试验设计与数据分析.

合集下载

医学研究中的临床试验与数据分析方法

医学研究中的临床试验与数据分析方法

医学研究中的临床试验与数据分析方法在医学领域中,临床试验是评估药物、治疗方法或预防措施有效性和安全性的关键步骤。

同时,数据分析方法的选择和应用对于评估试验结果的可靠性和科学性也至关重要。

本文将介绍医学研究中常用的临床试验设计和数据分析方法。

一、临床试验设计1. 随机对照试验随机对照试验是最常见且最可靠的试验设计。

在随机对照试验中,研究人员通过随机分配研究对象到不同的组别,比较新药物或治疗方法与对照组的差异。

随机分组可以有效减少个体差异对结果的影响,提高研究结果的可靠性。

2. 盲法盲法是保证试验结果客观性和可靠性的重要手段。

单盲试验中,研究对象不知道自己所在的组别;双盲试验中,研究人员和研究对象均不知道组别信息;而在最严格的三盲试验中,连数据分析员也不知道组别分配情况。

采用盲法可以减少主观因素对试验结果的干扰,提高评价的客观性。

3. 平行设计和交叉设计在平行设计中,研究对象被随机分配到不同组别,并且各组独立接受不同的干预措施。

而在交叉设计中,研究对象在不同时间点接受不同组别的干预措施。

平行设计适用于需要长期追踪观察的试验,而交叉设计则适用于对干预效果迅速评估的试验。

二、数据收集与管理1. 数据收集工具在临床试验中,通常使用标准化的数据收集工具,如调查问卷、数据表格等,以确保数据的准确性和一致性。

研究人员需要明确指导研究对象进行数据的记录,并对数据进行审核和校对,以减少数据的错误和缺失。

2. 电子数据采集系统随着科技的发展,越来越多的临床试验采用电子数据采集系统来收集和管理数据。

电子数据采集系统可以提高数据的准确性和完整性,并且便于数据的存储、分享和分析。

同时,电子数据采集系统还可以提供实时监测和错误检测功能,帮助研究人员及时发现数据异常和错误。

三、数据分析方法1. 描述性统计分析描述性统计分析是对试验数据进行概括和描述的方法。

常用的描述性统计指标包括平均值、中位数、标准差、百分比等。

通过描述性统计分析,研究人员可以对样本的基本特征有一个直观的了解,并初步探索不同组别间的差异。

科学研究中实验设计与数据分析方法

科学研究中实验设计与数据分析方法

科学研究中实验设计与数据分析方法科学研究是一项重要的活动,而实验设计和数据分析则是科学研究中不可或缺的环节。

实验设计包括确定实验的目标、设计实验方案、选择实验对象和确定实验变量等步骤;数据分析则是对实验所产生的数据进行统计和解释的过程。

本文将探讨科学研究中常用的实验设计和数据分析方法。

在实验设计中,有几个重要的步骤需要注意。

首先是确定实验的目标,即明确研究问题和要探究的现象。

在确定目标后,需要设计实验方案,即确定实验的具体步骤和流程。

实验方案要尽量遵循科学研究的原则,如随机分组、对照组设计等。

另外,在选择实验对象时,应考虑样本的代表性和可行性,以保证实验结果的可靠性和推广性。

最后,在确定实验变量时,要控制其他可能的干扰因素,以保证实验结果的准确性。

对于数据分析方法,常用的包括描述统计和推断统计。

描述统计是对数据的基本特征进行总结和描述的方法。

其中,最常见的描述统计指标包括均值、中位数、标准差等。

均值是一组数据的平均值,中位数是一组数据的中间值,标准差是一组数据的离散程度的度量。

通过描述统计方法,可以直观地了解数据的分布和趋势。

另外,推断统计是通过样本数据对总体参数进行推断的方法。

这一方法常用于研究中对两个或多个样本之间的差异进行比较。

在推断统计中,常用的方法包括t检验、方差分析、相关分析等。

t检验用于比较两个样本均值之间的差异,方差分析用于比较多个样本之间的差异,相关分析则用于探究变量之间的相关性。

通过推断统计方法,可以帮助研究者判断研究结果的显著性和推广性。

除了上述方法外,科学研究中还有许多高级的实验设计和数据分析方法,如回归分析、因子分析、结构方程模型等。

这些方法更加复杂且需要一定的统计知识和技能。

回归分析用于探究变量之间的函数关系,因子分析则用于降维和变量提取,结构方程模型则综合运用多个统计方法进行模型拟合和验证等。

在实际应用中,科学研究中的实验设计和数据分析方法需要根据研究问题的特点和数据类型的特征来选择。

试验设计及其数据分析

试验设计及其数据分析

例如: 欲研究某种生长调节剂对水稻株高的影响,进行6个处理 的盆栽试验,每个处理4盆(重复4次),共24盆。设计时 先将每盆水稻随机编号:1,2,3,…,24,然后用抽签 法从所有编号中随机抽取4个编号作为实施第一处理的4盆, 再从余下的20个编号中随机抽取4个作为实施第二处理的4 盆,如此进行下去。 于是可得各处理实施的盆号如下: 第一处理:13,2,7,22 第二处理:5,18,24,12 第三处理:17,20,11,1 第四处理:10,3,15,19 第五处理:4,16,9,14 第六处理:21,23,6,8
抽样分布显示,样本平 均数的标准误 S x 与样本观测值的标 准差S和样本容量n之间的关系为: S x=S / n
即样本平均数抽样误差的大小与重复次数的平方根成反 比。适当增大重复次数可以降低试验误差。
随机排列
随机排列是指试验的每一个处理都有同等机会设置在一 个重复中的任何一个试验小区上。 随机化的目的是为了获得对总体参数的无偏估计。 随机排列的实现可以通过抽签法、利用随机数字表法。
例如:玉米品种(A)与施肥(B)两因素试验,A因 素有A1,A2,A3,A4这四个水平,B因素有B1和B2 两个水平,共有8个水平组合即处理,随机区组设计, 设置3个区组。设计示意图为: 区 组I 区 组II A3 B2 A2 B2 A1 B2 A1 B1 A3 B2 A2 B1 A4 B1 A2 B1 A4 B1 A4 B2 A3 B1 A2 B2 A3 B2 A1 B1 A1 B1 A2 B1 A1 B2 A3 B1 A4 B2 A2 B2 A4 B2 A3 B1 A4 B2 肥 力 梯 度
试验地 肥 力 梯 度 肥 瘦
•设计方法: 先将整个试验地按干扰因素(肥力水平)分成若干个区 组,每个区组内土壤肥力等环境条件相对均匀一致,而 不同区组间相对差异较大;然后在每个区组中随机安排 全部处理。

统计师如何进行实验设计和数据解读

统计师如何进行实验设计和数据解读

统计师如何进行实验设计和数据解读实验设计和数据解读是统计学中至关重要的环节,对于统计师而言,掌握正确的实验设计方法和数据解读技巧是必不可少的。

本文将从实验设计和数据解读两个方面,详细介绍统计师在工作中应该如何进行实验设计和数据解读。

一、实验设计实验设计是统计师在开展研究工作中的第一步,良好的实验设计方法能够确保研究结果的可靠性和有效性。

1. 确定研究目的:首先,统计师需要明确实验的目的是什么,希望通过实验获得哪些信息或者验证什么假设。

2. 确定实验因素和水平:统计师需要确定实验中的自变量(也称为因素)以及每个自变量的取值范围(水平)。

例如,在研究新药物的实验中,药物剂量就是一个自变量,不同药物剂量的水平可以是高剂量、中剂量和低剂量。

3. 随机化和对照组设计:为了减少误差和排除干扰因素,统计师应该采用随机化的方法将实验对象随机分配到不同的处理组中,并设置对照组进行对照比较。

4. 样本容量的确定:统计师需要根据实验目的、实验设计和预估效应大小等因素来确定适当的样本容量,以确保实验结果的可靠度。

5. 实验执行和数据收集:统计师需要设计数据收集的流程、制定数据录入和数据验证的规范,确保数据的准确性和完整性。

二、数据解读实验数据的解读是统计师在实验完成之后的重要工作,正确的数据解读能够为研究者提供有效的结论和决策依据。

1. 数据清洗和处理:首先,统计师需要对收集到的数据进行清洗和处理。

清洗数据包括删除异常值、缺失值的处理等,处理数据包括对数据进行标准化、归一化等操作。

2. 描述性统计分析:统计师需要运用描述性统计方法对数据进行整体的概括和描述,包括计算平均值、中位数、众数、标准差、偏度、峰度等指标。

3. 探索性数据分析:统计师可以采用可视化方法,例如绘制直方图、散点图、箱线图等,发现数据的分布特征、变化趋势、异常值等信息。

4. 假设检验:统计师需要根据实验设计和研究目的,选择合适的假设检验方法,对研究所关注的变量进行检验。

临床试验的设计和数据分析

临床试验的设计和数据分析

临床试验的设计和数据分析临床试验是评估新的医疗干预措施的有效性和安全性的重要手段。

为了获得可靠的结果,临床试验的设计和数据分析是至关重要的环节。

本文将从试验设计、数据收集、数据分析等方面进行探讨,以确保临床试验结果的可信度和可靠性。

一、试验设计试验设计是临床试验的基础,它决定了试验的可行性、有效性以及结果的可靠性。

下面介绍几种常用的试验设计方法。

1. 随机对照试验随机对照试验是最常用的试验设计方法之一。

它通过随机分组的方式,将受试者分为实验组和对照组,分别接受不同的处理或干预。

这样可以减少干预因素对结果的影响,增加结果的可信度。

随机对照试验的设计应遵循随机分组、盲法等原则,以保证试验结果的客观性和公正性。

2. 单盲与双盲试验单盲试验是指试验人员或受试者不知道自己所处的处理组别;而双盲试验是指试验人员和受试者均不知道自己所处的处理组别。

通过盲法的应用,可以避免主观因素对试验结果的影响,提高试验的可靠性。

3. 交叉试验交叉试验是将同一组受试者按一定时间顺序分为实验组和对照组,分别接受不同处理或干预。

需要注意的是,交叉试验要求受试者在试验过程中不受其他因素干扰,以保证结果的可靠性。

二、数据收集临床试验的数据收集过程要科学、规范。

以下是数据收集的常用方法和注意事项。

1. 临床观察临床试验中的数据收集可以通过临床观察进行。

观察对象可以包括患者的病情、治疗效果、不良反应等。

观察数据应尽量客观、全面,减少主观偏差。

同时,在观察过程中应注意记录数据的时间、地点、人员等信息,以保证数据的准确性和可溯源。

2. 问卷调查通过设计合理的问卷,可以收集受试者的主观感受、生活质量等数据。

在问卷设计中,应考虑问题的合理性、选项的多样性以及回答方式的简便性。

此外,应注意保护受试者的隐私,确保问卷调查的合法性和可靠性。

3. 实验室检测有些临床试验需要通过实验室检测来获取数据,如血常规、生化指标等。

在实验室检测中,要确保检测方法准确可靠,并遵循相应的操作规范。

实验设计与数据分析

实验设计与数据分析
著,在差数的右上方标记“*”;小于0.01者极显著,在 差数的右上方标记“**”。
2、标记字母法 此法是先将各处理平均数由大到小 自上而下排列 ;
然后在最大平均数后标记字母a, 并 将 该 平 均数与
以 下 各 平 均 数依次相比,凡 差 异 不 显著标 记 同 一 字 母 ,直到某一个与其差异显著的平均数标记字母
• 在利用字母标记法表示多重比较结果时, 常在三角形法的基础上进行。此法的优点 是占篇幅小,在科技文献中常见。
• 应当注意,无论采用哪种方法表示多重比 较结果,都应注明采用的是哪一种多重比 较法。同时注明显著性水平。
5.4 单因素方差分析
例5-1
将一份金属钨试样分发给7个实验室,各室用相同的重
g
SSB nj (Xj X)2 j1
组内差异则是各组内部观察值的离散程度
g nj
SSW
(Xij Xj)2
j1 i1
深入理解F统计量(3)
g nj
SST
(Xij X)2
j1 i1
总离差
g
SSB nj (Xj X)2
组间方差
j1
g nj
SSW
在方差分析之前,我们可利用Minitab对 数据作方差一致性检验
方差分析时,Minitab能够读取的数据格式与上表给出的格式不 同,我们必须把数据转化为Minitab能够理解的形式
方差一致性检验
Stat→ANOVA→Test for Equal Variance
数据
菜单
方差一致性检验(续)
适用于正态 分布的数据
F=组间方差/组内方差
的检验统计量,在一定的置信水平下,将这个 值和某个临界值作比较,就可以得出接受还是 拒绝零假设的结论。

临床试验设计与数据分析的基本原则

临床试验设计与数据分析的基本原则临床试验是评估和比较医学疗法的重要方法,它们帮助我们了解药物的疗效、副作用以及治疗方案的有效性。

临床试验的设计和数据分析在整个研究过程中起着关键的作用,它们是确保研究结果准确可靠的重要环节。

本文将介绍临床试验设计和数据分析的基本原则,以帮助提高临床研究的质量。

一、随机化设计随机化设计是临床试验中基本的设计原则之一。

它通过随机分配受试者至不同的治疗组,确保每个治疗组都有相同的临床特征和疾病状态。

随机化设计可以避免选择性偏倚,使得治疗组之间的差异仅仅是由于不同的治疗方案。

二、对照组设计对照组设计是一种常见的临床试验设计。

它将研究对象分为实验组和对照组,实验组接受待研究的治疗方案,而对照组接受标准治疗或安慰剂。

对照组设计可以帮助我们评估新治疗方案的疗效,并确定其相对于标准治疗的优势或劣势。

三、盲法设计盲法设计是为了减少主观偏倚而采取的设计原则。

它可以分为单盲、双盲和三盲设计。

单盲设计是指研究人员或受试者不知道自己的分组情况;双盲设计是指研究人员和受试者都不知道自己的分组情况;三盲设计是指除了研究数据分析人员以外,其他人员都不知道受试者的分组情况。

盲法设计可以减少意识和无意识的偏倚,提高试验结果的可靠性。

四、样本量估计样本量估计是确定试验所需受试者数量的重要方法。

通过合理的样本量估计,可以提供足够的统计能力,以便检测到治疗效应的存在。

样本量估计要考虑到预期的疗效大小、研究设计、显著性水平和统计方法等因素。

五、数据收集和管理在临床试验中,数据收集和管理起着关键的作用。

合理的数据收集方法可以确保数据的准确性和完整性。

数据管理要遵循相关法规和标准操作规程,包括数据录入、数据核查、数据清理和数据分析等环节。

六、数据分析方法数据分析是临床试验中至关重要的环节。

正确选择和应用数据分析方法可以帮助我们从试验结果中获取有用的信息。

常用的数据分析方法包括描述性统计、假设检验、方差分析、生存分析和回归分析等。

试验设计与数据分析(正交试验设计)

它利用正交表来安排试验,确保每个 因素在每个水平上都有机会出现,并 且各因素各水平之间具有均衡分布的 特点。
正交试验设计的特点
高效性
通过合理地选择因素和水平,正交试验设计能够用较少的试验次数获 得较为全面的试验结果,提高试验效率。
均衡性
正交试验设计能够保证每个因素在每个水平上都有机会出现,且各因 素各水平之间具有均衡分布的特点,避免了试验结果的偏差。
试验设计与数据分析(正交试 验设计)
目录
• 试验设计基础 • 正交试验设计 • 正交试验设计的应用 • 正交试验设计案例分析 • 正交试验设计的优缺点 • 正交试验设计的未来发展
01
试验设计基础
试验设计的基本概念
试验设计
指在研究过程中,根据研究目的, 选择适当的试验因素,并按照一 定的原则和方法,安排试验过程, 以得到可靠的科学结论。
试验设计的原则
01
随机性原则
确保试验结果的随机性和代表性。
科学性原则
根据研究目的和研究对象的性质选 择适当的试验方法和手段。
03
02
重复性原则
保证试验结果的可信度和精确度。
经济性原则
在满足研究目的的前提下,尽可能 地节约人力、物力和财力。
04
02
正交试验设计
正交试验设计的定义
正交试验设计是一种通过正交表来安 排多因素多水平试验的方法,旨在通 过合理地选择试验因素和水平,以最 少的试验次数获得尽可能多的信息。
定制化
针对不同领域和特定需求,正交试验设计将更加注重定制化服务,提供个性化的试验方 案和数据分析方法。
未来展望
01
拓展应用领域
随着正交试验设计的不断完善和发展 ,其应用领域将进一步拓展,不仅局 限于工业和工程领域,还将渗透到生 物、医学、社会科学等多个领域。

营养学综合试验设计和数据分析方法

营养学综合试验设计和数据分析方法营养学是一个涉及到人们健康和生长发育的重要学科。

为了深入研究营养学知识,进行营养学综合试验是必要的。

正确设计试验和分析试验数据至关重要。

本文将介绍营养学综合试验的设计和数据分析方法。

试验的设计营养学综合试验的设计需要考虑多个因素:参与者的人数和特点、试验的时间和场所、试验方法和措施、以及试验结果的分析方法。

参与者的人数和特点确定试验参与者的人数和特点是营养学试验设计的一项基本工作。

试验参与者需要具备什么样的特点和状态,以及在试验前应该进行何种检查和确认等问题,都应该在试验设计之前充分考虑。

试验的时间和场所试验时间和场所需要充分考虑实际情况。

一些试验可能需要在恒温条件下进行,而另一些试验可能需要在户外进行。

情况不同,需求也不同。

因此,在试验设计时,应该确定合适的时间和场所,以确保试验的可行性和有效性。

试验方法和措施试验方法和措施是营养学试验设计的核心。

不同的试验需要采用不同的试验方法和措施。

例如,代谢测试需要特殊的设备和物质,食物摄入量的测量方法也需要精确到克。

此外,常用的膳食记录和问卷需符合营养学要求。

试验结果的分析方法试验的结果分析是整个试验流程中最重要的环节。

所有数据都应该得到充分的分析和解读。

数据处理和分析过程,可以参考多个营养学领域的内部或外部标准,比如美国农业部的膳食参考摄入量(DRI)。

此外,可以使用相关软件或数据分析工具,如SPSS等。

数据的分析正确的数据分析方法是确保试验效果可信赖的关键。

如何分析数据和选择适合的统计方法?数据收集与记录在进行数据分析之前,首先需要进行数据收集。

在收集数据时,需要确定测试方法和评估指标。

例如,在营养代谢测量中,体重、身高、体脂含量和代谢率等指标都是关键数据。

数据的处理数据处理的过程包括数据清洗、筛选、标准化和缺失值处理等环节。

在处理数据时,需要使用适当的框架和方法,以确保数据的准确性和可靠性。

如果有缺失值,则需要根据具体情况进行补充或者剔除。

第一章 试验设计与数据分析-概述


论文工作中反映的问题: 1) 只求平均数 2) 试验做1-2次就算。 原因:与工程试验的性质及理解有关 例:电量、非电量电测技术的应用:
模拟量的测试(传感器) 信号放大 模数转换(A/D)
计算机数据处理
仪器是很准确的
被测对象是随机变量!
论文工作中反映的问题:
3)试验设计应逐步深化,通常一种错误的做法,是在一 开始就去设计一个单一、庞大和内容广泛的实验, 一个 成功的实验是要先弄清楚重要变量和变量的范围; 4) 专业知识的作用 试验统计方法不能决定一个变量的作用,它仅对试验 结果的可靠性和有效性提供准则。结论还依赖于对问题 的工程知识的了解和把握; 例:一篇投农业工程学报的论文 修改意见: “3)文中一些拟合方程无意义,可以删除 相关内容。请您在附件中进行修改,修改部分务必用红 色标记出。”
试验统计学简史
3)山口弘一正交设计、可靠性设计价值工程类设计方法 (20世纪70年代),强调整体效果:如日本汽车的质量 在工业界得到广泛应用,但在理论上有很大争议; 4)随着科学的发展,学科交叉越来越普遍,试验设计方 法在许多领域得到广泛的认同和应用:禽流感传感器。 实验设计已远不止农业,奇怪现象:在农业相关领域的 兴趣反而下降——仪器设备的改进、标准化生产的影响
试验设计与数据统计分析
Experimental Design and Data Statistical Analysis 华南农业大学工程学院 刘庆庭
2012-9
关于本课程 学生:2012级——57人 (工程39、水利土木3、林学4 、园艺1、 食品10) 时间:2012年9月-2013年1月 学时:36 上课:28 周学时:3节/周 上机:8(SPSS数据处理软件应用) 作业: 建议先用手工做,以后用计算机做 考试:开卷
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。



正态总体ξ ~(μ 1,σ 正态总体η ~(μ 2,σ 已知σ
1 2 2 2 1 2
(

x - y -
2
12
n1

2 2
n2
,
σ
1
σ 2 为总体标准差,
x - y
2
12
n1

2 2

)
n1,n2 为样本容量 μ 为查正态分布表所得

σ
back
(x - y - t

2
n 2
n
2
i 1
i
0
i 1
i
0
2
2
2
1-
2
正态总体方 差σ 估计
2
所得
的区间
,
(n -1)s 2 正态总体ξ 2 , ~(μ ,σ 2) ( 2 未知μ
(n -1)s2
n 为样本容量
2
12

s 为样本方差 χ
2
为查卡方分布表
所得
back
区间估 计类别


置信区间 计算公式


正态总体ξ ~(μ 1,σ 正态总体η ~(μ 2,σ 已知
试验设计与数据分析
2008年2月修订 版本4.0
qblin@
结束
• HOW WE TEACH IS ALSO WHAT WE TEACH,
HOW WE LEARN IS ALSO WHAT WE LEARN.
• 我们教育的方式本身也是我们教育的内容;
我们学习的方式本身也是我们学习的内容。
现在请计算以上例题
2 2 ) 2 1 )
x
{
i 1 n2 2 j 1
n1
i
- 1 / n1
2 2
σ
1
σ 2 为总体标准差,
F y j - 2 / n2
,
n1,n2 为样本容量 F 为查 F(n1,n2)分布表所得数据
x
i 1
n1
i
- 1 / n1
2 j
F
1-

2 j 1
• 作区间估计时,通常计算两尾概率,即区间内的概率为
置信度1- ,区间外两边的概率各为显著水准 之半。
区间估计的种类
对正态总体均值的区间估计
• 已知总体标准差(正态分布) • 未知总体标准差(t分布)
对两个正态总体均值差的区间估计
• 已知两个总体标准差(正态分布) • 未知两个总体标准差,假设 1 = 2 (t分布) • 未知两个总体标准差,假设 1 = 2 (t分布)

其中 SW=
2 n1 s12 n 2 s 2 n1 n 2 - 2
back
区间估计类 别


置信区间 计算公式
备 注
μ 0 为总体平均值 正态总体ξ x - x x - x n 为样本容量 ~(μ ,σ 2) ( , ) 2 χ 为查卡方分布表 已知μ =μ 0
两个正态总体 均值差的区间 正态总体ξ 估计
~(μ 1,σ 正态总体η ~(μ 2,σ 未知σ 1,σ 假设 σ 1= σ
2 2 2 2 1 2
SW
1 1 n1 n 2 1 1 n1 n 2
, σ )
1
σ 2 为总体标准差,

x - y t SW
2
n1,n2 为样本容量 t 为查 t 分布表所得

• 第一章 绪论 • 第二章 常用统计分布 • 第三章 参数估计 • 第四章 假设检验

• 第七章 试验设计 • 第八章 非参数统计分析 • 第九章 主成分分析和因子分析 • 第十章 科技绘图
• 第五章 方差分析
• 第六章 回归分析
• 第十一章 常用统计软件
第三章 参数估计
3.1 抽样分布
3.2 区间估计
3.2 参数区间估计
抽样分布与区间估计
• 前面讨论了总体分布和抽样分布。 • 利用抽样分布,可以指在原总体的分布为已知的
情况下,用一定的概率保证计算出某个样本统计 量出现的区间范围。
• 下面,我们将这个问题反过来讨论。即,利用样本
数据,以抽样总体的分布为理论基础,用一定的概 率保证来计算出原总体中未知参数的区间范围。即 区间估计。
y
n2
- 2 / n2
2
}
两个正态总体 μ 1 及μ 估计
2
方差比的区间 正态总体ξ
~(μ 1,σ 正态总体η ~(μ 2,σ 未知 μ
1 2 2 ) 2 1 )
s1 s2 为总体标准差,
s12 (F s22
2
,
s12 F
1-

2
2 s2
)
F 为查 F(n1,n2)分布表所得数据
back
( x - ,x n n
-0 --

0
)
2
n 为样本容量

2 丂
为查正态分布表所

back
未知σ 正态总体 ξ ~(μ ,σ 2) (x -
S 为样本标准差
s n t
2
,x +
-
s n
t
2

n 为样本容量
t
2
为查 t 分布表得
back
区间估 计类别


置信区间 计算公式
2
及μ
特别说明
•以上置信区间计算的前提是:
数据连续且总体服从正态分布
•计算前应对样本数据进行正态性检验,确认是否服 从正态分布
•非正态分布数据的置信区间比较难算,另有办法
对正态总体均值的区间估计
估计均值, 已知
例 已知某品种玉米的单株产量X服从正态分布N(, 2),其 中 未知, =5 g。现从该总体随机抽取一个大小为n= 25的样本,算得样本平均数为35。问该品种玉米的单株产 量(即总体平均数 )有95%的可能落在什么区间? 当要计算95%估计区间时,两尾概率之和为 =1-95%=0.05, 单尾概率为 2 =0.025,查标准正态分布的两尾概率表,或 单尾概率表,查得的值为1.96。对应于=1-90%=0.10的 =1-99%=0.01的值为2.58。大部分科学试验 值为1.64。 中最常用的显著水准就是这三个。所以1.64, 1.96和2.58这 三个值应该用心记住。
置信概率与置信区间
• 所谓置信度就是表示人们所作判断的可靠把握的程度。
置信度有两重含义,一是置信概率,一是置信区间。
• 在日常生活中,人们的判断若有90%或95%的把握性,
就认为这种判断基本上是正确的。在化学实验中作统 计推断时,通常取95%的置信度,也采取90%、99% 等数值,或按研究目的来另行决定。
区间估计的种类
对正态总体方差 2的区间估计(卡方分布)
• 已知总体均值 • 未知总体均值
对两个正态总体方差比的区间估计(F分布)
• 已知两个总体均值 • 未知两个总体均值
区间估 计类别
条 件 已知σ =σ
置信区间 计算公式
0
备 注 σ 0 为总体标准差

2
正态总 体均值μ 的 区间估计
正态总体 ξ ~(μ ,σ 2)
相关文档
最新文档