(本大题共6个小题,共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知|a |=3,|b |=4,且(2a -b )·(a +2b )≤4,求a 与b 的夹角θ的范围.解:由条件(2a -b )·(a +2b )≤4,可以得含cos θ的不等关系式. ∵(2a -b )·(a +2b )≤4,即2×32-2×42+3a·b ≤4, ∴a ·b ≤6,即|a ||b |cos θ=3×4cos θ≤6. ∴-1≤cos θ≤12,∴π3≤θ≤π.18.(本小题满分12分)等腰△ABC 中,BD 和CE 是两腰上的中线,且BD ⊥CE ,求顶角A 的余弦值.解:建立如图所示的直角坐标系,设A (0,a ),C (c,0),则B (-c,0),OA →=(0,a ),BA →=(c ,a ),OC →=(c,0),BC →=(2c,0).因为BD 和CE 分别为AC ,AB 的中线,所以BD →=12(BC →+BA →)=(3c 2,a2),同理CE →=(-3c 2,a 2),又BD →⊥CE →,故BD →·CE →=0,即-94c 2+a 24=0,故a 2=9c 2.所以cos ∠BAC =AB →·AC →|AB →||AC →|=a 2-c 2a 2+c 2=9c 2-c 29c 2+c 2=45.19.(本小题满分12分)已知|a |=3,|b |=2,a 与b 的夹角为60°,c =3a +5b ,d =m a -b ,c ⊥d ,求m 的值及a 与c 夹角的余弦值.解:由c =3a +5b ,d =m a -b ,可得c ·d =(3a +5b )·(m a -b )=3m a 2-3a ·b +5m a ·b -5b 2.因为|a |=3,|b |=2,a 与b 的夹角为60°,所以a ·b =|a |·|b |·cos60°=3×2×cos60°=3,所以c ·d =27m -3×3+15m -20=0,即42m =29,所以m =2942.因为a ·c =a ·(3a +5b )=3a 2+5a ·b =3×9+5×3=42.|a |=|3a +5b |=(3a +5b )2=9a 2+30a ·b +b 2×25=9×9+30×3+4×25=271,设a 与c 的夹角为θ,则cos θ=a ·c |a |·|c |=423×271=14271271. 20.(本小题满分12分)(1)已知|a |=4,|b |=3,(2a -3b )·(2a +b )=61,求a 与b 的夹角;(2)设OA →=(2,5),OB →=(3,1),OC →=(6,3),在OC →上是否存在点M ,使MA →⊥MB →,若存在,求出点M 的坐标,若不存在,请说明理由.解:(1)∵(2a -3b )·(2a +b )=61, ∴4a 2-4a ·b -3b 2=61. 又|a |=4,|b |=3,∴a ·b =-6. ∴cos θ=a ·b |a ||b |=-12,∴θ=120°.(2)设存在点M ,且OM →=λOC →=(6λ,3λ)(0<λ≤1),∴MA →=(2-6λ,5-3λ),MB →=(3-6λ,1-3λ).∴(2-6λ)(3-6λ)+(5-3λ)(1-3λ)=0,∴45λ2-48λ+11=0,解得:λ=13或λ=1115,∴OM →=(2,1)或OM →=(225,115).∴存在M (2,1)或M (225,115)满足题意.21.(本小题满分12分)已知向量OA →=(1,5),OB →=(7,1),OM →=(1,2),P 是直线OM 上的一个动点,当P A →·PB →取最小值时,求OP →的坐标,并求出cos ∠APB 的值.解:设OP →=t ·OM →=(t,2t )(t ≠0),所以P A →=OA →-OP →=(1-t,5-2t ),PB →=OB →-OP →=(7-t,1-2t ),所以P A →·PB →=(1-t,5-2t )·(7-t,1-2t )=(1-t )·(7-t )+(5-2t )·(1-2t )=5t 2-20t +12.令f (t )=5t 2-20t +12,则f (t )=5(t -2)2-8,所以当t =2时,f (t )的最小值为-8,此时OP →=(2,4),P A →·PB →=-8,|P A →|=2,|PB →|=34, 所以cos ∠APB =P A →·PB →|P A →|·|PB →|=-82·34=-41717.22.(本小题满分12分)用两条同样长的绳子拉一物体,物体受到的重力为G ,两绳受到的拉力分别为F 1,F 2,夹角为θ,如图.(1)求其中一根绳受的拉力|F 1|与|G |的关系式,用数学观点分析|F 1|的大小与夹角θ的关系;(2)求|F 1|的最小值;(3)如果每根绳的最大承受拉力为|G |,求θ的取值范围. 解:(1)由力的平衡得F 1+F 2+G =0, 设F 1,F 2的合力为F ,则F =-G , ∴F 1+F 2=F 且|F 1|=|F 2|,|F |=|G |,解直角三角形得cos θ2=12|F ||F 1|=|G |2|F 1|, ∴|F 1|=|G |2cos θ2,θ∈[0°,180°]. 由于函数y =cos x 在x ∈[0°,180°]上为减函数,∴θ逐渐增大时,cos θ2逐渐减小,|G |2cos θ2逐渐增大,∴θ增大时,|F 1|也增大.(2)由上述可知,当θ=0°时,|F 1|有最小值为|G |2.(3)依题意,|G |2≤|F 1|<|G |,∴12≤12cos θ2<1,即12<cos θ2≤1.∵y =cos x 在[0°,180°]上为减函数,∴0°≤θ2<60°,∴θ∈[0°,120°).。
(北师大版)高中数学-必修四-同步习题-第二章平面向量 2.7.1 点到直线的距离公式

§7向量应用举例7.1点到直线的距离公式课时过关·能力提升1.已知点(3,m)到直线x的距离等于则等于A或解析:d -故m或答案:D2.若且分别是直线和直线的方向向量则的值可以分别是A.2,1B.1,2C.-1,2D.-2,1解析:直线l1的一个法向量为n1=(a,b-a),直线l2的一个法向量为n2=(a,4b).又分别为直线l1,l2的方向向量,则a+2(b-a)=0,-2a+4b=0,即a=2b,令b=1,则a=2.答案:A3.若点P在直线x+y-4=0上,O为坐标原点,则|OP|的最小值是()A解析:|OP|min即为原点到直线的距离,故|OP|min-答案:B4.已知两条平行直线l1:12x+5y-3=0和l2:12x+5y+m=0的距离为1,则m=()A.10B.-16C.10或-16D.13解析:在l1上取点则M到l2的距离d解得m=10或-16.答案:C5.过点P(1,-3),且与向量m=(5,2)平行的直线方程为.解析:设M(x,y)是所求直线上任一点,则∥m.因为所以2(x-1)-5(y+3)=0,即2x-5y-17=0.答案:2x-5y-17=06.已知点P(4,a)到直线4x-3y-1=0的距离不大于3,则a的取值范围是.解析:由题意,得点P(4,a)到直线4x-3y-1=0----≤3即|15-3a|≤15 解得0≤a≤10.所以a∈[0,10].答案:[0,10]7.已知直线l1:x+2y+10=0,直线l2:5x+my=0,若l1⊥l2,则实数m=. 解析:分别取直线l1和l2的法向量m=(1,2)和n=(5,m),则m⊥n,所以m·n=0.所以1×5+2m=0,解得m=答案:8.已知两点A(3,2),B(-1,4)到直线mx+y+3=0的距离相等,则m=.解析:由已知得直线的一个法向量为n=(m,1),其同向单位向量为n0在直线上任取一点P(0,-3),则依题意有·n0|=·n0|,---解得m或m=-6.答案:或9.已知直线l:mx+2y+6=0,向量(1-m,1)与l平行,则实数m的值为.解析:∵直线l的法向量n=(m,2)与向量(1-m,1)垂直,∴(m 2 · 1-m,1)=0,即m(1-m)+2=0,∴m=-1或m=2.答案:-1或210.用向量方法判断下列各组直线的位置关系.(1)l1:5x+4y=0,l2:5x+4y+1=0;(2)l1:3x+2y+1=0,l2:6x+4y+2=0;(3)l1:7x+y-2=0,l2:x-7y+1=0;(4)l1:4x-y+3=0,l2:3x+2y+1=0.分析利用两条直线的法向量间的关系来判断.解(1)分别取l1和l2的一个法向量m=(5,4)和n=(5,4),则m∥n,但点P(0,0)在l1上,不在l2上,故l1∥l2.(2)分别取l1和l2的一个法向量m=(3,2)和n=(6,4),则m∥n,且-在l1上,也在l2上,故l1与l2重合.(3)分别取l1和l2的一个法向量m=(7,1)和n=(1,-7),则m·n=1×7+1× -7)=0,所以m⊥n.故l1⊥l2.(4)分别取l1和l2的一个法向量m=(4,-1)和n=(3,2),则4×2-(-1 ×3≠0 且4×3+(-1 ×2≠0.所以m与n既不平行也不垂直.故l1和l2相交但不垂直.11.求经过点A(2,1),且与直线l:4x-3y+9=0平行的直线方程.解因为向量(4,-3)与直线l的方向向量垂直,所以向量n=(4,-3)与所求的直线的方向向量垂直.设P(x,y)为所求直线上的一动点,则点P在所求直线上,当且仅当n·所以4(x-2)+(-3)(y-1)=0.整理,得4x-3y-5=0.故所求的直线方程为4x-3y-5=0.★12.在△ABC中,A(4,1),B(7,5),C(-4,7),求∠A的平分线所在直线的方程.解(方法一)向量从而∠A的平分线所在直线的一个方向向量为--则∠A的平分线所在直线的方程可设为将点A(4,1)的坐标代入,得m=整理得∠A的平分线所在直线的方程为7x+y-29=0.(方法二)设为∠A的平分线所在直线的的一个方向向量,则有··由方法一可得即7λ+μ=0,令λ=-1,得μ=7,则从而∠A的平分线所在直线的方程为---即7x+y-29=0.。
高中数学第二章平面向量新人教A版必修4

平面向量一、选择题1.下列命题中正确的是( )( A ) 两个相等的向量的起点,方向,长度必须都相同( B) 若a,b是两个单位向量,则a= b( C) 若向量a和b共线,则向量a, b 的方向相同( D) 零向量的长度为0,方向是任意的2.如图,在平行四边形ABCD 中,下列结论中错误的是( )( A ) ( C) AB DCAB AD BD( B )( D )AD AB ACAD CB03.在四边形ABCD 中,CB AB BA( )(A) DB (B) CA(C) CD (D) DC4.已知a,b为非零向量,且|a+ b|=| a|+| b|,则一定有( )( A ) a=b ( B ) a∥b,且a,b方向相同( C) a=-b ( D ) a∥b,且a,b方向相反5.化简下列向量: ( 1) AB BC CA (2) AB AC BD CD(3) FQ QP EF EM (4) OA OB AB,结果为零向量的个数是( )(A)1 (B)2 (C)3 (D)4二、填空题6.对于下列命题①相反向量就是方向相反的向量②不相等的向量一定不平行③相等的向量一定共线④共线的单位向量一定相等⑤共线的两个向量一定在同一条直线上其中真命题的序号为______.3 3点A 的位置向量为 ______.8.一艘船以 5 km 的速度出发向垂直于对岸的方向行驶,而船实际的航行方向与水流成30°,则船的实际速度的大小为______ ,水流速度的大小为______.9.如图,在□ABCD中,AO a ,DO b ,用向量a, b 表示下列向量CB______AB =_____.10.已知平面内有□ABCD和点O,若OA a ,OB b,OC c ,OD d,则a-b+c -d=______.三、解答题11.化简:(1) AB AC BD(2) AB CD CB DA12.在单位圆中, B 是 OA 的中点, PQ 过 B 且 PQ∥Ox,MP⊥ Ox,NQ⊥ Ox,则在向量OM,ON,MP,NQ,OP,OQ,OB,OA,PQ 中.( 1) 找出相等的向量;( 2) 找出单位向量;( 3) 找出与OM共线的向量;( 4) 向量OM,ON的长度.13.已知正方形A BCD 的边长为1,若AB a ,BC b ,AC c ,求作向量a-b+c,并求出 |a-b+c|.14.已知向量a, b 满足:| a|=3,| a+ b|=5,| a- b|=5,求| b|.向量的线性运算 ( 二 ) 一、选择题1.若 3( x+ 3a) - 2( a-x) =0,则向量 x= ( ) ( A ) 2a ( B) - 2a ( C) 7a ( D ) 7 a5 52.若AB5e, CD7e且 | AD | | BC |,则四边形ABCD 是 ( ) ( A ) 平行四边形( B ) 非等腰梯形( C)菱形( D)等腰梯形3.如图所示, D 是△ ABC 的边上的中点,则向量CD 等于()(A) BC 1BA ( B ) BC1BA 2 2(C) BC 1BA (D) BC 1 BA2 2 )4.已知向量1- 2e2,b=- 2e1+ 4e2,则向量a与b满足关系 (a= e( A ) b= 2a ( B) 共线且方向相反 ( C) 共线且方向相同(D)不平行5.下列结论中正确的个数是 ( )①若| b|=2| a|,则 b=±2a ②若 a∥ b,b∥ c,则 a∥ c ③若 m a=m b,则a=b④ 0a=0⑤若向量a与b共线,则一定存在一个实数,使得 a= b(A)0个(B)1个(C)2个(D)3 个二、填空题6.化简: 5( 3a- 2b) + 4( 2b-3a) = ______.7.与非零向量a共线的单位向量为 ____________.8.数轴上的点 A,B,C 的坐标分别为2x,- 2,x,且AB 3BC ,则x=______;|AB|= ______.9.已知向量 a 与 b 方向相反,|a|=6,| b|=4,则 a=______b.10.在□ ABCD 中,AB a ,AD b ,AN3NC ,M为BC的中点,则 MN____.三、解答题11.点 D 是△ ABC 边 BC 上一点,且BD 1 BC.设试AB a,AC b,用向量a,b表示3AD.12.已知向量a, b 满足求| a|∶| b|.11 1(a3b)(a b)(3a2b) ,求证:向量 a 与 b 共线,并52 513.已知|a|= 1,|b|= 2.若a=b,求|a-b|的值.14.已知平面中不同的四点A,B,C,D 和非零向量a,b,且AB a2b,CD 5a6b,CD =7a-2b.( 1) 证明: A, B, D 三点共线;( 2) 若a与b共线,证明A, B, C,D 四点共线.向量的分解与向量的坐标表示一、选择题1.已知向量a= ( 4,2) ,向量 b=( x,3),且 a∥b,则x=( )(A)9 (B)6 (C)5 (D)32.已知点 A( 0, 1) , B( 1, 2) , C( 3, 4) ,则AB 2BC的坐标为 ( )( A)( 3,3) ( B)( -3,- 3) ( C)( - 3, 3) ( D)( 3,- 3)3.已知基底 { e1,e2} ,实数 x,y 满足 ( 3x- 4y) e1+ ( 2x-3y) e2= 6e1+ 3e2,则 x- y 的值等于( )(A)3(B)-3(C)0(D)24.在基底 { e1,e2} 下,向量a=e1+ 2e2,b= 2e1-e2,若a∥b,则的值为()(A)0(B)-21(D)-4( C)25.设向量a= ( 1,- 3) ,b= ( - 2,4) ,c= ( - 1,- 2) ,若表示向量4a,4b-2c,2( a-c) ,d 的有向线段首尾相连能构成四边形,则向量 d 为( )( A)( 2,6) ( B)( -2,6)( C)( 2,- 6) ( D)( - 2,- 6)二、填空题6.点 A( 1,- 2) 关于点 B 的对称点为 ( - 2, 3) ,则点 B 的坐标为 ______.7.若 M( 3,- 2) ,N( - 5,- 1) 且MP 1 MN,则 P 点的坐标为 ______________.28.已知点 O( 0,0) , A( 1,2) ,B( 4,5) ,点 P 满足OP OA t AB ,当点P在x轴上时,t= _______.9.已知□ABCD 的三个顶点A( - 1, 3) , B( 3, 4) ,C( 2, 2) ,则顶点D的坐标为 ______.10.向量OA(k,12) , OB (4,5) , OB (10, k) 若A、B、C三点共线,则k= ______.三、解答题11.已知梯形ABCD 中,AB2DC ,M,N分别是DC,AB的中点.设 AD a,AB b 选择基底 { a,b} ,求向量DC,NM在此基底下的分解式.12.已知向量a=( 3,-2),b=(-2,1), c=( 7,-4),( 1) 证明:向量a, b 是一组基底;( 2) 在基底 { a,b} 下,若c= x a+ y b,求实数x, y 的值.13.已知向量a=( 1,2), b=(-3,x).若 m=2a+ b, n= a-3b,且 m∥ n,求实数x的值并判断此 m 时 n 与的方向相同还是相反.14.已知点O( 0,0) , A( 1, 4) ,B( 4,- 2) ,线段 AB 的三等分点C,D ( 点 C 靠近 A) .OC2OD平面向量的数量积及其运算律一、选择题1.若| a |= 4, | b |= 3,〈a , b 〉= 135°,则 a 2 b = ( )(A)6( B)(C)6 2 (D) 622.已知 | a |= 8, e 为单位向量,〈 a , e 〉2π,则 a 在 e 方向上的正射影的数量为 ( )3(A)4 3(B)4(C) 43(D)-4 3.若向量 a , b , c 满足 a 2 b = a 2 c ,则必有 ()( A ) a = 0( B) b = c( C) a =0 或 b = c ( D ) a ⊥ ( b - c )4.若| a |= 1,| b |= 2,且 ( a + b ) ⊥ a ,则〈 a , b 〉= ()( A) 30° ( B) 60°( C) 120° (D)150°5.平面上三点 A ,B ,C ,若 | AB | 3,|BC | 4,|CA | 5,则 AB BC BC CA CA AB= ( )A .25 ( B) -25(C)50(D)-50二、填空题6.已知 a 2 b =- 4, a 在 b 方向上的正射影的数量为-8,则在| a |和 | b | 中,可求出具体数值的是 ______,它的值为 ______.7.已知 a , b 均为单位向量, 〈 a , b 〉= 60°,那么| a + 3b | = ______. 8.已知| a |= 4,| b | = 1,| a - 2b | = 4,则 cos 〈a , b 〉= ______.9.下列命题中,正确命题的序号是______.( 1) | a | 2=a 2;( 2) 若向量 a , b 共线,则 a 2 b =| a || b | ;( 3)( a 2 b ) 2= a 22 b 2;( 4) 若 a 2 b = 0,则 a = 0 或 b = 0( 5)( a -b ) 2 ( a +b ) =| a | 2-| b | 2;10.设向量 a , b , c 满足 a + b +c = 0, ( a -b ) ⊥ c , a ⊥b .若| a |= 1,则 | a | 2+| b |2+| c | 2的值是 ______. 三、解答题11.已知| a |= 5,| b |= 4,〈a , b 〉π,求 ( a + b ) 2 a 和| a + b |.312.向量 a , b 满足 ( a - b ) 2 ( 2a + b ) =- 4,且 | a | = 2,| b |= 4,求〈 a ,b 〉.13.已知 O 为△ ABC 所在平面内一点,且满足(OB OC) (OB OA) 0 ,试判断△ ABC的形状.14.已知向量 a , b 满足:| a |= 1,| b | = 2,| a - b | = 7 .( 1) 求| a - 2b |; ( 2) 若 ( a + 2b ) ⊥( k a - b ) ,求实数 k 的值.向量数量积的坐标运算与度量公式一、选择题1.已知 a = ( - 4, 3) , b = ( 5,6) ,则 3a 2-4a 2 b =()(A)83(B)63(C)57(D)232.已知向量 a ( 3, 1) , b 是不平行于 x 轴的单位向量,且 a b3 ,则 b =()(A)(3, 1) (B) (1,3 ) (C) (1,3 3) ( D)( 1,0)2222443.在△ ABC 中, A( 4, 6) , B( - 4,10) , C( 2, 4) ,则△ ABC 是 ( )( A ) 等腰三角形( B) 锐角三角形( C) 钝角三角形( D ) 直角三角形4.已知 a = ( 0, 1) ,b = ( 1,1) ,且〈 aπ的值为( )b ,a 〉,则实数2(A)-1(B)0(C)1(D)25.已知 a = ( 1, 2) ,b = ( - 2,- 4) , | c |5 ,若 (ab )c 5 ),则〈 a , c 〉= (2( A) 30°( B) 60°( C) 120°(D)150°二、填空题,b 〉=.若a + = ( - ,-1) , - =,- ,则=,〈 a ______ .6 b 2 a b ( 4 3) a 2 b ______7.向量 a = ( 5, 2) 在向量 b =( - 2, 1) 方向上的正射影的数量为 ______. 8.在△ ABC 中, A( 1, 0) , B( 3, 1) , C( 2, 0) 则∠ BCA = ____________. 9.若向量 a 与 b = ( 1, 2) 共线,且满足 a 2 b =- 10,则 a = ______.10.已知点 A( 0,3) ,B( 1,4) ,将有向线段 AB 绕点 A 旋转角π到 AC 的位置,则点C 的2坐标为 ______. 三、解答题11.已知 a = ( - 3,2) ,b = ( 1,2) ,求值: | a + 2b |,( 2a - b ) 2 ( a +b ) ,cos 〈a + b ,a - b 〉.12.若 |a |2 13 , b = ( - 2, 3) ,且 a ⊥ b ,求向量 a 的坐标.13.直角坐标系 xOy 中,已知点 A( 0,1) 和点 B( -3, 4) ,OC 为△ AOB 的内角平分线,且OC 与 AB 交于点 C ,求点 C 的坐标.14.已知 k Z ,AB ( k ,1),AC ( 2,4),| AB | 4 ,且△ ABC 为直角三角形, 求实数 k 的值.用心爱心专心测试十二向量的应用Ⅰ学习目标1.会用向量的方法解决某些简单的平面几何问题.2.会用向量的方法解决物理中简单的力学和速度问题;能将物理问题转化为数学问题,同时会用建立起来的数学模型解释相关的物理问题.Ⅱ基础性训练一、选择题1.作用于原点的两个力f1=( 1,1), f2=( 2,3),为使它们平衡,需要增加力f3,则力 f3 的大小为 ( )( A)( 3,4) ( B)( -3,- 4)( C) 5 (D)252.在水流速度为自西向东,10 km / h 的河中,如果要使船以10 3 km/ h的速度从河南岸垂直到达北岸,则船出发时行驶速度的大小和方向( )( A ) 北偏西 30°, 20 km/ h( B ) 北偏西 60°, 20 km / h( C) 北偏东 30°, 20 km/ h( D ) 北偏东 60°, 20 km / h3.若平行四边形ABCD 满足| AB AD | | AB AD |,则平行四边形ABCD 一定是 ( )(A)正方形(B)矩形(C)菱形(D)等腰梯形4.已知□ABCD 对角线的交点为O,P 为平面上任意一点,且PO =a,则PA PB PC PD = ( )( A ) 2a ( B) 4a ( C) 6a ( D ) 8a5.已知非零向量AB与 AC满足(AB AC)BC 0且 AB.AC 1|AB | |AC | |AB| |AC| 2,则△ ABC为 ( )( A ) 三边均不相等的三角形( B ) 直角三角形( C) 等腰非等边三角形( D ) 等边三角形二、填空题6.自 50 m 高处以水平速度10 m/ s 平抛出一物体,不考虑空气阻力,则该物2s 时的速度的大小为 ______,与竖直向下的方向成角为,则tan=______( g=10 m/ s2).7.夹角为 120°的两个力f1和 f2作用于同一点,且| f 1|=| f2|=m( m>0),则 f1和 f2的合力 f 的大小为______, f 与 f2的夹角为____________.8.正方形ABCD 中, E,F 分别为边DC , BC 的中点,则cos∠ EAF = ____________.9.在△ ABC 中,有命题:①AB AC BC ;②若 ( AB AC) ( AB A C )0 ,则△ABC 为等腰三角形;③AB BC CA=0;④若 AB BC 0 ,则为△ABC锐角三角形.上述命题中正确的是____________( 填上你认为正确的所有序号)三、解答题10.水平电线AB 对竖直电杆BD 的拉力为300 N,斜拉索BC 的拉力为600 N,此时电杆恰好不偏斜,求斜拉索与地面成角的大小以及由此引起的电杆对地面的压力( 电杆自重不计).11.某运动员在风速为东偏北60°, 2 m/ s 的情况下正在以 10 m/ s 的速度向东跑.若风停止,运动员用力不变的情况下,求该运动员跑步速度的大小和方向.12.对于平行四边形ABCD ,点 M 是 AB 的中点,点N 在 BD 上,且BN 1 BD.用向量3的方法证明:M, N, C 三点共线.Ⅲ拓展性训练13.在 Rt△ABC 中,∠ C=90°,且 CA= CB, D 是 CB 的中点, E 是 AB 上一点,且AE=2EB.求证: AD ⊥ CE.14.如图,已知点A( 4, 0) , B( 4,4) , C( 2, 6) ,求 AC 与 OB 的交点 P 的坐标.测试十三平面向量全章综合练习一、选择题1.向量( AB MB) (BO CB) OM 化简后等于( )(A) AC (B) BC ( C) AB (D) AM2.点 A 的坐标为 ( 1,- 3) ,向量AB的坐标为 ( 3,7) ,则点 B 的坐标为 ( ) ( A)( 4,4) ( B)( -2,4) ( C)( 2, 10) ( D)( -2,- 10)3.已知向量a= ( -2, 4) ,b= ( - 1,- 2) , c=( 2,3),则( a+ b) 2 ( a- c)的值为( )(A)10 (B)14 ( C) -10 (D)-144.已知向量a= ( 2,t) ,b= ( 1, 2) .若 t= t1时,a∥b; t= t 2时,a⊥b,则 ( ) ( A ) t1=- 4, t2=- 1 ( B ) t1=- 4, t2= 1( C) t1= 4, t2=- 1 ( D ) t1= 4, t2= 15.若点 O 是△ ABC 所在平面内一点,满足OA OB OB OC OC OA ,则点O是△ABC 的 ( )( A ) 三个内角的角分线的交点( B ) 三条边的垂直平分线的交点( C) 三条中线的交点( D ) 三条高线的交点二、填空题6.河水的流速为 2 m/ s,一只小船想要以垂直于河岸方向10 m/ s 的速度驶向对岸,则小船在静水中的速度的大小应为______________.7.数轴上的点A,B,点 A 的坐标为- 3,且向量AB的长度为5,则点 B 的坐标为 ______.8.已知p= ( - 2, 2) ,q= ( 1,3) ,则p在q方向上的正射影的数量为______.9.已知向量a=( 2,3), b=(-1,2),若( a+b)⊥( a+ b),则实数=______.10.给出下列命题:①a b b; a2a②| a|-| b|<| a- b|;③ |a2b|=|a||b|;④ ( b2 c) a- ( c2 a) b与c垂直;⑤已知 a,b 是非零向量,若| a+ b|=| a- b|,则a⊥ b;a2= b2.⑥已知 a, b 是两个单位向量,则所有正确的命题的序号为____________ .三、解答题11.已知点A( - 2, 1) , B( 1,3) .求线段 AB 中点 M 和三等分点P, Q 的坐标.12.已知 | a|= 2, | b|= 4,〈a,b〉2π.求|a-b|和〈a,a-b〉的余弦值.313.已知向量a=( 1,2), b=( x,1).( 1) 求与 a 垂直的单位向量的坐标;( 2) 求| b-2a|的最小值以及此时 b 的坐标;( 3) 当 x 为何值,a+ 2b与b- 2a平行,并确定它们此时是同向还是反向.14.如图,以原点O 和 A( 5,2) 为两个顶点作等腰直角△OAB,使∠ B= 90°.求点 B 的坐标和 AB 的坐标.参考答案第二章平面向量测试七向量的线性运算 ( 一 )一、选择题1.D 2.C 3.C 4.B 5.C二、填空题6.③7.“东偏北 60°, 6 km”或“北偏东30°, 6 km ” 8. 10 km / h 5 3 km/ h9.b-a;a+b10.0三、解答题11.解: ( 1) CD;( 2) 原式=(AB BC CD) DA AD DA =0.12.解: ( 1) MP NQ OB ;( 2) OP,OQ,OA;( 3) ON,PQ ;( 4)|OM | | ON | 3 213.解:AB a, BC b, AC c ,所以DB a b,BE AC c, DE DB BE a b c ,| a- b+ c|=2.14.解:设AB a, AD b ,做□ABCD.则 AC a b, DB a b ,可得 AC BD 5 ,所以□ABCD为矩形,|b | | AD | 52 32=4.测试八 向量的线性运算 ( 二 )一、选择题1.D 2.D 3.A 4. B 5. A二、填空题6. 3a - 2b 7.a 8.- 4; 6 9. a 3b 10. 1 b 1a| a |244三、解答题11.答: AD2 a 1b .33712.略解:化简得 9a = 7b ,即 ab ,所以 a ∥ b ;| a |∶| b |= 7∶ 9.91,λ= 113.略解:由题意,得| a |=| λ|| b |,∴ | λ|=,22| a - b |=| λ- 1|| b |= 2| λ- 1|= 1 或 3.14. (1) 证明:∵ BDCD CB 2a 4b ,∴ BD 2 AB ,∴ AB // BD ,因为二者均经过点 B ,所以 A , B , C 三点共线. (2)证明:∵ a 与 b 共线,设 a = λb ,∴ BD ( 2 4)b , CD (7 2)b∵CD0, BD 0 ∴7λ- 2≠0, 2λ+ 4≠0.∴ BD 24CD ,7 2∴ BD // CD ,所以 B , C , D 三点共线,又 A ,B , D 三点共线.所以 A , B ,C , D 四点共线.测试九 向量的分解与向量的坐标表示一、选择题1.B 2. B 3.A 4.D 5.D 二、填空题6.( 1,1)7.( 1, 3) 8. t2 9.( -2,1) 10.- 2 或 112 223三、解答题11.答: DC1b ; NM a1b .2412. ( 1) 证明:∵32 ,∴ a 与 b 不平行,所以向量 a , b 是一组基底.213x 2 y 7,x 1, ( 2) 略解: ( 7,- 4) = x( 3,- 2) + y( - 2, 1) ,y4,所以2.2x y13.略解: m =( - 1, 4+x) , n =( 10, 2- 3x) ,因为 m ∥ n ,所以- ( 2- 3x) - 10( 4+ x) =0, x =- 6,此时 m = ( - 1,- 2) , n = ( 10, 20) ,有 n =- 10m ,所以 m 与 n 方向相反.14.略解: ( 1) OC OA AC OA 1(1,4)1(2,2) .AB (3, 6)3 3OD OA AD OA 2AB (1,4)2(3, 6) (3,0) .3 3( 2) OC 2OD ( 2,2) 2(3,0) (8,2) .OE OB OC 2OD ( 4, 2) (8,2) (12,0) .测试十平面向量的数量积及其运算律一、选择题1.D 2.D 3.D 4.C 5.B二、填空题6.|b|; 1 7.13 8.19.①⑤10. 42 4提示:10.由a+b+c=0,得c=-a-b,又 ( a-b) ⊥c,∴ (a-b) 2 (-a-b)=0,2 2∴-| a|- a2 b+a2 b+| b|=0,∴|b|=|a|=1.又 c=- a- b,222 2 ∴| c|=|- a- b|=(- a- b) 2 (- a- b)=| a|+2a2 b+| b|=2.另外,可以结合图示,分析解决问题.三、解答题11.解:a2 b= 10, ( a+b) 2 a=a2+a2 b= 35,|a b | ( a b) 2 a 2 2a b b2 61 .12.解:由题意得2a 2-a2 b-b2=- 4,所以 2a2-a2 b-b2=- 4,得a2 b=-4,cos 〈a,b〉 a b 1, 〈a,b〉=120°| a || b | 213.略解:因为(OB OC) (OB OA) 0 ,所以CB AB=0,从而CB AB ,△ABC 为直角三角形.14.略解: ( 1) |a-b|2=a2- 2ab+b2= 7,所以a2 b=- 1,| a-2b|2= a2-4ab+4b2=21,即|a2b | 21.( 2) 由已知得 ( a+ 2b) 2 ( k a-b) = 0,即 k a2-ab+ 2k ab- 2b2= 0,得 k=- 7.测试十一向量数量积的坐标运算与度量公式一、选择题1.A 2.B 3.D 4.A 5.C提示:5.设c= ( x,y) ,由 | c | 5 ,得x2+y2=5,,①,由 ( a b ) c55 5,得 ( 1, 2) ( x, y),∴ x 2 y,, ②222由①②解得 c( 1 3, 13) ,或 c ( 1 3, 13) .22 2213) 时, cos 〈a c5 1 , 当c (3, 1, 〉222a c5 52|a || c |∴〈 a ,c 〉= 120°,另一种情况,计算结果相同.二、填空题6.- 5; 135° 7. 8 510. ( - 1,4) 或 ( 1,2)58.135° 9. ( - 2,- 4)提示:10.设 C( x , y) ,则 AB(1,1), AC ( x, y 3) ,由 AC ⊥ AB 得, AB AC 0 ,即 x + y - 3= 0,, ①又 | AB | AC , ∴ 2= x 2+ ( y - 3) 2,, ②. 结合①②,解得,x 1,x 1y 或y 4 ∴ C( 1, 2) 或 C( -1,4) .2,三、解答题11.答: |a 2b |37 ;( 2a - b ) 2 ( a + b ) =22; cos a b , ab 55.12.解:设 a = ( x ,y) ,则2x 3 y 0 x 6 x6 x2y252,解得:y 4 或,所以 a =( 6,4) 或y 4a = ( -6,- 4) .13.解:设 C( x , y) ,则 OC( x, y) ,由已知可得: 〈 OA,OC 〉=〈 OB, OC 〉AC // ABx y 113 则,所以,解得OC OCOB OC 3 4 x, y,2yxy2|OA ||OB|55所以 C( 1, 3).2 214.解:由 | AB |4 得 k 2≤ 15,∵ k ∈ Z ,∴ k =- 3,- 2,- 1, 0, 1, 2,3,·2k 4 0 所以 k =- 2;当 A = 90°时, AB ACAB ·BC 0,BC (2 - k ,3)当 C= 90°时,,所以 2( 2- k) +12= 0, k= 8( 舍 ) .AC·BC 0,BC (2 - k,3)综上 k=- 1 或- 2 或 3.测试十二向量的应用一、选择题1.C2.A3.B4.B5.D提示:ABm, AC5.设n ,则|m|=|n|=1,|AB| |AC|由已知 (m n) BC 0 .∴ m BC n BC,∴ m BC cos(x B)n BC cos C ∴c osB= c osC,又B、C∈( 0,)∴B= C.又由已知 m n 1,2∴ m n cos A 1 2∴ cos A 1,又(0,π)2∴A= 60°∴△ ABC 为等边三角形.二、填空题18.46. 10 5m/s;7. m, 60°,9.②③2 5三、解答题10.答:= 60°;300 3N.11.解:如图,建立平面直角坐标系,作□ABCD,设|OC | 2,| OB | 10,则C( 1,3 ),B( 10, 0) ,CB (9, 3),得 |CB| 2 21 9.17m/s,tan AOB3.9由计算器计算得∠ AOB≈ 10. 89°.该运动员跑步速度的大小为9. 17 m/ s,方向为东偏南约10. 89°.MN // MC量,再证明二者具有关系 MN MC 即可.设AB e 1 , AD e 2 ,则 BDe 1 e 2 , BN1e 1 1e 2 .3 3MC1e 1 e 2 , MN MB BN 1e 1 ( 1e 11e 2 ) 1 e 1 1e 2 .22 33 6 3所以 MN1MC ,所以 M , N ,C 三点共线.313.证明:设此等腰直角三角形的直角边长为a ,AD CE( AC CD) (CA AE) AC CA AC AECD CA CD AE|AC|2| AC || AE | cos45 0 |CD || AE |cos45a 22 a 21 a 20 所以 AD ⊥ CE .33或以点 C 为原点, CA , CB 所在的直线分别为x ,y 轴建立平面直角坐标系,则 A( a , 0) , D (0, 1 a), E(1 a, 2a), AD ( a, 1 a), CE ( 1 a, 2a),23 3233可得出 AD CE1 a2 1 a 20 ,所以 AD ⊥CE .3 314.解:设 P( x , y) ,则 OP (x, y) , OB = ( 4, 4) ,由 OP,OB ,共线得 4x -4y = 0,,, ①,AP ( x 4, y) , AC = ( - 2, 6) ,由 AP, AC 共线得 6( x - 4) - y( - 2) =0,, ②,由①②解得, P( 3, 3) .测试十三 平面向量全章综合练习一、选择题 1.A2.A3.B4.C5.D二、填空题6. 2 26m/s7.-8 或 2 2 109.1710.④⑤⑥8.59三、解答题11.解: ABOB OA (3,2) ,OM1(OB OA) ( 1,2),所以 M (1,2),2 22OPOA1AB (1, 5) ,所以 p( 1, 5), OQ OA 2AB (0, 7) ,3 3 33 3 7所以 Q(0, ) .2 7 , cos 〈 a , a -b 〉2712.答:| a -b |7.13.略解: ( 1) 设单位向量为 e = k( - 2, 1) = ( - 2k , k) ,因为 | e | = 1,得 k55,2 5 52 5 5e (5 , 5 ) 或 e ( 5 , 5 ) .(2)|b 2 | ( x 2) 29 ,当 x = 2 时, | b - 2a |最小值为 3,此时 b = ( 2,1) .a ( 3) x 1 ,反向.214.解:设 B( x , y) ,则 AB( x 5, y 2), OBAB OB 0(x, y) ,由已知得,| AB| |OB|x( x5) y( y 2) 0x 3x2 7所以,解得 2 或 2 ,x2y2( x 5)21( y 2)2y 1 7 y 2 32 2 所以 B(3,7)或 B(7,3),AB ( 3, 1)或 AB ( 7,3),222 22 22 2用心 爱心 专心。
2019高中数学第二章平面向量单元测试(二)新人教A版必修4

第二章 平面向量注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。
2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。
3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域均无效。
4.考试结束后,请将本试题卷和答题卡一并上交。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.设3,sin 2α⎛⎫= ⎪⎝⎭a ,1cos ,3α⎛⎫= ⎪⎝⎭b ,且∥a b ,则锐角α为( )A .30︒B .60︒C .75︒D .45︒2.下列命题正确的是( ) A .单位向量都相等B .若a 与b 共线,b 与c 共线,则a 与c 共线C .若|a +b |=|a -b |,则a ·b =0D .若a 与b 都是单位向量,则a ·b =1.3.设向量()2,3a m m =-+,()21,2b m m =+-,若a 与b 的夹角大于90°,则实数m 的取值范围是( ) A .4,23⎛⎫- ⎪⎝⎭B .()4,2,3⎛⎫-∞-+∞ ⎪⎝⎭C .42,3⎛⎫- ⎪⎝⎭D .()4,2,3⎛⎫-∞+∞ ⎪⎝⎭4.平行四边形ABCD 中,AC 为一条对角线,若()2,4AB =,()1,3AC =,则AD BD ⋅等于( ) A .8B .6C .8-D .6-5.已知1=a ,6=b ,()2⋅-=a b a ,则向量a 与向量b 的夹角是( )A .6π B .4π C .3π D .2π 6.关于平面向量a ,b ,c ,有下列四个命题: ①若a ∥b ,a ≠0,则存在λ∈R ,使得b =λa ; ②若a ·b =0,则a =0或b =0;③存在不全为零的实数λ,μ使得c =λa +μb ; ④若a ·b =a ·c ,则a ⊥(b -c ). 其中正确的命题是( ) A .①③B .①④C .②③D .②④7.已知|a |=5,|b |=3,且12⋅-a b =,则向量a 在向量b 上的投影等于( ) A .4-B .4C .125-D .1258.设O ,A ,M ,B 为平面上四点,()1OM OB OA λλ=+-⋅,且()1,2λ∈,则( ) A .点M 在线段AB 上 B .点B 在线段AM 上 C .点A 在线段BM 上 D .O ,A ,B ,M 四点共线9.P 是△ABC 内的一点,()13AP AB AC =+,则△ABC 的面积与△ABP 的面积之比为( ) A .32B .2C .3D .610.在△ABC 中,2AR RB =,2CP PR =,若AP mAB nAC =+,则m n +等于( ) A .23B .79 C .89D .111.已知3a +4b +5c =0,且|a |=|b |=|c |=1,则a ·(b +c )等于( )A .45-B .35-C .0D .3512.定义平面向量之间的一种运算“⊙”如下:对任意的a =(m ,n ),b =(p ,q ),令a ⊙b =mq -np .下面说法错误的是( ) A .若a 与b 共线,则a ⊙b =0B .a ⊙b =b ⊙aC .对任意的λ∈R ,有(λa )⊙b =λ(a ⊙b )D .(a ⊙b )2+(a ·b )2=|a |2|b |2二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上)13.设向量a =(1,2),b =(2,3),若向量λa +b 与向量()4,7--c =共线,则λ=________.14.a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________.15.已知向量a =(6,2),14,2⎛⎫=- ⎪⎝⎭b ,直线l 过点A (3,-1),且与向量a +2b 垂直,则直线l 的方程为________.16.已知向量()2,1OP =,()1,7OA =,()5,1OB =,设M 是直线OP 上任意一点(O 为坐标原点),则MA MB ⋅的最小值为________.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)如图所示,以向量OA =a ,OB =b 为边作AOBD ,又13BM BC =,13CN CD =,用a ,b 表示OM 、ON 、MN .18.(12分)已知a ,b 的夹角为120°,且|a |=4,|b |=2,求:(1)(a -2b )·(a +b ); (2)|a +b |; (3)|3a -4b |.19.(12分)已知)1=-a,12⎛=⎝⎭b,且存在实数k和t,使得x=a+(t2-3)b,y=-k a+t b,且x⊥y,试求2k tt+的最小值.20.(12分)设()2,5OA =,()3,1OB =,()6,3OC =.在线段OC上是否存在点M,使MA⊥MB?若存在,求出点M的坐标;若不存在,请说明理由.21.(12分)设两个向量e1、e2满足|e1|=2,|e2|=1,e1、e2的夹角为60°,若向量2t e1+7e2与e1+t e2的夹角为钝角,求实数t的取值范围.22.(12分)已知线段PQ过△OAB的重心G,且P、Q分别在OA、OB上,设OA =a,OB =b,OP m=a,OQ n=b.求证:113 m n+=.2018-2019学年必修四第二章训练卷平面向量(二)答 案一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的) 1.【答案】D【解析】31sin cos 23αα⨯=,sin 21α=,290α=︒,45α=︒.故选D .2.【答案】C【解析】∵|a +b |2=a 2+b 2+2a ·b ,|a -b |2=a 2+b 2-2a ·b ,||+-=a b a b . ∴0⋅a b =.故选C . 3.【答案】A【解析】∵a 与b 的夹角大于90°,∴0⋅<a b ,∴()()()()221320m m m m -+++-<,即23280m m -<-,∴423m -<<.故选A .4.【答案】A【解析】∵()1,1AD BC AC AB ==-=--,∴()()()1,12,43,5BD AD AB =-=---=--,∴()()1,13,58AD BD ⋅=--⋅--=. 故选A . 5.【答案】C【解析】∵()22-=⋅-=a b a a b a ,∴3⋅a b =,∴31cos ,·162a b ⋅〈〉===⨯a b a b , ∴,3a b π〈〉=.故选C . 6.【答案】B【解析】由向量共线定理知①正确;若a ·b =0,则a =0或b =0或a ⊥b ,所以②错误;在a ,b 能够作为基底时,对平面上任意向量,存在实数λ,μ使得c =λa +μb , 所以③错误;若⋅⋅a b =a c ,则()0-=a b c ,所以()⊥-a b c ,所以④正确, 即正确命题序号是①④,所以B 选项正确.7.【答案】A【解析】向量a 在向量b 上的投影为12cos ,43a b ⋅⋅〈〉=⋅==-=-a b a b a a a b b . 故选A . 8.【答案】B【解析】∵()()1OM OB OA OA OB OA λλλ=+-⋅=+-,∴AM AB λ=,λ∈(1,2),∴点B 在线段AM 上,故选B . 9.【答案】C【解析】设△ABC 边BC 的中点为D ,则22ABC ABD ABP ABP S S ADS S AP==△△△△. ∵()1233AP AB AC AD =+=,∴32AD AP =,∴32AD AP =.∴3ABC ABP S S =△△.故选C . 10.【答案】B【解析】2224133393AP AC CP AC CR AC AB AC AB AC ⎛⎫=+=+=+-=+ ⎪⎝⎭,故有417939m n +=+=.故选B . 11.【答案】B【解析】由已知得435=--b a c ,将等式两边平方得()()22435=--b a c ,化简得35⋅=-a c .同理由534--c =a b 两边平方得a ·b =0,∴()35=⋅+=⋅-⋅a b c a b +a c .故选B . 12.【答案】B【解析】若a =(m ,n )与b =(p ,q )共线,则mq -np =0,依运算“⊙”知a ⊙b =0,故A 正确.由于a ⊙b =mq -np ,又b ⊙a =np -mq ,因此a ⊙b =-b ⊙a ,故B 不正确. 对于C ,由于λa =(λm ,λn ),因此(λa )⊙b =λmq -λnp ,又λ(a ⊙b )=λ(mq -np )=λmq -λnp ,故C 正确.对于D ,(a ⊙b )2+(a ·b )2=m 2q 2-2mnpq +n 2p 2+(mp +nq )2=m 2(p 2+q 2)+n 2(p 2+q 2)=(m 2+n 2)(p 2+q 2)=|a |2|b |2,故D 正确.二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.【答案】2【解析】∵a =(1,2),b =(2,3),∴()()(),22,32,23λλλλλ=++++a b =. ∵向量λa +b 与向量()4,7--c =共线,∴-7(λ+2)+4(2λ+3)=0.∴λ=2. 14.【答案】7 【解析】∵()222222125552511310134920⎛⎫==+-⨯+-⨯⨯--⋅=⎝=⨯- ⎪⎭a b a b a b a b .∴|5a -b |=7.15.【答案】2390x y --=【解析】设P (x ,y )是直线上任意一点,根据题意,有()()()23,12,30AP x y ⋅+=-+⋅-=a b ,整理化简得2390x y --=. 16.【答案】8-【解析】设()2,OM tOP t t ==,故有()()()2212,752,152012528MA MB t t t t t t t ⋅=--⋅--=-+=--, 故当t =2时,MA MB ⋅取得最小值8-.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.【答案】1566OM =+a b ,2233ON =+a b ,1126MN =-a b .【解析】BA OA OB =-=-a b .∴11153666OM OB BM OB BC OB BA =+=+=+=+a b .又OD =+a b .1122226333ON OC CN OD OD OD =+=+==+a b ,∴221511336626MN ON OM =-=+--=-a b a b a b .18.【答案】(1)12;(2);(3) 【解析】(1)1cos1204242⎛⎫⋅=︒=⨯⨯-=- ⎪⎝⎭a b a b .(a -2b )·(a +b )=a 2-2a ·b +a ·b -2b 2=42-2×(-4)+(-4)-2×22=12. (2)∵|a +b |2=(a +b )2=a 2+2a ·b +b 2=16+2×(-4)+4=12.∴+=a b .(3)|3a -4b |2=9a 2-24a ·b +16b 2=9×42-24×(-4)+16×22=16×19,∴34-=a b 19.【答案】74-.【解析】由题意有2==a,1=b .∵1102⋅=-=a b ,∴⊥a b . ∵x·y =0,∴[a +(t 2-3)b ](-k a +t b )=0.化简得334t tk -=.∴()()222117432444k t t t t t +=+-=+-.即2t =-时,2k t t+有最小值为74-. 20.【答案】存在,M 点的坐标为(2,1)或2211,55⎛⎫⎪⎝⎭.【解析】设OM tOC =,t ∈[0,1],则()6,3OM t t =, 即M (6t,3t ).()26,53MA OA OM t t =-=--,()36,13MB OB OM t t =-=--.若MA ⊥MB ,则()()()()263653130MA MB t t t t ⋅=--+--=.即45t 2-48t +11=0,13t =或1115t =.∴存在点M ,M 点的坐标为(2,1)或2211,55⎛⎫⎪⎝⎭.21.【答案】1417,,2⎛⎛⎫--- ⎪ ⎪⎝⎭⎝⎭. 【解析】由向量2t e 1+7e 2与e 1+t e 2的夹角为钝角,得()()1212121227027t t t t +⋅+<+⋅+e e e e e e e e ,即(2t e 1+7e 2)·(e 1+t e 2)<0.整理得:()222112222770t t t ++⋅+<e e e e .(*)∵|e 1|=2,|e 2|=1,〈e 1,e 2〉=60°.∴e 1·e 2=2×1×cos 60°=1, ∴(*)式化简得:2t 2+15t +7<0.解得:172t -<<-.当向量2t e 1+7e 2与e 1+t e 2夹角为180°时,设2t e 1+7e 2=λ(e 1+t e 2) (λ<0). 对比系数得270t t λλλ=⎧⎪=⎨⎪<⎩,∴2t λ⎧=⎪⎨=⎪⎩,∴所求实数t 的取值范围是1417,,2⎛⎛⎫--- ⎪ ⎪⎝⎭⎝⎭. 22.【答案】见解析. 【解析】证明 如右图所示, ∵()()1122OD OA OB =+=+a b ,∴()2133OG OD ==+a b . ∴()111333PG OG OP m m ⎛⎫=-=+-=-+ ⎪⎝⎭a b a a b .PQ OQ OP n m =-=-b a . 又P 、G 、Q 三点共线,所以存在一个实数λ,使得PG PQ λ=.∴1133m n m λλ⎛⎫-+=- ⎪⎝⎭a b b a ,∴11033m m n λλ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭a +b . ∵a 与b 不共线,∴103103m m n λλ⎧-+=⎪⎪⎨⎪-=⎪⎩①②,由①②消去λ得:113m n +=.。
2019新版高中数学北师大版必修4习题:第二章平面向量 检测

第二章检测(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列等式成立的是( )A .MN ⃗⃗⃗⃗⃗⃗⃗ =NM ⃗⃗⃗⃗⃗⃗⃗B.a ·0=0C.(a ·b )c =a (b ·c )D.|a +b |≤|a |+|b |答案:D2.设P 是△ABC 所在平面内的一点,BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ =2BP ⃗⃗⃗⃗⃗ ,则( )A .PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ =0 B .PC ⃗⃗⃗⃗⃗ +PA ⃗⃗⃗⃗⃗ =0C .PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =0D .PA ⃗⃗⃗⃗⃗ +PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =0解析:由BC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ =2BP ⃗⃗⃗⃗⃗ ,可得P 是边AC 的中点,从而PC ⃗⃗⃗⃗⃗ +PA ⃗⃗⃗⃗⃗ =0.答案:B3.已知非零向量a ,b 满足向量a+b 与向量a-b 的夹角为π2,则下列结论中一定成立的是() A.a=b B.|a|=|b|C.a ⊥bD.a ∥b解析:因为向量a+b 与向量a-b 的夹角为π2,所以(a+b )⊥(a-b ),即(a+b )·(a-b )=0,所以|a|2-|b|2=0,即|a|=|b|.答案:B4.已知点A (1,2),B (2,-1),C (2,2),若BE ⃗⃗⃗⃗⃗ =13BC ⃗⃗⃗⃗⃗ ,BF ⃗⃗⃗⃗⃗ =23BC ⃗⃗⃗⃗⃗ ,则AE ⃗⃗⃗⃗⃗ ·AF ⃗⃗⃗⃗⃗ =( ) A .5B .-5C .3D .-3解析:由已知,得AB⃗⃗⃗⃗⃗ =(1,−3),BC ⃗⃗⃗⃗⃗ =(0,3). ∴BE⃗⃗⃗⃗⃗ =(0,1),BF ⃗⃗⃗⃗⃗ =(0,2). ∴AE ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BE⃗⃗⃗⃗⃗ =(1,−3)+(0,1)=(1,−2), AF ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ +BF ⃗⃗⃗⃗⃗ =(1,−3)+(0,2)=(1,−1). ∴AE⃗⃗⃗⃗⃗ ·AF ⃗⃗⃗⃗⃗ =1×1+(−2)×(−1)=3. 答案:C5.设O ,A ,M ,B 为平面上四点,OM⃗⃗⃗⃗⃗⃗ =λOB ⃗⃗⃗⃗⃗ +(1−λ)OA ⃗⃗⃗⃗⃗ ,且λ∈(1,2),则( ) A .点M 在线段AB 上B .点B 在线段AM 上C .点A 在线段BM 上D .O ,A ,M ,B 四点共线解析:由题意可知OM ⃗⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ =λ(OB ⃗⃗⃗⃗⃗ −OA ⃗⃗⃗⃗⃗ ),即AM ⃗⃗⃗⃗⃗⃗ =λAB⃗⃗⃗⃗⃗ , ∴A ,M ,B 三点共线.又λ∈(1,2),∴|AM⃗⃗⃗⃗⃗⃗ |>|AB ⃗⃗⃗⃗⃗ |,点B 在线段AM 上. 答案:B6.已知△ABC 满足AB ⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ ,则△ABC 是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形解析:AB⃗⃗⃗⃗⃗ 2=AB ⃗⃗⃗⃗⃗ ·AC ⃗⃗⃗⃗⃗ +BA ⃗⃗⃗⃗⃗ ·BC ⃗⃗⃗⃗⃗ +CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ·(AC ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ )+CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ 2+CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ ,则CA ⃗⃗⃗⃗⃗ ·CB⃗⃗⃗⃗⃗ =0. 故△ABC 为直角三角形.答案:C7.已知C 为△ABC 的一个内角,向量m =(2cos C-1,-2),n =(cos C ,cos C+1).若m ⊥n ,则角C=( )A .π6B.π3C .2π3D.5π6解析:由m ⊥n ,得(2cos C-1)·cos C-2(cos C+1)=0,即2cos 2C-3cos C-2=0,解得cos C=−12或cos C=2(不符合题意,舍去).∵C ∈(0,π),∴C =2π3. 答案:C8.下列说法中正确的个数为( )①AB ⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ +CO ⃗⃗⃗⃗⃗ =AB⃗⃗⃗⃗⃗ ; ②若a ·b <0,则a 与b 的夹角是钝角;③向量e 1=(2,-3),e 2=(12,-34)能作为平面内所有向量的一组基底;④若a ∥b ,则a 在b 方向上的投影为|a |.A .1B .2C .3D .4解析:AB ⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ +CO ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +(CO ⃗⃗⃗⃗⃗ +OM ⃗⃗⃗⃗⃗⃗ +MB ⃗⃗⃗⃗⃗⃗ )=AB⃗⃗⃗⃗⃗ +BC ⃗⃗⃗⃗⃗ +CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,①正确; 当|a |=|b |=1且a 与b 反向时,a ·b =-1<0,但a 与b 的夹角为180°,②不正确;因为e 1=4e 2,所以e 1∥e 2,所以向量e 1,e 2不能作为基底,③不正确;若a ∥b ,则a 与b 的夹角为0°或180°,所以a 在b 方向上的投影为|a |·cos θ=±|a |,④不正确.故选A .答案:A9.已知O 是△ABC 外接圆的圆心.若3OA⃗⃗⃗⃗⃗ +5OB ⃗⃗⃗⃗⃗ +7OC ⃗⃗⃗⃗⃗ =0,则∠ACB=( ) A .π6B.π3C.5π6D.2π3解析:由O 是△ABC 外接圆的圆心,设|OA ⃗⃗⃗⃗⃗ |=|OB ⃗⃗⃗⃗⃗ |=|OC ⃗⃗⃗⃗⃗ |=R,由3OA ⃗⃗⃗⃗⃗ +5OB ⃗⃗⃗⃗⃗ +7OC ⃗⃗⃗⃗⃗ =0,可得OC ⃗⃗⃗⃗⃗ =−17(3OA ⃗⃗⃗⃗⃗ +5OB ⃗⃗⃗⃗⃗ ),平方可得R 2=149(9R2+30R2cos2∠ACB+25R 2),解得cos2∠ACB =12,故由题意得,∠ACB =π6. 答案:A10.已知k ∈Z ,AB⃗⃗⃗⃗⃗ =(k,1),AC ⃗⃗⃗⃗⃗ =(2,4).若|AB ⃗⃗⃗⃗⃗ |≤√10,则△ABC 是直角三角形的概率为( ) A .17B.27C.37D.47解析:由|AB⃗⃗⃗⃗⃗ |≤√10及k ∈Z ,知k ∈{-3,-2,-1,0,1,2,3}. 若AB⃗⃗⃗⃗⃗ =(k,1)与AC ⃗⃗⃗⃗⃗ =(2,4)垂直, 则2k+4=0,解得k=-2;若CB ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ −AC ⃗⃗⃗⃗⃗ =(k −2,−3)与AB⃗⃗⃗⃗⃗ =(k,1)垂直, 则k (k-2)-3=0,解得k=-1或3;若AC ⃗⃗⃗⃗⃗ 与CB⃗⃗⃗⃗⃗ 垂直, 则AC ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ =0,(2,4)·(k-2,-3)=2k-4-12=0,即k=8,不符合题意,所以△ABC 是直角三角形的概率是37.答案:C11.若非零向量a ,b 满足|a |=2√23|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( )A .π4B.π2C.3π4D.π 解析:由(a -b )⊥(3a +2b )知(a -b )·(3a +2b )=0,即3|a |2-a ·b -2|b |2=0.设a 与b 的夹角为θ,所以3|a |2-|a ||b |cos θ-2|b |2=0,即3·(2√23|b |)2−2√23|b |2cos θ-2|b |2=0,整理,得cos θ=√22,故θ=π4. 答案:A12.如图,四边形ABCD 是正方形,延长CD 至点E ,使得DE=CD.若动点P 从点A 出发,沿正方形的边按逆时针方向运动一周回到点A ,其中AP ⃗⃗⃗⃗⃗ =λAB ⃗⃗⃗⃗⃗ +μAE ⃗⃗⃗⃗⃗ ,则下列判断中正确的是( )A.满足λ+μ=2的点P 必为BC 的中点B.满足λ+μ=1的点P 有且只有一个C.λ+μ的最大值为3D.λ+μ的最小值不存在解析:由题意可知,λ≥0,μ≥0,当λ=μ=0时,λ+μ的最小值为0,此时点P 与点A 重合,故D 错误;当λ=1,μ=1时,点P 也可以在点D 处,故A 错误;当λ=1,μ=0,λ+μ=1时,点P 在点B 处,当点P 在线段AD 的中点时,λ=μ=12,亦有λ+μ=1.所以B 错误.答案:C二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.设向量a =(x ,3),b =(2,1).若对任意的正数m ,n ,向量m a +n b 始终具有固定的方向,则x= . 解析:当a 与b 共线时,向量m a +n b 始终具有固定的方向,所以x=6.答案:6。
(常考题)北师大版高中数学必修四第二章《平面向量》检测题(包含答案解析)(2)

一、选择题1.已知向量a 、b 满足||||2a b a b ==⋅=,若,,1x y R x y ∈+=,则1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值为( )A .1B .3C .7D .32.已知ABC 为等边三角形,2AB =,ABC 所在平面内的点P 满足1AP AB AC --=,AP 的最小值为( )A .31-B .221-C .231-D .71-3.设向量a ,b ,c 满足||||1a b ==,12a b ⋅=,()()0a c b c -⋅-=,则||c 的最小值是( ) A .31+ B .31- C .3 D .14.若平面向量与的夹角为,,,则向量的模为( ) A .B .C .D .5.如下图,四边形OABC 是边长为1的正方形,点D 在OA 的延长线上,且2OD =,点P 为BCD 内(含边界)的动点,设(,)OP OC OD R αβαβ=+∈,则αβ+的最大值等于( )A .3B .2C .52D .326.已知,M N 为单位圆22:1O x y +=上的两个动点,且满足1MN =,()3,4P ,则2PM PN -的最大值为( )A .53+B .53-C .523+D .57.已知向量(3,0)a =,(0,1)b =-,(,3)c k =,若(2)a b c -⊥,则k =( ) A .2B .2-C .32D .32-8.在ABC 中,D 为AB 的中点,60A ∠=︒且2AB AC AB CD ⋅=⋅,若ABC 的面积为43AC 的长为( )A.43B.433C.3 D.239.在ABC∆中,D为BC边上一点,且AD BC⊥,向量AB AC+与向量AD共线,若10AC =,2BC=,0GA GB GC++=,则ABCG=()A.3 B.5C.2 D.10210.如图,一条河的两岸平行,河的宽度d=0.6 km,一艘客船从码头A出发匀速驶往河对岸的码头B.已知AB=1 km,水的流速为2 km/h,若客船从码头A驶到码头B所用的时间为6 min,则客船在静水中的速度为()A.62km/h B.8 km/hC.234km/h D.10 km/h11.如图所示,在ABC中,点D在线段BC上,且3BD DC=,若AD AB ACλμ=+,则λμ=()A.12B.13C.2 D.2312.设非零向量a与b的夹角是23π,且a a b=+,则22a tbb+的最小值为()A.33B.32C.12D.1二、填空题13.如图,已知四边形ABCD,AD CD⊥,AC BC⊥,E是AB的中点,1CE=,若//AD CE,则AC BD⋅的最小值为___________.14.设123,,e e e 为单位向量,且()312102e e ke k =+>,若以向量12,e e 为邻边的三角形的面积为12,则k 的值为__________. 15.已知向量(1,1,0)a →=,(1,0,2)b →=-,(,1,2)c x →=-,若,,a b c →→→是共面向量,则x =__________.16.已知||1,||3,0OA OB OA OB ==⋅=|,点C 在AOB ∠内,且30AOC ∠=︒,设(,)OC mOA nOB m n R =+∈,则mn等于 . 17.如图,在△ABC 中,13AN NC =,P 是BN 上的一点,若AP =m 211AB AC +,则实数m 的值为_____.18.设向量a ,b ,c ,满足1a b ==,12a b ⋅=-,a c -与b c -的夹角为60︒,则c 的最大值等于________19.在ABC 中,22AB =26AC =G 为ABC 的重心,则AG BC ⋅=________.20.在ABC 中,22AC AB ==,120BAC ∠=,O 是BC 的中点,M 是AO 上一点,且3AO MO =,则MB MC ⋅的值是______.三、解答题21.在ABCD 中,2AB =,23AC =AB 与AD 的夹角为3π. (Ⅰ)求AD ;(Ⅱ)求AC 和BD 夹角的余弦值.22.如图,在梯形ABCD 中,E 为DC 的中点,//,,2AD BC BAD π∠=,3BDA BC BD π∠==.(1)求AE BD ⋅;(2)求AC 与BD 夹角的余弦值. 23.已知向量(1,2)a =-,||25b =. (1)若b a λ=,其中0λ<,求b 的坐标; (2)若a 与b 的夹角为23π,求()(2)a b a b -⋅+的值. 24.已知向量m ,n 不是共线向量,32a m n =+,64b m n =-,c m xn =+ (1)判断,a b 是否共线; (2)若//a c ,求x 的值 25.已知(2,0)a=,||1b =.(1)若a 与b 同向,求b ;(2)若a 与b 的夹角为120,求a b +. 26.已知向量a 与向量b 的夹角为3π,且1a =,()32a a b ⊥-. (1)求b ;(2)若27a mb -=,求m .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】利用已知条件求出向量a 、b 的夹角,建立直角坐标系把所求问题转化为解析几何问题. 【详解】设a 、b 所成角为θ, 由||||2==a b ,2a b,则1cos 2θ=,因为0θπ≤≤ 所以3πθ=,记a OA =,b OB =,以OA 所在的直线为x 轴,以过O 点垂直于OA 的直线为y 轴, 建立平面直角坐标系,则()2,0A ,(B ,所以()2,0a OA ==,(1,b OB ==,()(1)2x a xb x -+=-,所以((1)2x a xb x -+=-=,表示点()P x 与点()2,0A 两点间的距离, 由,,1x y R x y ∈+=113222ya y b y x ⎛⎫⎛⎛⎫+-=+=-- ⎪ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭, 所以1322ya y b x ⎛⎫⎛+-=- ⎪ ⎝⎭,表示点()P x 与点32Q ⎛ ⎝⎭两点间的距离, ∴1|(1)|2x a xb ya y b ⎛⎫-+++- ⎪⎝⎭的最小值转化为P 到,A Q 两点的距离和最小,()P x 在直线y =上,()2,0A 关于直线y =的对称点为(R -,PQ PA ∴+的最小值为QR == 故选:C 【点睛】关键点点睛:本题考查了向量模的坐标运算以及模转化为两点之间距离的转化思想,解题的关键是将向量的模转化为点()P x 到()2,0A 、32Q ⎛⎝⎭两点间的距离,考查了运算求解能力.2.C解析:C 【分析】计算出AB AC +的值,利用向量模的三角不等式可求得AP 的最小值. 【详解】2222222cos123AB AC AB AC AB AC AB AC AB AC π+=++⋅=++⋅=,所以,23AB AC += 由平面向量模的三角不等式可得()()231AP AP AB AC AB AC AP AB AC AB AC =--++≥---+=.当且仅当AP AB AC --与AB AC +方向相反时,等号成立.因此,AP 的最小值为1. 故选:C. 【点睛】结论点睛:在求解向量模的最值时,可利用向量模的三角不等式来求解:a b a b a b -≤±≤+. 3.B解析:B 【分析】建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为12⎫⎪⎪⎝⎭,21⎫-⎪⎪⎝⎭,设c 的坐标为(),x y ,由已知可得22124x y ⎛-+= ⎝⎭,表示以2⎛⎫ ⎪ ⎪⎝⎭为圆心,12为半径的圆,求出圆心到原点的距离,再减去半径即为所求 【详解】解:建立坐标系,以向量a ,b 的角平分线所在的直线为x 轴,使得a ,b 的坐标分别为122⎛⎫ ⎪ ⎪⎝⎭,,221⎛⎫-⎪ ⎪⎝⎭,设c 的坐标为(),x y , 因为()()0a c b c -⋅-=,所以11,,02222x y x y ⎛⎫⎛⎫--⋅---= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,化简得22124x y ⎛-+= ⎝⎭,表示以3,0⎛⎫ ⎪⎪⎝⎭为圆心,12为半径的圆, 则||c 的最小值表示圆上的点到原点的距离的最小值, 因为圆到原点的距离为3,所以圆上的点到原点的距离的最小值为312-,故选:B【点睛】此题考查平面向量的数量积运算,解题的关键是写出满足条件的对应的点,考查数学转化思想,考查数形结合的思想,属于中档题4.C解析:C 【解析】,,又,,则,故选5.D解析:D 【分析】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系,设(),P x y ,易得1,2y x αβ==,则12x y αβ+=+,再将原问题转化为线性规划问题,求目标函数12x y +在可行域BCD 内(含边界)的最大值,即可求出结果. 【详解】以O 为原点,边OA 和OC 所在的直线分别为x 和y 轴建立如图所示的平面直角坐标系, 则()()0,1,2,0C D ,如下图所示:设(),P x y ,∵ (,)OP OC OD R αβαβ=+∈, ∴()()(),0,12,0)2,(x y αββα=+=,∴2,x y βα==,即1,2y x αβ==,∴12x y αβ+=+, 令1,2z x y =+则12y x z =-+,其中z 为直线12y x z =-+在y 轴上的截距,由图可知,当该直线经过点()1,1B 时,其在y 轴上的截距最大为32, ∴αβ+的最大值为32. 故选:D . 【点睛】本题考查平面向量在几何中的应用,建立坐标系后,可将原问题转化为线性规划中的最值问题,考查学生的转化思想、逻辑推理能力和运算能力,属于中档题.6.A解析:A 【分析】根据条件可知22PM PN PO OM ON -=+-2PO OM ON ≤+-,即可求出最大值. 【详解】由1MN =可知,OMN 为等边三角形,则1cos602OM ON OM ON ⋅=⋅⋅︒=, 由PM PO OM =+,PN PO ON =+,得22PM PN PO OM ON -=+-2PO OM ON ≤+-,()224413OM ON OM ON -=-⋅+=,又()3,4P ,则5PO =,因此当PO 与2OM ON -同向时,等号成立,此时2PM PN -的最大值为5+故选:A. 【点睛】本题考查向量模的大小关系,属于中档题.7.B解析:B 【分析】求出2a b -)2=,利用向量垂直数量积为零列方程求解即可.【详解】由(3,0)a =,(0,1)b =-,得2a b -)2=,若(2)c a b -⊥,则(2)?0a b c -=,0,2k +=∴=-.故选B. 【点睛】利用向量的位置关系求参数是出题的热点,主要命题方式有两个:(1)两向量平行,利用12210x y x y -=解答;(2)两向量垂直,利用12120x x y y +=解答.8.B解析:B 【分析】设,,AB c AC b ==先化简2AB AC AB CD ⋅=⋅得3c b =,由ABC 的面积为16bc =,即得AC 的长.【详解】设,,AB c AC b ==由题得2AB AC AB CD ⋅=⋅,所以2()AB AC AB AD AC AB AD AB AC ⋅=⋅-=⋅-⋅, 所以3,3cos cos0,332cAB AC AB AD c b c c b π⋅=⋅∴⨯⨯⨯=⨯⨯∴=.因为ABC 的面积为1sin 1623b c bc π⨯⨯⨯=∴=.所以2316,b b =∴=所以3AC =.故选:B 【点睛】本题主要考查平面向量的数量积运算,考查三角形的面积的应用,意在考查学生对这些知识的理解掌握水平.9.B解析:B 【解析】取BC 的中点E ,则2AB AC AE +=与向量AD 共线,所以A 、D 、E 三点共线,即ABC ∆中BC 边上的中线与高线重合,则10AB AC ==.因为0GA GB GC ++=,所以G 为ABC ∆的重心,则2222() 2.32BC GA GE AC ==-=所以22101,112, 5.2AB CE CG CG==+=∴== 本题选择B 选项.10.A解析:A 【解析】设客船在静水中的速度大小为 /v km h 静,水流速度为 v 水,则2/v km h =水,则船实际航行的速度v v v =+静水,60.160t h =,由题意得100.1AB v ≤=. 把船在静水中的速度正交分解为x y v v v 静=+, ∴0.660.1y v ==,在Rt ABC 中,221060.8BC =-=.. ∵80.1x x BCv v v v +=+==水水,∴826x v =-= ∴2262x yv v v 静=+=设v v 静水<,>=θ,则tan 1yxv v θ==,∴2cos 2θ=.此时222272242410102v v v v v v v +=+⋅+=+⨯+=≤静水静静水水= ,满足条件,故选A.11.B解析:B 【分析】由向量的运算法则,化简得1344AD AB AC =+,再由AD AB AC λμ=+,即可求得,λμ 的值,即可求解. 【详解】由向量的运算法则,可得34=+=+AD AB BD AB BC 313()444AB AC AB AB AC =+-=+, 因为AD AB AC λμ=+,所以13,44λμ==,从而求得13λμ=,故选:B . 【点睛】该题考查的是有关向量的基本定理,在解题的过程中,需要利用向量直角的关系,结合三角形法则,即可求得结果,属于基础题.12.B解析:B 【分析】利用向量a 与b 的夹角是23π,且a a b =+,得出a b a b ==+,进而将22a tb b+化成只含有t 为自变量的二次函数形态,然后利用二次函数的特性来求出最值. 【详解】对于a ,b 和a b +的关系,根据平行四边形法则,如图a BA CD ==,b BC =,a b BD +=,23ABC π∠=,3DCB π∴∠=, a a b =+,CD BD BC ∴==,a b a b ∴==+, 2222222==222a tb a tb a tb bbb+++,a b =,22222222244cos 223=224a t a b t b a tb a tb bbbπ++++=,22222222244cos 4231244a t a b t b a t aa t a t tb aπ++-+==-+当且仅当1t =时,22a tb b+的最小值为2. 故选:B. 【点睛】本题考查平面向量的综合运用,解题的关键点在于把22a tb b+化成只含有t 为自变量的二次函数形态,进而求最值.二、填空题13.【分析】令结合题中已知条件得出通过根据数量积的概念以及二次函数的性质可得结果【详解】令因为所以又因为是的中点所以故可得所以当时取得最小值故答案为:【点睛】关键点点睛:将表示成根据几何关系将所需量用表 解析:1-【分析】令ACD θ∠=,结合题中已知条件得出2CAD πθ∠=-,2CAB πθ∠=-,2sin AC θ=,22sin AD θ=,通过()AC BD AC BA AD ⋅=⋅+,根据数量积的概念以及二次函数的性质可得结果. 【详解】令ACD θ∠=,因为AD CD ⊥,AC BC ⊥,//AD CE , 所以BCE θ∠=,2ACE CAD πθ∠=∠=-,又因为E 是AB 的中点,1CE =,所以2AB =,1CE =,CBA θ∠=,2CAB πθ∠=-,故可得2sin AC θ=,22sin AD θ=,所以()AC BD AC BA AD AC BA AC AD ⋅=⋅+=⋅+⋅2222sin 2cos 2sin 2sin cos 4sin 4sin 22ππθπθθθθθθ⎛⎫⎛⎫=⨯⨯-++⨯⨯-=- ⎪ ⎪⎝⎭⎝⎭2214sin 12θ⎛⎫=-- ⎪⎝⎭,当21sin 2θ=时,AC BD ⋅取得最小值1-, 故答案为:1-. 【点睛】关键点点睛:将BD 表示成BA AD +,根据几何关系将所需量用θ表示,将最后结果表示为关于θ的函数.14.【详解】两端平方得又得即夹角为所以即又所以【详解】 两端平方得222114k ke e =++⋅, 又121122S e e sin θ==, 得1sin θ=,即12,e e 夹角为90︒,所以120e e ⋅=, 即234k =,又 0k >, 所以k =.15.-2【详解】由于不共线且和共面根据平面向量的基本定理有即即解得解析:-2 【详解】由于,a b 不共线,且和c 共面,根据平面向量的基本定理,有c ma nb =+,即()(),1,2,,2x m n m n -=--,即122x m n m n =--⎧⎪-=-⎨⎪=⎩,解得1,112m n x ===--=-.16.【详解】方法一:①又②③将②③代入①得:所以点在内所以方法二:以直线OAOB 分别为轴建立直角坐标系则设又得即解得故答案为:3解析:【详解】 方法一:3cos 2OA OC AOC OAOC⋅∠==⋅, ① 又()2OA OC OA mOA nOB m OA m ⋅=⋅+==, ②22222222||()||||23OC mOA nOB m OA n OB mnOA OB m n =+=++⋅=+, ③将②③代入①得:22323m n=+,所以229m n =,点C 在AOB ∠内, 所以3mn=. 方法二:以直线OA ,OB 分别为,x y 轴建立直角坐标系,则()(10,03A B ,, , 设()31cos30,sin 30=,2OC λλ⎫=︒︒⎪⎪⎝⎭,又()(()1,033OC mOA nOB m n m n =+=+=,得()31,=32m n λ⎫⎪⎪⎝⎭,即 3=132m nλ⎧⎪⎪⎨⎪=⎪⎩, 解得3mn=. 故答案为:3.17.【解析】由得设=n 所以+n=+n()=(1-n)=m 由n=得m=1-n= 解析:311【解析】由13AN NC=,得14AN AC=.设BP=n BN,所以AP AB BP AB=+=+n BN =AB+n(AN AB-)=(1-n)14AB nAC+=m211AB AC+.由14n=211,得m=1-n=311.18.【分析】作向量根据已知条件可得出与的夹角为四点共圆再结合正余弦定理可得出结果【详解】解:如下图作向量与的夹角为即又与的夹角为即与夹角为四点共圆当为直径时最大在中由余弦定理得:的外接圆的直径为四点共圆解析:2【分析】作向量OA a=,OB b=,OC c=,根据已知条件可得出a与b的夹角为120︒,A,O,B,C四点共圆,再结合正余弦定理可得出结果.【详解】解:如下图,作向量OA a=,OB b=,OC c=,∴CA a c=-,CB b c=-,1 a b==,1cos,2 a b a b a b⋅=⋅⋅=-,∴a与b的夹角为120︒,即120AOB∠=︒.∴120AOB∠=︒.又a c-与b c-的夹角为60︒,即CA与CB夹角为60︒,∴A,O,B,C四点共圆.∴当OC为直径时c最大,在AOB中,由余弦定理得:2222cos1203AB OA OB OA OB =+-⋅︒=, ∴3AB =.∴AOB 的外接圆的直径为2sin120AB=︒.∴A ,O ,B ,C 四点共圆的圆的直径为2.∴c 的最大值为2.故答案为:2. 【点睛】本题主要考查向量在几何图形中的应用,考查正余弦定理,考查数形结合的能力,分析问题能力,属于中档题.19.6【分析】根据三角形重心的性质转化为以及再求数量积【详解】如图点是的中点为的重心所以故答案为:6【点睛】本题考查向量数量积重心重点考查转化与化归思想计算能力属于基础题型解析:6 【分析】根据三角形重心的性质转化为()13AG AB AC =+,以及BC AC AB =-,再求数量积. 【详解】如图,点D 是BC 的中点,G 为ABC 的重心,∴()()22113323AG AD AB AC AB AC ==⨯+=+,BC AC AB =-,所以()()()221133AG BC AB AC AC AB AC AB ⋅=+⋅-=- ()126863=-=故答案为:6 【点睛】本题考查向量数量积,重心,重点考查转化与化归思想,计算能力,属于基础题型.20.【分析】用表示向量然后利用平面向量数量积的运算律可求得的值【详解】为的中点故答案为:【点睛】本题考查平面向量数量积的计算解答的关键就是选择合适的基底表示向量考查计算能力属于中等题解析:53-【分析】用AB 、AC 表示向量MB 、MC ,然后利用平面向量数量积的运算律可求得MB MC ⋅的值. 【详解】O 为BC 的中点,()12AO AB AC ∴=+, 3AO MO =,()1136MO AO AB AC ∴==+,()2133AM AO AB AC ==+, ()()11233MB AB AM AB AB AC AB AC ∴=-=-+=-, ()()11233MC AC AM AC AB AC AC AB ∴=-=-+=-, 22AC AB ==,120BAC ∠=,()()()22112252299MB MC AB AC AC AB AB AC AB AC∴⋅=-⋅-=⋅--221155122122923⎡⎤⎛⎫=⨯⨯⨯--⨯-⨯=- ⎪⎢⎥⎝⎭⎣⎦. 故答案为:53-. 【点睛】本题考查平面向量数量积的计算,解答的关键就是选择合适的基底表示向量,考查计算能力,属于中等题.三、解答题21.(Ⅰ)2AD =;(Ⅱ)0. 【分析】(Ⅰ)设AB a =,AD b =,利用平面向量加法的平行四边形法则可得AC a b =+,由23AC =b 的方程,即可解得AD b =;(Ⅱ)计算得出0AC BD ⋅=,可得出AC BD ⊥,进而可得出结果. 【详解】(Ⅰ)设AB a =,AD b =,则AC a b =+,BD AD AB b a =-=-.向量AB 与AD 的夹角为3π,cos 3a b a b b π∴⋅=⋅=. ()22222242AC a b a ba ab b b b ∴=+=+=+⋅+=++=整理得2280b b +-=,0b ≥,解得2b =,即2AD =;(Ⅱ)()()220AC BD a b b a b a ⋅=+⋅-=-=,则AC BD ⊥, 因此,AC 和BD 夹角的余弦值为0. 【点睛】本题考查利用平面向量的数量积求向量的模,同时也考查了平面向量夹角余弦值的计算,考查计算能力,属于中等题.22.(1)0;(2)- 【分析】(1)由BCD △为等边三角形得出2BC AD =,由向量的加法和减法运算得出13,22AE AB AD BD AD AB =+=-,再由向量的数量积公式得出AE BD ⋅的值;(2)设AD a =,则3,2,AB BC BD a AC ====,由数量积公式得出AC BD ⋅,进而得出AC 与BD 夹角的余弦值. 【详解】解:(1)因为//AD BC ,,,23BAD BDA BC BD ππ∠=∠==所以BCD △为等边三角形,23BC AB AD == 又E 为DC 的中点 所以1113()(),2222AE AC AD AB BC AD AB AD BD AD AB =+=++=+=- 则221313()02222AE BD AB AD AD AB AB AB AD AD ⎛⎫⋅=+⋅-=--⋅+= ⎪⎝⎭(2)设AD a =,则3,2,7AB a BC BD a AC a ====222(2)()2AC BD AB AD AD AB AB AD AB AD a ⋅=+⋅-=--⋅+=-设AC 与BD 的夹角为θ,则2cos 2AC BDAC BD θ⋅=== 【点睛】本题主要考查了利用定义求向量的数量积以及夹角,属于中档题.23.(1)(2,4)-;(2)5-. 【分析】(1)由向量模的坐标表示求出λ,可得b 的坐标; (2)根据向量数量积的运算律及数量积的定义计算. 【详解】(1)由题知(,2)b λλ=-,2||(|b λλ=+==2λ=-,故(2,4)b =-;(2)21(a =+= ∴222221()(2)22||||cos105220532a b a b a a b b a a b b π⎛⎫-⋅+=-⋅-=-⋅-=-⋅--=- ⎪⎝⎭. 【点睛】本题考查向量模的坐标表示,考查向量数量积的运算律,掌握数量积的运算律是解题关键.24.(1),a b 不共线;(2)23x = 【分析】(1)根据平面向量共线定理判断. (2)由平面向量共线定理计算. 【详解】解:(1)若a 与b 共线,由题知a 为非零向量, 则有b a λ=,即64(32)m n m n λ-=+,6342λλ=⎧∴⎨-=⎩得到2λ=且2λ=-, λ∴不存在,即a 与b 不平行.(2) ∵//a c ,∴存在实数r ,使得c ra =, 即32m xn rm rn +=+, 即132r x r=⎧⎨=⎩,解得23x =.【点睛】本题考查平面向量共线定理,掌握平面向量共线定理是解题基础.25.(1)(1,0)b =;(2)3(,2a b +=-或33(,2a b +=. 【分析】(1)先设(,)b x y =,再根据向量共线定理即可求解即可;(2)由已知结合向量数量积的定义及数量积的坐标表示即可求解. 【详解】解:(1)设(,)b x y =,由题意可得,存在实数0λ>,使得b a λ=, 即(x ,)(2y λ=,0)(2λ=,0),所以2x λ=,0y =, 由||1b =可得241λ=,即12λ=或12λ=-(舍),所以(1,0)b =, (2)设(,)b x y =,所以1·cos12021()12a b a b =︒=⨯⨯-=-, 又因为()()·2,0,2a b x y x =⋅=, 故21x =-即12x =-,因为||1b =,所以221x y +=,故y =当y =,12x =-时,33(,2a b +=,当y =12x =-时,3(,2a b +=-.【点评】本题主要考查了向量共线定理及向量数量积的定义及性质的简单应用,属于中档试题. 26.(1)3b =;(2)13m =-或1m =. 【分析】(1)本小题先求出32a b ⋅=,再求3b =即可; (2)本小题先求出23210m m --=,再求解m .【详解】解:(1)∵()23232320a a b a a b a b ⋅-=-⋅=-⋅=, ∴32a b ⋅=,∴13cos 322a b a b b π⋅=⋅⋅==, ∴3b =.(2)∵27a mb -=, ∴()222227244469a mba mab m b m m =-=-⋅+=-+,整理得:23210m m --=,解得:13m=-或1m=.【点睛】本题考查利用向量垂直求向量的数量积、向量的数量积公式、利用和与差的向量的模求参数,是中档题.。
2015必修四第二章综合练习

单元质量评估(二)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四式不能化简为AD的是( )(A)(AB CD)BC++(B)(AD MB)(BC CM)+++(C)OC OA CD-+(D)MB AD BM+-2.若向量a,b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b=( )(A)-5 (B)-4 (C)-3 (D)-23.下列说法中,正确的个数为( )(1)AB MB BC OM CO AB;++++=(2)已知向量a=(6,2)与b=(-3,k)的夹角是钝角,则k的取值范围是k<0;(3)向量e1=(2,-3),e213()24=-,能作为平面内所有向量的一组基底;(4)若a∥b,则a在b上的投影为|a|.(A)1 (B)2 (C)3 (D)44.(2012·晋江高一检测)若e1和e2是两个不共线的向量,则下面的四组向量中,共线的一组是( )(A)e1+e2和e1-e2(B)3e1-2e2和-6e1+4e2(C)e1+2e2和2e1+e2(D)e2和e1+e25.(2012·浙江高考)设a,b是两个非零向量( )(A)若|a+b|=|a|-|b|,则a⊥b(B)若a⊥b,则|a+b|=|a|-|b| (C)若|a+b|=|a|-|b|,则存在实数λ,使得b=λa(D)若存在实数λ,使得b=λa,则|a+b|=|a|-|b|6.(2012·广州高一检测)已知O是△ABC所在平面内一点,D为BC边中点,且2OA OB OC++=,0那么( )(A)AO OD=(B)AO2OD=(C)AO3OD=(D)2AO OD=7.在直角坐标系xOy中,AB(2,1)AC(3k)=,=,,若三角形ABC是直角三角形,则k的可能值个数是( )(A)1 (B)2 (C)3 (D)48.设向量a=(1,-3),b=(-2,4),c=(-1,-2),若表示向量4a,4b-2c,2(a-c),d的有向线段首尾相接能构成四边形,则d=( )(A)(2,6) (B)(-2,6)(C)(2,-6) (D)(-2,-6)9.(2012·长春高一检测)在△ABC中,已知D为AB边上的一点,若AD 2DB=,1CD CA CB3=+λ,则λ=( )(A)23(B)13(C)13-(D)23-10.已知向量a与向量b的夹角为120°,若向量c=a+b,且a⊥c,则||||ab的值为( ) (A)12(C)211.(易错题)如图,已知正六边形P1P2P3P4P5P6,下列向量的数量积中最大的是( ) (A)1213PP PP (B)1214P P P P (C)1215PP PP (D)1216P P P P12.在平面直角坐标系中,若O 为坐标原点,则A ,B ,C 三点在同一直线上的等价条件为存在唯一的实数λ,使得O C O A (1)O B =λ+-λ成立,此时称实数λ为“向量OC OA OB 关于和的终点共线分解系数”.若已知P 1(3,1),P 2(-1,3),且向量3OP 与向量a =(1,1)垂直,则“向量3OP 关于12OP OP 和的终点共线分解系数”为( ) (A)-3(B)3(C)1(D)-1二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上)13.在平面直角坐标系xOy 中,若点A(-1,-2),B(2,3),C(-2,-1),则以线段AB,AC 为邻边的平行四边形中较长的一条对角线的长为_______.14.(2012·江西高考)设单位向量m =(x ,y),b =(2,-1).若m ⊥b ,则|x+2y|=_______. 15.(2012·北京高考)已知正方形ABCD 的边长为1,点E 是AB 边上的动点,则DE CB 的值为_______.16.(能力题)如图,O ,A ,B 是平面上三点,向量OA 3OB 2==,,设P 是线段AB 垂直平分线上一点,则OP(OA OB)-的值为_______.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)(2012·太原高一检测)如图,平行四 边形ABCD 中,AB ,AD ==,a b H ,M 是AD ,DC 的中点,1BF BC,3=(1)以a ,b 为基底表示向量AM HF 与;(2)若|a |=3,|b |=4,a 与b 的夹角为120°,求AM HF.18.(12分)已知A ,B ,C 是平面直角坐标系内三点,其坐标分别为A(1,2),B(4,1),C(0,-1). (1)求AB AC ,和∠ACB 的大小,并判断△ABC 的形状. (2)若M 为BC的中点,求BM.19.(12分)(2012·宁波高一检测)已知三点A(2,1),B(3,2),D(-1,4).(1)证明:AB⊥AD;(2)若点C使得四边形ABCD为矩形,求点C的坐标,并求该矩形对角线所夹的锐角的余弦值.20.(12分)(2012·玉溪高一检测)已知e1,e2是平面上的一组基底,若a=e1+λe2,b=-2λe1-e2.(1)若a与b共线,求λ的值;(2)若e1,e2是夹角为60°的单位向量,当λ≥0时,求a·b的最大值.21.(12分)已知|a|=4,|b|=2,且a与b的夹角为120°,求(1)(a-2b)·(a+b);(2)|2a-b|;(3)a与a+b的夹角.22.(12分)平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1),请解答下列问题:(1)求满足a=m b+n c的实数m,n;(2)若(a+k c)∥(2b-a),求实数k;(3)若d满足(d-c)∥(a+b),且|d-c|求d.答案解析2015必修四第三章综合练习1.【解析】选D.(A)可以.(AB CD)BC AB BC CD AD.++=++= (B)可以.(AD MB)(BC CM)AD MB BC CM AD.+++=+++= (C)可以.OC OA CD AC CD AD.-+=+= (D)不可以.MB AD BM 2MB AD AD.+-=+≠2.【解析】选A.∵a +b =(-2,-1),a -b =(4,-3), ∴a =(1,-2),b =(-3,1), ∴a ·b =-3-2=-5.3.【解析】选A.(1)正确.AB MB BC OM CO AB BC CO OM MB AB.++++=++++= (2)错误.当k=-1时,a 与b 反向,夹角为180°,不是钝角.(3)错误.因为(2,-3)134(,)24=-,即e 1=4e 2,所以e 1与e 2共线,所以e 1,e 2不能作为平面内所有向量的一组基底.(4)错误.a 与b 反向时,a 在b 上的投影为-|a |. 4.【解析】选B.∵-6e 1+4e 2=-2(3e 1-2e 2), ∴3e 1-2e 2和-6e 1+4e 2共线.5.【解析】选C.若|a +b |=|a |-|b |,则a 与b 共线,且a 与b 反向,故选项A ,B不对,选项C正确.若a 与b 同向,|a +b |=|a |+|b |,故选项D 不对.6.【解析】选A.以OB OC ,为邻边作□OBEC, 则OB OC OE.+= ∵D 为BC 边中点,1OD OE OE 2OD OB OC 2OD 2∴=∴=+=,,即, 又2OA OB OC ++=,0OB OC 2OA 2OA 2OD AO OD.∴+=-∴-==,,故【变式训练】已知△ABC 的三个顶点A ,B ,C 及平面内一点P ,满足PA PB PC AB ++=,则点P 与△ABC 的关系为( ) (A)P 在△ABC 的内部 (B)P 在△ABC 的外部 (C)P 在AB 边所在直线上 (D)P 是AC 边的三等分点【解析】选D.PA PB PC AB,++=PA PC AB PB AB BP AP,PC AP PA AP AP 2AP,∴+=-=+==-=+=∴P 是AC 边的三等分点.7.【解析】选B.若∠A =90°,则AB AC =6+k =0,k =-6; 若∠B =90°,则AB BC AB (AC AB)0-==,6+k-5=0,k =-1; 若∠C =90°,则AC CB AC (AB AC)0,-==k 2-k +3=0无解.∴综上,k 可能取-6,-1两个数.故选B.【变式训练】已知a =(3,4),b ⊥a ,且b 的起点为(1,2),终点为(x ,3x),则b 等于( )(A)111(,)155- (B)111(,)515-(C)41(,)155-(D)41(,)155【解析】选C.b =(x-1,3x-2), ∵a ⊥b ,∴a ·b =0, 即3(x-1)+4(3x-2)=0,解得1141x (,).15155=-=,故b8.【解析】选D.由题意得4a +4b -2c +2(a -c )+d =0, ∴6a +4b -4c +d =0,∴d =-6a -4b +4c =-6(1,-3)-4(-2,4)+4(-1,-2) =(-2,-6).9.【解析】选A.2AD 2DB,AD AB,3=∴=2CD CA AD CA AB3212CA (CB CA)CA CB.333∴=+=+=+-=+又1CD CA CB 3=+λ且CA CB 与不共线,2.3∴λ=10.【解析】选A.c ·a =(a +b )·a =a 2+a ·b=|a |2+|a ||b |cos120°=|a |212-|a ||b |=0,||1.||2∴=a b 11.【解题指南】根据向量的数量积的定义解答本题,关键是分析两个向量的夹角的大小. 【解析】选A.显然12151216PP PP 0PP PP 0,=<, 设边长为1,则13P P 3.=向量1213PP PP 与的夹角为6π, 12133P P P P 2∴=,而1214P P P P 12cos 1,3π=⨯⨯=故1213PP PP 最大.12.【解析】选D.设3OP =(x,y), 则由3OP ⊥a 知x+y=0, 于是3OP =(x,-x), 设312OP OP (1)OP ,=λ+-λ(x,-x)=λ(3,1)+(1-λ)(-1,3) =(4λ-1,3-2λ)41x 32x λ-=⎧∴⎨-λ=-⎩,, 于是4λ-1+3-2λ=0,λ=-1.13.【解析】由题设知AB =(3,5),AC =(-1,1), 则AB AC (2,6),AB AC (4,4).+=-= 所以AB AC 210,AB AC 4 2.+=-=又>故较长的一条对角线的长为 答案:14.【解题指南】由已知条件联立方程组求得向量m 的坐标,然后求|x+2y|. 【解析】由已知可得2x-y=0,又因为m为单位向量,所以x 2+y 2=1,联立解得x x ,55y y ⎧⎧==-⎪⎪⎪⎪⎨⎨⎪⎪==⎪⎪⎩⎩或 故x 2y += 15.【解题指南】利用图形中的直角关系建系用坐标计算,也可以适当选取基向量进行计算.【解析】方法一:如图所示,以AB ,AD 所在直线 分别为x 轴,y 轴建立平面直角坐标系,设E(t,0), 0≤t ≤1,则D(0,1),B(1,0),C(1,1),DE (t,1),CB (0,1),DE CB 1.=-=-∴=方法二:选取{AB AD},作为基向量,设AE t AB =, 则2DE CB (t AB AD)(AD)t AB AD AD 011.=--=-+=+= 答案:116.【解析】OP (OA OB)-(OC CP)BAOC BA CP BA =+=+,∵CP ⊥BA,C 为AB 的中点,2222221CP BA 0OC (OA OB)2OP (OA OB)1OC BA (OA OB)(OA OB)21(OA OB )21(OA OB )215(32).22∴==+∴-==+-=-=-=-=,,答案:5217.【解析】(1)∵M 为DC 的中点,1DM DC DC AB 211AM AD DM AD AB ,22∴==∴=+=+=+,又,a b∵H 为AD 的中点,1BF BC 3=,11AH AD,BF BC,23BC AD HF HA AB BF 11AD AB AD2311AB AD .66∴===∴=++=-++=-=-又,a b(2)由已知得a ·b =3×4×cos120°=-6,222211AM HF ()()26111(1)212611113(6)4212611.3=+-=+--=⨯+⨯--⨯=-a b a b a a b b18.【解析】(1)∵A(1,2),B(4,1),C(0,-1).AB ∴=(4,1)-(1,2)=(3,-1),AC =(0,-1)-(1,2)=(-1,-3), AB AC 0∴=,∴∠BAC=90°. 方法一:AB AC 10==又∴∠ACB=45°, △ABC 是等腰直角三角形. 方法二:CA AC =-=(1,3),CB =(4,1)-(0,-1)=(4,2), ∴cos ∠ACB 2CA CB CA CB1=== ∴∠ACB=45°,△ABC是等腰直角三角形. (2)∵M 为BC 的中点, ∴点M 的坐标为(2,0),BM ∴=(2,0)-(4,1)=(-2,-1),BM (∴=-=19.【解析】(1)AB =(1,1),AD =(-3,3),AB AD ∴=1×(-3)+1×3=0,∴AB ⊥AD.(2)设点C 的坐标为(x,y),由(1)知AB ⊥AD,所以只要四边形ABCD 是平行四边形就一定是矩形, 则有AC AB AD,=+ ∴(x-2,y-1)=(1,1)+(-3,3),x 22,x 0,y 14,y 5,-=-=⎧⎧∴∴⎨⎨-==⎩⎩ ∴点C 的坐标为(0,5).AC =(-2,4),BD =(-4,2), 设AC BD 与所成的角为θ,则AC BD 4cos ,5AC BDθ===∴该矩形对角线所夹的锐角的余弦值为4.520.【解析】(1)∵a ∥b , ∴存在实数μ,使得b =μa ,212-λ=μ⎧∴λ=±⎨λμ=-⎩,解得, (2)∵e 1,e 2是夹角为60°的单位向量,∴e 1·e 21,2=∴a ·b =(e 1+λe 2)·(-2λe 1-e 2)=-λ2-3λ1.2-在λ∈[0,+∞)上是减函数,∴λ=0时,a ·b 取最大值1.2-21.【解析】由题意得a ·b =4×2×cos120°=-4. (1)(a -2b )·(a +b )=a 2-a ·b -2b 2=42-(-4)-2×22=12. (2)∵(2a -b )2=4a 2-4a ·b +b 2=4×42-4×(-4)+22=84, ∴|2a -b |=== (3)∵(a+b )2=a2+2a ·b+b 2=42+2×(-4)+22=12, ∴|a +b |===a ·(a +b )=a 2+a ·b =42-4=12. 设a 与a +b 的夹角为θ,·()cos ||||+θ===+a a b a a b又θ∈(0,π),6π∴θ=,∴a 与a +b 的夹角为.6π【变式训练】已知|a |=3,|b |=2,a 与b 的夹角为60°,c =3a +5b ,d =m a -b ,c ⊥d ,求m 的值.【解析】a ·b =|a ||b |cos60°=3, ∵c ⊥d ,∴c ·d =0, 即(3a +5b )·(m a -b )=0, ∴3m a 2+(5m-3)a ·b -5b 2=0, ∴27m +3(5m-3)-20=0, 解得29m .42=22.【解题指南】(1)向量相等对应坐标相等,列方程组解之. (2)由两向量平行的充要条件列方程解之.(3)设出d =(x ,y)【解析】(1)由题意得(3,2)=m(-1,2)+n(4,1),5m m 4n 392m n 28n .9⎧⎪-⎧⎪⎨⎨⎩⎪⎪⎩=,+=,所以得+=,=(2)a +k c =(3+4k,2+k),2b -a =(-5,2), ∵(a +k c )∥(2b -a ),∴2×(3+4k)-(-5)(2+k)=0,16k .13∴-= (3)设d =(x ,y),d -c =(x-4,y-1), a +b =(2,4),224(x 4)2(y 1)0(x 4)(y 1)5x 3x 5y 1y 3---⎧⎨--⎩⎧⎧⎨⎨-⎩⎩=,由题意得+=,=,=,解得或=,=,∴d =(3,-1)或d =(5,3).【方法技巧】巧用向量的坐标表示解题(1)运用向量的坐标表示,使向量的运算完全代数化,将数与形有机地结合.(2)根据平行的条件建立方程求参数,是解决这类题目的常用方法,充分体现了方程思想在向量中的应用.。
人教版高二必修四数学第二章平面向量试题

以下是为⼤家整理的关于《⼈教版⾼⼆必修四数学第⼆章平⾯向量试题》的⽂章,供⼤家学习参考!第四部分练习与试卷2.1 平⾯向量的概念及其线性运算(练习)【练习⽬标】1、理解平⾯向量和向量相等的含义,理解向量的⼏何表⽰;2、掌握向量加、减法的运算,并理解其⼏何意义;3、掌握向量数乘的运算,并理解其⼏何意义,以及两个向量共线的含义;4、了解向量线性运算的性质及其⼏何意义。
【⾃我测试】1、下列命题中(1)与⽅向相同(2)与⽅向相反(3)与有相等的模(4)若与垂直其中真命题的个数是 ( )A、0B、1C、2D、32、已知AD、BE是 ABC的边BC、AC上的中线,且,,则为 ( )A、 B、 C、 D、3、O是平⾯上⼀定点,A、B、C是平⾯上不共线的三个点,动点P满⾜,则P的轨迹⼀定经过 ABC的( )A、外⼼B、内⼼C、垂⼼D、重⼼4、若⾮零向量、满⾜| + |=| — |,则与所成⾓的⼤⼩为_________________。
5、已知点M是 ABC的重⼼,若,求的值。
6、 ABC的外接圆的圆⼼为O,两条边上的⾼的交点为H,,求实数的值。
2.2 平⾯向量的坐标运算【练习⽬标】1、知识与技能:了解平⾯向量的基本定理及其意义、掌握平⾯向量的正交分解及其坐标表⽰;理解⽤坐标表⽰的平⾯向量共线的条件。
2、能⼒⽬标:会⽤坐标表⽰平⾯向量的加、减与数乘运算;3、情感⽬标:通过对平⾯向量的基本定理来理解坐标,实现从图形到坐标的转换过程,锻炼学⽣的转化能⼒。
【⾃我测试】1、下列命题正确的是()A、 B、C、 D、2、已知正⽅形ABCD的边长为1,,则 = ()A、0B、3C、D、3、已知,则共线的条件是()A、 B、 C、 D、或4、如图,在中D、E、F分别是AB、BC、CA的中点,则()A、 B、 C、 D、5、若,则实数p、q的值为()A、 B、 C、 D、6、已知A、B、C是坐标平⾯上的三点,其坐标分别为A(1,2),B(4,1),C(0,-1),则是()A、等腰三⾓形B、等腰直⾓三⾓形C、直⾓三⾓形D、以上都不对2.3 平⾯向量的数量积及其运算【学习⽬标】1.知识与技能:(1)理解向量数量积的定义与性质;(2)理解⼀个向量在另⼀个向量上的投影的定义;(3)掌握向量数量积的运算律;(4)理解两个向量的夹⾓定义;【⾃我测试】1、已知,,和的夹⾓为,则为()A. B. C. D.2、已知向量,,若,则()A. B. C. D.3、在△ABC中,a,b,c分别为三个内⾓A,B,C所对的边,设向量,若 ,则⾓A的⼤⼩为()A. B. C. D.4、设是任意的⾮零平⾯向量,且它们相互不共线,下列命题:①②③不与垂直④其中正确的是()A.①②B.②③C.③④D.②④5、若向量与的夹⾓为,,则向量的模为()A. B. C. D.6、为锐⾓三⾓形的充要条件是()A. B.C. D.7、设是两个⾮零向量,是在的⽅向上的投影,⽽是在的⽅向上的投影,若与的夹⾓为钝⾓,则()A. B. C. D.8、在中,若且,则的形状是()A.等边三⾓形 B.直⾓三⾓形 C.等腰⾮等边三⾓形 D.三边均不相等的三⾓形9、若,则与的夹⾓为; = .10、已知, ,如果与的夹⾓为锐⾓,则的取值范围是11、 = 时,与垂直12、设向量其中,则的值是.13、已知向量与的夹⾓为,,则 = .14、已知,⑴求与的夹⾓;⑵求;⑶若,,求的⾯积.15、已知向量且.⑴求及;⑵若的最⼩值是,求的值.2.4平⾯向量的应⽤【学习⽬标】1.经历⽤向量⽅法解决某些简单的平⾯⼏何问题、⼒学问题与其他⼀些实际问题的过程,体会向量是⼀种处理⼏何问题、物理问题等的⼯具,发展运算能⼒2.运⽤向量的有关知识对物理中的问题进⾏相关分析和计算,并在这个过程中培养学⽣探究问题和解决问题的能⼒1.在△ABC中,AB=a,AC=b,当a•b <0时,△ABC为()A.直⾓三⾓形B.锐⾓三⾓形C.钝⾓三⾓形D.等腰三⾓形2.若向量a、b、c满⾜a +b+c=0,|a|=3,|b|=1,|c|=4,则a b+b c+c a等于()A. 11 B. 12 C. 13 D. 143.已知点,则∠BAC 的余弦值为.4.已知,且a 与b的夹⾓为钝⾓,则x的取值范围是.5.的顶点为,重⼼.求:(1)边上的中线长;(2)边上的⾼的长.6.已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.7.已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.8、已知O为△ABC所在平⾯内的⼀点,且满⾜,试判断△ABC的形状.9、已知,设C是直线OP上的⼀点,其中O为坐标原点.(1)求使取得最⼩值时向量的坐标;(2)当点C满⾜(1)时,求cos∠ACB.平⾯向量测试卷命题⼈:蓝承⼀、选择题:本⼤题共8⼩题,每⼩题4分,共32分.在每⼩题给出的四个选项中,只有⼀项是符合题⽬要求的.1、设向量,,则下列结论中正确的是()A、 B、C、与垂直D、∥2、在平⾏四边形ABCD中,AC为⼀条对⾓线,若, ,则()A.(3,5) B.(2,4) C、(-2,-4) D.(-3,-5)3、义平⾯向量之间的⼀种运算“ ”如下,对任意的,,令,下⾯说法错误的是()A.若与共线,则B.C.对任意的,有D.4、已知向量a,b满⾜a•b=0,|a|=1,|b|=2,则|2a-b|=()A、8B、4C、2D、05、在中,,.若点满⾜,则()A. B. C. D.6、设点M是线段BC的中点,点A在直线BC外,则()A、8B、4C、 2D、17、中,点在上,平⽅.若,,,,则()A、 B、 C、 D 、8、已知和点满⾜ .若存在实数使得成⽴,则 =()A. 2 B. 3 C. 4 D. 5⼆、填空题:本⼤题共4⼩题,每⼩题4分,共16分.把答案填在答题卡的相应位置.9、如图,在中,,,则 = 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
祁东一中高一数学必修四第二章测试题一、选择题(本大题共12个小题,每小题4分,共48分,在每小题给出的四个选项中只有一个是符合题目要求的)1.设a =(1,-2),b =(-3,4),c =(3,2),则(a +2b )·c =( ) A .(-15,12) B .0 C .-3 D .-112.已知a =(1,-1),b =(λ,1),a 与b 的夹角为钝角,则λ的取值范围是( ) A .λ>1 B .λ<1 C .λ<-1 D .λ<-1或-1<λ<13.在四边形ABCD 中,若AB →·CD →=-|AB →|·|CD →|,且BC →·AD →=|AD →|·|BC →|,则该四边形一定是( )A .平行四边形B .矩形C .菱形D .正方形4.如果两个非零向量a 和b 满足等式|a |+|b |=|a +b |,则a ,b 应满足( ) A .a ·b =0 B .a ·b =|a |·|b | C .a ·b =-|a |·|b | D .a ∥b5.设D 、E 、F 分别是△ABC 的三边BC 、CA 、AB 上的点,且DC →=2BD →,CE →=2EA →,AF →=2FB →,则AD →+BE →+CF →与BC →( )A .反向平行B .同向平行C .互相垂直D .既不平行也不垂直6.在▱ABCD 中,已知AC →=(-4,2),BD →=(2,-6),那么|2AB →+AD →|=( ) A .5 5 B .2 5 C .210 D.857.如右图,在梯形ABCD 中,AD ∥BC ,OA →=a ,OB →=b ,OC →=c ,OD →=d ,且E 、F 分别为AB 、CD 的中点,则( )A.EF →=12(a +b +c +d )B.EF →=12(a -b +c -d )C.EF →=12(c +d -a -b )D.EF →=12(a +b -c -d )8.在矩形ABCD 中,AE →=12AB →,BF →=12BC →,设AB →=(a,0),AD→=(0,b ),当EF →⊥DE →时,求得|a ||b |的值为( )A .3B .2 C. 3 D. 29.已知向量OA →=(2,2),OB →=(4,1),在x 轴上求一点P ,使AP →·BP →取最小值,则P 点的坐标是( )A .(3,0)B .(-3,0)C .(2,0)D .(4,0)10.已知a 、b 是平面内两个互相垂直的单位向量,若向量c 满足(a -c )·(b -c )=0,则|c |的最大值是( )A .1B .2 C. 2 D.2211.平面向量a 与b 的夹角为60°,a =(2,0),|b |=1,则|a +2b |=( ) A. 3 B .2 3 C .4 D .1212.设e 1与e 2为两不共线向量,AB →=2e 1-3e 2,BC →=-5e 1+4e 2,CD →=e 1+2e 2,则( ) A .A 、B 、D 三点共线 B .A 、C 、D 三点共线 C .B 、C 、D 三点共线 D .A 、B 、C 三点共线二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上) 13.与向量a =(-5,12)共线的单位向量为________.14.在△ABC 中,AB =2,AC =3,D 是边BC 的中点,则AD →·BC →=________.15.已知a +b =2e 1-8e 2,a -b =-8e 1+16e 2,其中|e 1|=|e 2|=1,e 1⊥e 2,则a ·b =________.16.已知OA →=(k,2),OB →=(1,2k ),OC →=(1-k ,-1),且相异三点A 、B 、C 共线,则实数k =________.13、 ; 14、 。
15、 ; 16、 。
三、解答题(本大题共6个小题,共56分,解答应写出文字说明,证明过程或演算步骤) 17.(本题满分8分)已知a =(1,1),且a 与a +2b 的方向相同,求a ·b 的取值范围.18.(本题满分8分)已知a=(1,2),b=(-3,2),当k为何值时,(1)k a+b与a-3b垂直?(2)k a+b与a-3b平行?平行时它们是同向还是反向?19.(本题满分10分)已知a=3i-4j,a+b=4i-3j,(其中,i,j是互相垂直的单位向量)(1)求向量a、b的夹角的余弦值;(2)对非零向量p,q,如果存在不为零的常数α,β使αp+βq=0,那么称向量p,q是线性相关的,否则称向量p,q是线性无关的.向量a,b是线性相关还是线性无关的?为什么?20.(本题满分10分)已知正方形ABCD,P为对角线AC上任一点,PE⊥AB于点E,PF⊥BC 于点F.求证:DP⊥EF.21.(本题满分10分)设直线l:mx+y+2=0与线段AB有公共点P,其中A(-2,3),B(3,2),试用向量的方法求实数m的取值范围.22.(本题满分10分)已知a,b是两个非零向量,夹角为θ,当a+t b(t∈R)的模取最小值时.(1)求t的值;(2)求b与a+t b的夹角.参考答案一、 选择题 CDABADCDACBA 二、 填空题13、⎝ ⎛⎭⎪⎫-513,1213和⎝ ⎛⎭⎪⎫513,-1213 14、 52 15、-63 16、-14三、解答题17、[解析] ∵a 与a +2b 方向相同,且a ≠0, ∴存在正数λ,使a +2b =λa ,∴b =12(λ-1)a .∴a ·b =a ·⎣⎢⎡⎦⎥⎤12(λ-1)a =12(λ-1)|a |2=λ-1>-1.即a ·b 的取值范围是(-1,+∞). 18、[解析] (1)k a +b =k ×(1,2)+(-3,2) =(k -3,2k +2),a -3b =(1,2)-3×(-3,2)=(10,-4).当(k a +b )·(a -3b )=0时,这两个向量垂直. 由10(k -3)+(2k +2)(-4)=0,解得k =19. 即当k =19时,k a +b 与a -3b 垂直.(2)当k a +b 与a -3b 平行时,存在唯一的实数λ使k a +b =λ(a -3b ). 由(k -3,2k +2)=λ(10,-4)得,⎩⎪⎨⎪⎧k -3=10λ,2k +2=-4λ,解得⎩⎪⎨⎪⎧k =-13,λ=-13.即当k =-13时,两向量平行.∵λ=-13,∴-13a +b 与a -3b 反向.19、[解析] (1)b =(a +b )-a =i +j ,设a 与b 夹角为θ,根据两向量夹角公式:cos θ=a ·b |a ||b |=3-452=-210.(2)设存在不为零的常数α,β使得αa +βb =0,那么⎩⎪⎨⎪⎧3α+β=0-4α+β=0⇒⎩⎪⎨⎪⎧α=0β=0,所以不存在非零常数α,β,使得αa +βb =0成立.故a 和b 线性无关. 20、[证明] 以A 为原点,AB 、AD 分别为x 轴、y 轴建立直角坐标系,设正方形边长为1,则AB →=(1,0),AD →=(0,1).由已知,可设AP →=(a ,a ),并可得EB →=(1-a,0),BF →=(0,a ),EF →=(1-a ,a ),DP →=AP →-AD →=(a ,a -1),∵DP →·EF →=(1-a ,a )·(a ,a -1)=(1-a )a +a (a -1)=0.∴DP →⊥EF →,因此DP ⊥EF .21、[解析] (1)P 与A 重合时,m ×(-2)+3+2=0,∴m =52.P 与B 重合时,3m +2+2=0,∴m =-43.(2)P 与A 、B 不重合时,设AP →=λPB →,则λ>0. 设P (x ,y ),则AP →=(x +2,y -3),PB →=(3-x,2-y ).∴⎩⎪⎨⎪⎧x +2=λ(3-x )y -3=λ(2-y ),∴⎩⎪⎨⎪⎧x =3λ-2λ+1y =2λ+3λ+1,把x ,y 代入mx +y +2=0可解得λ=2m -53m +4,又∵λ>0,∴2m -53m +4>0.∴m <-43或m >52.由(1)(2)知,所求实数m 的取值范围是(-∞,-43)∪⎣⎢⎡⎭⎪⎫52,+∞.22、[解析] (1)|a +t b |2=a 2+2t a ·b +t 2b 2=|b |2t 2+2|a ||b |cos θ·t +|a |2. ∴当t =-|a |cos θ|b |时,|a +t b |有最小值.(2)当t =-|a |cos θ|b |时,b ·(a +t b )=a ·b +t |b |2=|a |·|b |cos θ-|a |cos θ|b |·|b |2=0.∴b ⊥(a +t b ),即b 与a +t b 的夹角为90°.。