实验设计与数据处理心得
试验设计与数据处理

试验设计与数据处理在科学研究和实验过程中,试验设计和数据处理是非常重要的环节。
一个合理的试验设计能够保证实验结果的准确性和可靠性,而恰当的数据处理则可以帮助我们从海量数据中获取有意义的信息。
本文将就试验设计和数据处理进行探讨。
一、试验设计试验设计是指在科学研究中为了解决某一问题而设计的实验方案。
良好的试验设计能够最大程度减少误差和提高实验效果。
以下是常见的几种试验设计方法:1. 随机化随机化是一种常用的试验设计方法,通过将参与实验的个体或样本随机分配到不同的处理组中,以减少可能的偏差。
例如,在药物试验中,将参与实验的患者随机分组,一组服用药物,另一组服用安慰剂,以评估药物的疗效。
2. 防止混杂混杂是指在试验中干扰因素的存在,可能影响了试验结果的可靠性。
为了减少混杂因素的影响,可以采取随机分组、对照组设计、平衡设计等方法。
例如,在农学实验中,为了研究新的农药对作物的影响,可以将不同农田随机分配到实验组和对照组,并保持其他因素(如土壤条件、种植方式等)的一致性。
3. 重复设计重复设计是通过对同一实验进行多次重复以获取更加可靠的结果。
重复设计可以帮助我们了解实验结果的稳定性和一致性。
在生物学研究中,例如对某种新药物的治疗效果进行评估,在不同的实验条件下进行多次重复实验,可以验证实验结果的可靠性。
二、数据处理数据处理是指对实验中所获得的数据进行整理、分析和解释的过程。
合理的数据处理方法可以从繁杂的数据中提取出有用的信息,为科学研究提供支持。
1. 数据整理数据整理是数据处理的第一步,也是最基本的一步。
在数据整理过程中,需要对数据进行收集、分类和整理。
通常,可以使用电子表格软件(如Excel)进行数据的录入和存储,并添加必要的数据标签,以便后续的数据分析。
2. 描述统计分析描述统计分析是对数据进行总结和描述的一种方法。
通过描述统计分析,可以计算数据的均值、方差、标准差等指标,以帮助我们了解数据的分布情况和集中趋势。
高效的试验设计与数据分析优化实验设计与数据处理的方法

高效的试验设计与数据分析优化实验设计与数据处理的方法高效的试验设计与数据分析——优化实验设计与数据处理的方法试验设计是科学研究和实验领域中的重要环节,它直接影响到实验结果的可靠性和实验过程的高效性。
同时,在实验过程中,对实验数据的处理和分析也至关重要,它能够揭示数据背后的规律、验证假设,并为决策提供有力支持。
本文将介绍一些高效的试验设计与数据分析的方法,以优化实验设计和数据处理的效果。
一、试验设计1. 设定明确的目标:在进行试验设计之前,需要明确实验的目标和问题。
识别出实验想要解决的具体问题,并确定评价指标和预期结果。
这样可以避免盲目设计和数据收集,确保实验的针对性和有效性。
2. 因素选择与水平确定:根据实验目标,选择影响结果的关键因素,并确定每个因素的水平。
在选择因素时,应避免冗余和重复的因素,以减少实验的复杂性和成本。
同时,要保证因素选择合理,能够揭示影响结果的主要因素。
3. 设计合理的实验方案:基于已确定的因素和水平,选择合适的实验设计方法,如完全随机设计、随机分组设计等。
确保实验方案的科学性和可行性,并考虑到实验过程中可能存在的随机误差和其他干扰因素。
4. 控制实验条件:为了获得准确的实验数据,需要严格控制实验条件,包括环境条件、设备状态等。
通过标准化实验条件,减少不确定因素对实验结果的影响,提高实验数据的可靠性。
二、数据处理与分析1. 数据收集与整理:在实验过程中,需要采集各个因素对结果的观测值,并按照实验方案进行数据整理和记录。
确保数据的准确性和一致性,使得后续的数据处理和分析工作能够进行顺利。
2. 统计分析方法的应用:根据实验设计的特点和数据类型的不同,选择适当的统计分析方法。
常用的统计分析方法包括方差分析、回归分析、t检验等,它们能够有效地揭示因素对结果的影响程度,并提供统计学上的支持。
3. 假设检验与置信区间:在数据分析中,通常需要验证假设的成立和效果的显著性。
通过假设检验和置信区间分析,可以判断因素对结果的影响是否显著,并进行科学的推断。
何少华等. 试验设计与数据处理

何少华等. 试验设计与数据处理1. 试验设计的重要性试验设计是科学研究的重要一环,它直接决定了研究结果的有效性和可信度。
好的试验设计能够最大程度地减少干扰因素,保证实验结果的准确性和可靠性。
在进行科研工作时,科学家们都需要对试验设计非常重视,并严格遵循科学的原则进行设计。
2. 如何进行良好的试验设计良好的试验设计需要考虑多方面因素。
要确定研究目的和问题,明确实验的目标和内容。
需要选择合适的实验材料和方法,确保实验的可行性和有效性。
应当进行充分的实验前准备,包括实验流程、操作步骤、数据记录等。
在进行实验过程中要注意控制干扰因素,保证实验结果的准确性和可靠性。
3. 数据的收集和处理在实验进行过程中,科学家们需要充分地收集和记录实验数据。
数据的收集需要严格按照预定的计划和方法进行,确保数据的完整性和真实性。
在数据处理过程中,还需要进行数据的整理、统计和分析,以得出科学合理的结论。
数据的处理过程需要符合统计学的原则和方法,确保得出的结论具有科学的可信度。
4. 数据处理中常见的问题和解决方法在数据处理过程中,科学家们常常会遇到各种各样的问题。
数据缺失、异常值、分布不均等问题都会影响到数据处理的结果。
针对这些问题,科学家们需要采取相应的方法进行处理,如插补缺失数据、剔除异常值、进行数据转换和标准化等。
还需要借助适当的统计工具和软件进行数据分析和处理,确保得出的结论具有科学的可信度和说服力。
5. 结论试验设计和数据处理是科学研究中非常重要的环节,直接决定了研究结果的准确性和可信度。
科学家们在进行研究工作时需要严格遵循科学的原则进行试验设计,并在数据的收集和处理过程中注意各种可能出现的问题,采取相应的方法进行处理,以确保得出的结论具有科学的可信度和说服力。
在实验设计和数据处理中的关键要素在实验设计和数据处理过程中,有一些关键要素需要特别引起科研人员的注意。
这些要素涉及到实验的可重复性、对照组的设立、实验误差的控制等方面,它们对于最终结论的可信度具有重要的影响。
科学实验设计与数据处理

科学实验设计与数据处理一、引言在科学研究中,实验是获得可靠数据的重要方法之一。
良好的实验设计和合理的数据处理不仅能保证实验结果的准确性和可重复性,还能为科学原理的验证和应用提供重要支持。
本节主要介绍科学实验设计的基本原则和数据处理的方法。
二、实验设计1.确定实验目的实验设计的首要任务是明确实验目的。
通过确定实验目的,我们可以更好地制定实验方案。
2.选择适当的实验方法和仪器设备根据实验目的,选择合适的实验方法和仪器设备。
合理的方法和设备选择将有助于提高实验效果和数据质量。
3.制定操作步骤根据实验方法和仪器设备的要求,制定详细的实验操作步骤。
操作步骤包括实验准备、实验操作、实验记录等内容。
4.确定实验参数和变量在实验设计中,需要明确实验参数和变量。
实验参数是指在实验设计时进行设定的,并且可以被实验者控制的因素。
变量是指在实验中可能会对实验结果产生影响的因素。
5.设计实验对照组为了排除实验结果中其他因素的影响,通常需要设计对照组。
对照组是在实验过程中与实验组进行比较的参照标准。
三、数据处理1.数据收集在实验过程中,需要仔细记录实验数据。
数据的收集可以使用仪器设备自动记录或者手动记录。
确保数据的准确性和完整性是数据收集的关键。
2.数据整理和筛选在数据处理之前,需要对收集到的数据进行整理和筛选。
整理数据可以帮助分析人员更好地理解数据的分布和规律。
筛选数据可以排除一些异常值和错误数据。
3.数据分析和统计数据分析和统计是对数据进行深入研究的重要方法。
常用的数据分析方法包括平均值计算、方差分析、回归分析等。
统计分析可以帮助我们得出科学结论和预测实验结果。
4.结果展示和讨论在数据处理的最后阶段,需要对分析结果进行展示和讨论。
可以使用表格、图表、图像等形式展示数据处理的结果。
同时,还需要对实验结果进行讨论,并与前期的科学理论进行对比和验证。
四、实验安全在进行实验设计和数据处理时,安全问题是至关重要的。
必须严格遵守实验室安全操作规程,佩戴必要的防护装备,并按照相关规定处置实验废液和废弃物。
实验设计与数据处理

课程名称:实验设计与数据处理正交试验设计在环境工程领域内的应用一、正交试验法1.1、正交试验法是研究多因素多水平的一种设计方法,它是根据正交性从全面试验中挑选出部分有代表性的点进行试验,这些有代表性的点具备了“均匀分散,齐整可比”的特点,正交试验是分析因式设计的主要方法。
是一种高效率、快速、经济的实验设计方法。
它利用一套规格化的表格,即正交表来设计试验方案和分析试验结果,能够在很多的试验条件中,选出少数几个代表性强的试验条件,并通过这几次试验的数据,找到较好的生产条件,即最优的或较优的方案。
正交试验法实际上是优选法的一种。
由于正交试验法的内容比较丰富,不仅可以解决多因素选优问题,而且还可以用来分析各因素对试验结果影响的大小,从而抓住主要因素。
因此,它已从优选法中独立出来,自成系统。
1.2、正交表日本著名的统计学家田口玄一将正交试验选择的水平组合列成表格,称为正交表。
正交表是一整套规则的设计表格,用 L为正交表的代号,n为试验的次数,t为水平数,c为列数,也就是可能安排最多的因素个数。
正交表的性质:(1)每一列中,不同的数字出现的次数相等。
(2)任意两列中数字的排列方式齐全而且均衡。
以上两点充分的体现了正交表的两大优越性,即“均匀分散性,整齐可比”。
通俗的说,每个因素的每个水平与另一个因素各水平各碰一次,这就是正交性。
1.3、正交试验法的步骤(1)在调查研究的基础上,根据科研和生产实践中需要解决的关键问题,确定试验课题。
(2)根据实际经验和理论分析及有关情报资料,分析可能影响试验结果的各种因素,并从中找出主要因素,确定主要因素的变化范围。
(3)根据试验课题的具体特点,选出合适的优选方法。
(4)根据所选用的优选方法,安排试验方案,并严格按试验条件操作,准确测定试验结果。
(5)对试验结果进行对比分析,确定最优方案。
1.4、因素的安排正交试验设计的关键在与试验因素的安排。
通常,在不考虑交互作用的情况下,可以自由的将各个因素安排在正交表的各列,只要不在同一列安排两个因素即可(否则会出现混杂)。
实验设计与数据处理

实验设计与数据处理实验设计是指在科学研究过程中,为了解决研究问题或验证假设而进行的一系列活动。
一个好的实验设计能确保实验结果的可靠性和可重复性,并且能够提供可靠的数据来支持结论。
实验设计的步骤通常包括以下几个阶段:1. 问题定义:明确研究领域中的问题或假设,确定实验的目的和要解决的问题。
2. 变量定义:确定实验中要观察和测量的变量,包括自变量(独立变量,影响结果的因素)和因变量(依赖变量,被观察和测量的结果)。
3. 实验设计:根据实验目的和问题,确定实验的具体设计。
这包括确定实验组和对照组,确定实验的随机分组或对照等。
4. 数据采集:根据实验设计,执行实验并收集数据。
这可以通过观察、测量、问卷调查等方式进行。
5. 数据处理:对收集到的数据进行统计分析和处理,以得出结论。
这可能包括描述性统计、假设检验、方差分析等。
6. 结果解释:根据数据分析结果,解释实验结果,讨论结论的意义和影响,并提供进一步研究的建议。
在数据处理方面,有几个常用的统计方法可用于分析实验数据。
1. 描述性统计:通过计算平均值、标准差、中位数等指标,对数据的分布和集中趋势进行描述。
2. 假设检验:通过对比样本数据和理论分布的差异,判断样本数据与总体数据是否存在显著差异。
3. 方差分析:用于比较两个或多个样本均值之间的差异,并判断这些差异是否显著。
4. 相关分析:用于研究两个或更多变量之间的关系,判断它们之间是否存在相关性。
5. 回归分析:用于建立一个或多个自变量对因变量的影响关系,并根据模型进行预测和解释。
在进行数据处理时,还需要注意数据的准确性和可靠性,可以使用统计软件(如SPSS、R等)来进行数据分析和处理,以确保数据处理的准确性和一致性。
实验设计与数据处理

实验设计与数据处理实验设计是科学研究和实验研究中至关重要的一环,它在整个研究过程中起着决定性的作用。
良好的实验设计可以保证得到准确和可靠的实验结果,为数据处理和分析提供可信的依据。
本文将从实验设计和数据处理两个方面进行阐述。
一、实验设计1.问题和目标:在进行实验设计之前,需要明确研究的问题和目标。
合理的问题和目标有助于确定实验的内容和方向。
2.独立变量和因变量:确定研究中的独立变量和因变量。
独立变量是研究者人为控制和变化的因素,而因变量则是受独立变量变化而产生变化的量。
3.实验组和对照组:针对独立变量的不同水平,设置实验组和对照组。
实验组是接受处理或干预的组别,而对照组则是与实验组相对比的组别。
4.样本选择:对于实验中的样本选择,需保证样本的代表性和可行性。
样本的选择应尽量随机,并且样本量要足够大,以提高实验结果的可信度。
5.实验过程和方法:设计具体的实验过程和方法,确保实验的可重复性和可操作性。
实验过程要清晰明确,实验方法要符合科学原理和研究要求。
二、数据处理1.数据收集:在实验过程中准确、规范地进行数据的收集、记录和保存。
确保数据的真实性和完整性,避免数据遗漏或损坏。
2.数据清洗:对收集到的数据进行初步的清洗和筛选,剔除异常值和错误数据。
清洗后的数据有助于后续的数据分析和建模。
3.数据分析:通过统计学方法对数据进行分析,发掘数据中的规律和关联性。
常用的数据分析方法包括描述性统计分析、方差分析、回归分析等。
4.结果展示:将数据处理和分析的结果以合适的方式进行展示。
可以使用图表、表格等形式直观地展示实验结果,同时配以准确的文字说明。
5.结果解读:对数据处理和分析的结果进行解读和推断。
根据实验目标和问题提出相应的结论,指出研究的意义和启示。
三、总结实验设计与数据处理是科学研究中非常重要的环节。
科学合理的实验设计能够确保实验过程的有效性和准确性,而规范的数据处理则可以提取出有用的信息和结论。
在进行实验设计和数据处理时,研究者需要深入了解相关理论和方法,并严格遵守科研伦理和规范,以获得可信的实验结果和科学的结论。
实验设计与数据处理心得

实验设计与数据处理心得体会刚开始选这门课的时候,我觉得这门课应该是很难懂的课程,首先我们做过不少的实验了,当然任何自然科学都离不开实验,大多数学科(化工、化学、轻工、材料、环境、医药等)中的概念、原理和规律大多由实验推导和论证的,但我觉得每次到处理数据的时候都很困难,所以我觉得这是门难懂的课程,却也是很有必要去学的一门课程,它对于我们工科生来说也是很有用途的,在以后我们实验的数据处理上有很重要的意义。
如何科学的设计实验,对实验所观测的数据进行分析和处理,获得研究观测对象的变化规律,是每个需要进行实验的人员需要解决的问题。
“实验设计与数据处理”课程就是是以概率论数理统计、专业技术知识和实践经验为基础,经济、科学地安排试验,并对试验数据进行计算分析,最终达到减少试验次数、缩短试验周期、迅速找到优化方案的一种科学计算方法。
它主要应用于工农业生产和科学研究过程中的科学试验,是产品设计、质量管理和科学研究的重要工具和方法,也是一门关于科学实验中实验前的实验设计的理论、知识、方法、技能,以及实验后获得了实验结果,对实验数据进行科学处理的理论、知识、方法与技能的课程。
通过本课程的学习,我掌握了试验数据统计分析的基本原理,并能针对实际问题正确地运用,为将来从事专业科学的研究打下基础。
这门课的安排很合理,由简单到复杂、由浅入深的思维发展规律,先讲单因素试验、双因素试验、正交试验、均匀试验设计等常用试验设计方法及其常规数据处理方法、再讲误差理论、方差分析、回归分析等数据处理的理论知识,最后将得出的方差分析、回归分析等结论和处理方法直接应用到试验设计方法。
比如我对误差理论与误差分析的学习:在实验中,每次针对实验数据总会有误差分析,误差是进行实验设计和数据评价最关键的一个概念,是测量结果与真值的接近程度。
任何物理量不可能测量的绝对准确,必然存在着测定误差。
通过学习,我知道误差分为过失误差,系统误差与随机误差,并理解了他们的定义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验设计与数据处理心得体会
刚开始选这门课的时候,我觉得这门课应该就是很难懂的课程,首先我们做过不少的实验了,当然任何自然科学都离不开实验,大多数学科(化工、化学、轻工、材料、环境、医药等)中的概念、原理与规律大多由实验推导与论证的,但我觉得每次到处理数据的时候都很困难,所以我觉得这就是门难懂的课程,却也就是很有必要去学的一门课程,它对于我们工科生来说也就是很有用途的,在以后我们实验的数据处理上有很重要的意义。
如何科学的设计实验,对实验所观测的数据进行分析与处理,获得研究观测对象的变化规律,就是每个需要进行实验的人员需要解决的问题。
“实验设计与数据处理”课程就就是就是以概率论数理统计、专业技术知识与实践经验为基础,经济、科学地安排试验,并对试验数据进行计算分析,最终达到减少试验次数、缩短试验周期、迅速找到优化方案的一种科学计算方法。
它主要应用于工农业生产与科学研究过程中的科学试验,就是产品设计、质量管理与科学研究的重要工具与方法,也就是一门关于科学实验中实验前的实验设计的理论、知识、方法、技能,以及实验后获得了实验结果,对实验数据进行科学处理的理论、知识、方法与技能的课程。
通过本课程的学习,我掌握了试验数据统计分析的基本原理,并能针对实际问题正确地运用,为将来从事专业科学的研究打下基础。
这门课的安排很合理,由简单到复杂、由浅入深的思维发展规律,先讲单因素试验、双因素试验、正交试验、均匀试验设计等常用试验设计
方法及其常规数据处理方法、再讲误差理论、方差分析、回归分析等数据处理的理论知识,最后将得出的方差分析、回归分析等结论与处理方法直接应用到试验设计方法。
比如我对误差理论与误差分析的学习:在实验中,每次针对实验数据总会有误差分析,误差就是进行实验设计与数据评价最关键的一个概念,就是测量结果与真值的接近程度。
任何物理量不可能测量的绝对准确,必然存在着测定误差。
通过学习,我知道误差分为过失误差,系统误差与随机误差,并理解了她们的定义。
另外还有对准确度与精密度的学习,了解了她们之间的关系以及提高准确度的方法等。
对误差的学习更有意义的应该就是如何消除误差,首先消除系统误差,可以通过对照试验,空白试验,校准仪器以及对分析结果的校正等方法来消除;其次要减小随机误差,就就是要在消除系统误差的前提下,增加平行测定次数,可以提高平均值的精密度。
比如我对方差分析的理解:方差分析就是实验设计中的重要分析方法,应用非常广泛,它就是将不同因素、不同水平组合下试验数据作为不同总体的样本数据,进行统计分析,找出对实验指标影响大的因素及其影响程度。
对于单因素实验的方差分析,主要步骤如下:建立线性统计模型,提出需要检验的假设;总离差平方与的分析与计算;统计分析,列出方差分析表。
对于双因素实验的方差分析,分为两种,一种就是无交互作用的方差分析,另一种就是有交互作用的方差分析,对于这两种类型分别有各自的设计方法,但就是总体步骤都与单因素实验的方差分析一样。
除了以上一些实验设计与数据处理方法外,学习这门课程最大的收获就就是对chemdraw及origin两个软件的学习。
计算机软件的应用就是计算机学科在化学领域中的最主要的应用之一,它不仅解决了化学计算中的复杂问题,而且利用虚拟的程序把化学世界的微观结构、光谱形态等形象地展现出来,以致把化学学科的教育与科研的革命推向一个崭新的阶段。
Chemdraw软件。
ChemDraw就是为辅助专业学科工作者及相关科技人员的交流活动与研究开发工作而设计的。
它给出了直观的图形界面,开创了大量的变化功能,只要稍加实践,便会很容易地绘制出高质量的化学结构图形。
因而,可为化学界出版物、手稿、报告、CAI软件、涉及化学结构图形的软件的编写制作等提供高质量的结构图形、3D转换、基本的分子模型及化学数据管理功能等。
ChemDraw为此已成为世界上最流行、最受欢迎与最有应用价值的化学绘图软件。
这个软件对于我们化工专业的学生来说就是很有用途的。
我们会经常写一些化学反应式或反应机理,但每次在Word文档中都无法输入正常的分子式或根本无渠道来表达反应式。
但通过对Chemdraw软件的学习,显然给我们带来了极大的方便、它给出了直观的图形界面,用起来方便,也很容易学习,不需要我们再去一条线一条线的来画,而就是可以直接用鼠标点一下就可以插入,像苯环及其衍生物,而且很多反应式可以极其形象的表达出来,给我们的学习带来极大的方便。
Origin软件
Origin为OriginLab公司出品的较流行的专业函数绘图软件,就是公认的简单易学、操作灵活、功能强大的软件,既可以满足一般用户的制图需要,也可以满足高级用户数据分析、函数拟合的需要。
而使用Origin就像使用Excel与Word那样简单,只需点击鼠标,选择菜单命令就可以完成大部分工作,获得满意的结果。
像Excel与Word一样,Origin就是个多文档界面应用程序。
它将所有工作都保存在Project(*、OPJ)文件中。
该文件可以包含多个子窗口,如Worksheet,Graph,Matrix,Excel等。
各子窗口之间就是相互关联的,可以实现数据的即时更新。
子窗口可以随Project 文件一起存盘,也可以单独存盘,以便其她程序调用。
Origin的数据分析主要包括统计、信号处理、图像处理、峰值分析与曲线拟合等各种完善的数学分析功能。
准备好数据后,进行数据分析时,只需选择所要分析的数据,然后再选择相应的菜单命令即可。
Origin的绘图就是基于模板的,Origin本身提供了几十种二维与三维绘图模板而且允许用户自己定制模板。
绘图时,只要选择所需要的模板就行。
用户可以自定义数学函数、图形样式与绘图模板;可以与各种数据库软件、办公软件、图像处理软件等方便的连接。
Origin可以导入包括ASCII、Excel、pClamp在内的多种数据。
另外,它可以把Origin图形输出到多种格式的图像文件,譬如JPEG、GIF、EPS、TIFF等等。
Origin里面也支持编程,以方便拓展Origin的功能与执行批处理任务。
Origin里面
有两种编程语言—LabTalk与Origin C。
在Origin的原有基础上,用户可以通过编写X-Function来建立自己需要的特殊工具。
Origin软件也就是非常实用的一个软件,在数据处理方面带给我们极大方便。
在平时的实验中,往往都需要将测得的数据用图表表示出来,以便观察规律,但由于原理可能较复杂,图表表达起
来很困难,而且就算画得出来,也就是有很大的误差,往往也会给
实验结果带来偏差。
学习了这个软件之后,感觉实验数据的处理问题不再那么难以解决了,这个软件最突出的特点就就是它的操作
灵活与功能强大,只需要我们将数据输入,就可以瞧到形象的图示,而且点图,线图,或者点线连接都能显示出来,更方便的就是,只需要点一下鼠标,不需要我们再去算,就可以通过拟合将图形的方程及参数写出来。
这些对于我们以后的实验就是有非常重要的意义的。
总之,这门课带给了我意想不到的收获,为我以后的学习带来了极大的方便与乐趣。
对于实验设计与数据处理方法,我们在以后的实验中要不断去实践与体会,而对于Chemdraw及Origin两个软件的学习,虽然我们只有三个小时的上机时间,却让我深刻体会到了它们的实用性,在以后也会将这两个软件好好学习一番。
以上就就是我对《实验设计与数据处理》这门课程的一点体会,很感谢老师给我们带来这么多有用的知识,在以后的学习生活中我也会牢
记这些知识,不断的实践。