高等代数下期末复习
《高等数学》(下)期末考试考前复习提纲

《高等数学》下册期末考试考前复习提纲第一部分 空间解析几何与向量代数一、向量代数 1、向量的概念 (1)向量的定义有大小有方向的线段a(自由向量) (2)向量的表示1)),,(z y x a a a a =, 为向量的直角坐标表示2)0a a a=,其中a 为向量的模(大小),222zy x a a a a ++= 0a 为a的单位向量,0(cos ,cos ,cos )(,,)y x z a a a a a a aαβγ==,)cos ,cos ,(cos γβα为a的方向余弦,1cos cos cos 222=++γβα注:若有两点:111222(,,),(,,)A x y z B x y z ,则向量AB 为 212121{(),(),()}A B x x y y z z =--- 2、向量的运算 (1)线性运算),,(z z y y x x b a b a b a b a +++=+),,(z y x a a a a λλλλ=(2)数量积(标积,点积) 1)cos ,,a b a b a b ϕϕ⋅≡≡(0)ϕπ≤≤2)z z y y x x b a b a b a b a ++=⋅特例:当b a ⊥时,0=⋅b a(两向量垂直的判据)(3)向量积(矢积,叉积)1)0sin c b a c b a ϕ=≡⨯,b a ,与c为右手螺旋关系2)()()()xy z y z z yz x x z x y y x xy zij ka b a a a i a b a b j a b a b k a b a b b b b ⨯==-+-+-特例:当b a//时,0=⨯b a ,或z y x z y x z z y y x x b b b a a a b a b a b a ::::=↔==(两向量平行的判据)3、两点的间距公式212212212)()()(z z y y x x d -+-+-=4、平面π外一点0000(,,)P x y z 到平面π的距离公式:Dd =平面π的点法式方程为: 0Ax By Cz D +++= 二、空间解析几何1、空间曲面与空间曲线 (1)方程曲面方程 0),,(=z y x F (三元方程)曲线方程 ⎩⎨⎧==0),,(0),,(21z y x F z y x F 或)(),(),(t z z t y y t x x ===(2)常见的曲面与曲线1) 柱面—— 一直线l (母线)沿着一平面曲线C (准线)作平行于一定直线L 的移动所得的曲面 母线z //轴的柱面: 0),(=y x F母线y //轴的柱面: 0),(=x z F 母线x //轴的柱面: 0),(=z y F2) 旋转面—— 一平面曲线(母线)绕着同一平面内的定直线(转轴)旋转一周所得的曲面例(,)00z y f y z x =⎧⎨=⎩绕z 不变,旋转曲面0),(22=+±z y x f 3)空间螺旋线t k z a y a x ωθθθθ====,,c o s ,s i n4)二次曲面(三元二次方程) )(a 椭球面1222222=++cz b y a x椭球面与平行于坐标面平面的交线:→⎪⎩⎪⎨⎧==++12222221z z c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(z z z c c b yz c c a x ; →⎪⎩⎪⎨⎧==++12222221y y c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(y y y b b c z y b b a x ; →⎪⎩⎪⎨⎧==++12222221x x c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(x x x a a c z x a a b y 分别为在1z z =,1y y =与1x x =平面内的椭圆。
高等代数期末考试复习题及参考答案

高等代数 --复习资料一、单项选择题1、设为任意两个级方阵,则如下等式成立的是A.B.C.D.参考答案: C2、设向量组线性无关,则向量组线性无关的充分必要条件为A.B.C.D.参考答案: A3、若,则( ).A. 30mB. -15mC. 6mD. -6m参考答案: D4、实对称矩阵的特征值都是( )A. 非负整数B. 实数C. 正数参考答案: B5、实对称矩阵A的秩等于r,且它有m个正特征根,则它的符号差为 ( )A. rB. mC. 2m-rD. r-m参考答案: C6、设矩阵和分别是和的矩阵,秩,秩,则秩是A. 1B. 2C. 3D. 4参考答案: B7、是线性空间V上的线性变换,,那么关于V的基的矩阵是 ( )A.B.C.D.参考答案: B8、对于元方程组,下列命题正确的是( ).A. 如果只有零解,则也只有零解B. 如果有非零解,则有无穷多解C. 如果有两个不同的解,则有无穷多解D. 有唯一解的充分条件是参考答案: C9、若矩阵A的不变因子为,则A的全部初等因子为 ( )A.B.C.参考答案: A10、设为3次实系数多项式,则A. 至少有一个有理根B. 至少有一个实根C. 存在一对非实共轭复根D. 有三个实根.参考答案: B11、对于数域P上线性空间V的数乘变换来说 ( )不变子空间A. 只有一个B. 每个子空间都是C. 不存在参考答案: B12、下列运算中正确的是( )A. ;B. ;C. ;D. 。
参考答案: D13、为欧氏空间V上的对称变换,下面正确的是 ( )A.B.C.参考答案: C14、如果把代入实二次型都有,那么是 ( )A. 正定B. 负定C. 未必正定参考答案: C15、设向量组线性无关,线性相关,则( ).A. 一定能由线性表示B. 一定能由线性表示C. 一定不能由线性表示D. 一定不能由线性表示参考答案: B16、下列说法不正确的是( ).A. 任何一个多项式都是零次多项式的因式B. 如果f(x)∣g(x),g(x)∣h(x),则f(x)∣h(x)C. 如是阶矩阵,则D. 如是阶矩阵,则参考答案: A17、设是矩阵,是非齐次线性方程组所对应的齐次线性方程组,则下列结论正确的是( )A. 若仅有零解,则有唯一解;B. 若有非零解,则有无穷多个解;C. 若有无穷多个解,则仅有零解;D. 若有无穷多个解,则有非零解;参考答案: D18、是n维复空间V的两个子空间,且,则的维数为 ( )A.B.C.参考答案: C19、阶矩阵A可逆的充分必要条件是( ).A. ∣A∣=0B. r(A)<C. A是满秩矩阵D. A是退化矩阵参考答案: C20、设矩阵的秩为,为阶单位方阵,下述结论中正确的是( )A. 的任意个列向量必线性无关;B. 的任意一个阶子式不等于零;C. 若矩阵满足,则,或非齐次线性方程组,一定有无穷多组解D. 通过初等行变换,必可化为的形式。
高等代数期末试题及答案

高等代数期末试题及答案1. 选择题1.1 题目:解线性方程组已知线性方程组:\[\begin{cases}2x - 3y + z = 7 \\4x + y - 2z = -1 \\3x - 2y + 2z = 5\end{cases}\]其中,x、y、z为实数。
求解该线性方程组的解。
1.1 答案:解线性方程组的步骤如下:通过高斯消元法,将方程组化为行简化阶梯形式:\[\begin{cases}x - \frac{12}{7}z = 5 \\y - \frac{5}{7}z = 2 \\0 = 0\end{cases}\]由最后一行可以看出,方程存在自由变量z。
令z为任意实数,可以得到:\[\begin{cases}x = 5 + \frac{12}{7}z \\y = 2 + \frac{5}{7}z \\z = z\end{cases}\]因此,该线性方程组的解为:\[\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 5 +\frac{12}{7}z \\ 2 + \frac{5}{7}z \\ z \end{pmatrix}\]2. 填空题2.1 题目:求行列式的值计算行列式的值:\[D = \begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix}\]2.1 答案:计算行列式的值,可以通过按任意行或列展开的方法来求解。
选择第一行进行展开计算:\[D = 1 \cdot \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} - 2 \cdot\begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} + 3 \cdot \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix}\]计算上述三个二阶行列式的值,得到:\[D = 1 \cdot (5 \cdot 9 - 6 \cdot 8) - 2 \cdot (4 \cdot 9 - 6 \cdot 7) + 3\cdot (4 \cdot 8 - 5 \cdot 7) = 0\]因此,行列式的值为0。
高等代数(下)期终考试题及答案(C卷)汇编

高等代数(下)期末考试试卷(C 卷)一. 选择题(每空2分,共12分) 1.( D )下列集合哪一个是R n 的子空间11 1 1 2 1 2 11 2 1(A) {(,0,....,0,)| , ,}(B){( ,,...,)| , 1,...,}(C){( ,,...,)| 1 , }(D){( ,,...,)|0, }n n n n i nn i i i n n i i i a a a a R a a a a a a Z i n a a a a a R a a a a a R ==∈≠∈==∈=∈∑∑2.( B ) 令ξ=(x 1,x 2,x 3)是R 3的任意向量.下列哪一个映射σ是R 3的线性变换31 2 3233231 2312(A) ( ) = , 0(B) ( ) = (2-+ , , -)(C) ( ) =(,, )(D) ( ) =( 1 ,,0)R x x x x x x x x x x x σξξαασξσξσξ+≠++其中是 的固定向量3. (C) 如果1V , 2V 是线性空间V 的两个子空间, 且()1dim 3V =, ()2dim 2V =,()12dim 1V V ?, 那么()12dim V V +为(A) 2 (B) 3 (C) 4 (D) 5 4. (C )若4阶方阵A 的初等因子为()23l +, +3, 2. 则 A 的不变因子是(A) 1,( +3),( +2),()23l +; (B) 1,1, ( +3) ( + 2) ,()()223l l ++; (C )1,1,( +3),()()223l l ++;(D) 1,1,( +2),()()223l l ++;5.( B )设矩阵A 的全部不同特征值为12,,...,s λλλ,则下列哪一说法与A 可对角化不等价(A ) A 有n 个线性无关的特征向量; (B ) ()(1,2,...)()i ii i R E A n i s n λλ-==其中为的重数;(C ) V dim (V )(1,2,...,)iii i i s λλλλ==的特征子空间的维数的重数 ;( D) A 的最小多项式均是数域P 上互素的一次因式的乘积;6.(D ) 在实数域R 中,由全体4阶反对称矩阵所构成的线性空间W 的维数为(A) 10; (B )4; (C) 9; (D )6;.二. 填空题(每空2分,共18分)1、已知a 是数域P 上的一个固定的数,而2{(,,,),2,,}n i W a x x x P i n =∈=是1n P +的一个子空间,则a =_______, dim (W )=________. 2. 设,στ是2P 的两个线性变换,定义如下(,)(2,0)x y x y σ=-+, (,)(3,)x y y x y τ=-+ (,x y P ∀∈)则 (,)x y τσ=_________.3. 已知E A λ-的标准形为1000000(2)λλλ⎛⎫⎪⎪ ⎪-⎝⎭,则A 的特征多项式2(2)E A λλλ-=-,A 的最小多项式为___________。
高等代数(下)期末考试 A 卷解答

五、证明题 3. (本题13分) 设 A 是欧氏空间V 的一个变换, 并且对任意
V , 有 A (,). V , 1
(1) 证明: A 是 V的一个线性变换.
(2) 当 取何值时, A 是 V的一个正交变换?
(1) 证明:对于 , V , k R, 由于 A ( ) ( ) ( , ) ( ) ( , ) (, ) [ ( , ) ] [ (, ) ] 以及 A ( ) A (), A (k ) k (k , ) k[ ( , ) ] kA ( ),
已知
B
A2
A
E,
其中
A
与
1 0
3
2
相似,则
B __3________
5. 设 1,2,3 是3维欧氏空间V的一组基,这组基的度量矩阵为
2
1
1 2
2 1
则向量 1 2 的长度
为
2.
2 1 2
三、判别题(对的打”√”,错的打” ×”, 2×5=10分)
五、证明题 3. (本题13分) 设 A 是欧氏空间V 的一个变换, 并且对任意
V , 有 A (,). V, 1
(2) 当 取何值时, A 是 V的一个正交变换?
(2) 如果A 是 V的一个正交变换,即有 对于任意的 , V ,
(A ( ), ()) ( (,), (,)) (,) (,(,)) ((,),) 2(,)(,)(, ) (,) 2(,)(,) 2(,)(,)(,) (,),
2.
在线性空间
R22
高等代数期末考试题库及答案解析

高等代数期末考试题库及答案解析第一部分:选择题(共10题,每题2分,总分20分)1.高等代数是一门研究什么的数学学科?a.研究高等数学b.研究代数学c.研究线性代数d.研究数论–答案:b2.什么是矩阵的秩?a.矩阵中非零行的个数b.矩阵中非零列的个数c.矩阵中线性无关的行向量或列向量的最大个数d.矩阵的行数与列数的乘积3.给定一个方阵A,如果存在非零向量x使得Ax=0,那么矩阵A的秩为多少?a.0b.1c.方阵A的行数d.方阵A的列数–答案:a4.什么是特征值和特征向量?a.矩阵A与它的转置矩阵的乘积b.矩阵A的负特征值和负特征向量的乘积c.矩阵A与它的逆矩阵的乘积d.矩阵A与一个非零向量的乘积等于该向量的常数倍,并且这个向量成为特征向量,该常数成为特征值。
5.什么是行列式?a.矩阵A所有元素的和b.矩阵A中所有元素的乘积c.矩阵A的转置矩阵与它自身的乘积d.矩阵A的行列式是一个标量,表示矩阵A所表示的线性变换的倍数比例。
–答案:d6.什么是矩阵的逆?a.矩阵的行向量与列向量交换位置b.矩阵A的转置矩阵c.存在一个矩阵B,使得矩阵AB=BA=I(单位矩阵)d.矩阵的所有元素取倒数7.给定一个2x2矩阵A,当且仅当什么时候矩阵A可逆?a.矩阵A的行列式为0b.矩阵A的行列式不为0c.矩阵A的特征值为0d.矩阵A的特征值不为0–答案:b8.什么是矩阵的转置?a.矩阵的行与列互换b.矩阵的行与行互换c.矩阵的列与列互换d.矩阵的所有元素取相反数–答案:a9.对于矩阵A和B,满足AB=BA,则矩阵A和B是否可逆?a.可逆b.不可逆c.只有A可逆d.只有B可逆–答案:b10.什么是矩阵的秩-零空间定理?a.矩阵中非零行的个数加上零行的个数等于行数b.矩阵中非零列的个数加上零列的个数等于列数c.矩阵的秩加上矩阵的零空间的维数等于列数d.矩阵的秩加上矩阵的零空间的维数等于行数–答案:c第二部分:计算题(共4题,每题15分,总分60分)1.计算矩阵的秩: A = \[1, 2, 3; 4, 5, 6; 7, 8, 9\]–答案:矩阵A的秩为22.计算特征值和特征向量: A = \[1, 2; 3, 4\]–答案:矩阵A的特征值为5和-1,对应的特征向量分别为\[1; 1\]和\[-2; 1\]3.计算行列式: A = \[3, 1, 4; 1, 5, 9; 2, 6, 5\]–答案:矩阵A的行列式为-364.计算逆矩阵: A = \[1, 2; 3, 4\]–答案:矩阵A的逆矩阵为\[-2, 1/2; 3/2, -1/2\]第三部分:证明题(共2题,每题25分,总分50分)1.证明:当矩阵A为可逆矩阵时,有出现在矩阵A的行列式中的每个元素,将该元素与其对应的代数余子式相乘之后的结果,再求和得到的值等于矩阵A的行列式的值。
高数下期末复习内容

高数(下册)复习资料完整

高等数学(向量代数—>无穷级数)知识点向量与空间几何向量:向量表示((a^b));向量运算(向量积);向量的方向和投影空间方程:曲面方程(旋转曲面和垂直柱面);直线方程(参数方程和投影方程)平面方程:点法式(法向量)、一般式、截距式;平面夹角和距离直线方程:一般式、对称式(方向向量)、参数式;直线夹角;平面交线(法向量积)切平面和切线:切线与法平面;切平面与法线多元函数微分学多元函数极限:趋近方式,等阶代换偏微分和全微分:高阶微分(连续则可等);复合函数求导(Jacobi行列式);多元函数极值:偏导数判定;拉格朗日乘数法(条件极值)重积分二重积分:直角坐标和极坐标;对称性;换元法三重积分:直角坐标、柱坐标和球坐标;对称性重积分的应用:曲面面积;质心;转动惯量;引力曲线与曲面积分曲线积分:弧长积分;坐标曲线积分(参数方程);格林公式面积积分:对面积积分;坐标面积积分;高斯公式无穷级数级数收敛:通项极限正项级数:调和级数;比较法和比较极限法;根值法;极限法;绝对收敛和条件收敛幂级数:收敛半径和收敛域;和函数;麦克劳林级数(二次展开)Fourier级数:傅里叶系数(高次三角函数积分);奇偶延拓;正弦和余弦级数;一般周期的傅里叶级数矢量分析与场论(空间场基础)方向导数与梯度方向导数:向量参数式;偏导数;方向余弦梯度(grad):方向导数的最值;梯度方向;物理意义(热导方向与电场方向)格林公式:曲线积分—>二重积分;曲线方向与曲面方向全微分原函数:场的还原;折线积分通量与散度高斯公式:闭合曲面—>三重积分;曲面外侧定向;曲面补齐;向量表达(通量)散度(div):通量的体积元微分;物理意义(有源场(电场)) 环流量与旋度斯托克斯公式:闭合曲线—>曲面积分;向量积定向;行列式表达;向量表达;物理意义(环通量)旋度(rot):行列式斯托克斯公式;物理意义(有旋场(磁场))向量代数定义 定义与运算的几何表达 在直角坐标系下的表示向量 有大小、有方向. 记作a 或AB a (,,)x y z x y z a i a j a k a a a =++=,,x x y y z z a prj a a prj a a prj a ===模向量a 的模记作aa 222x y z a a a =++和差c a b =+c a b =-=+c a b {},,=±±±x x y y z z a b a b a b单位向量0a ≠,则a ae a=a e 222(,,)=++x y z x y z a a a a a a方向余弦设a 与,,x y z 轴的夹角分别为αβγ,,,则方向余弦分别为cos αβγ,cos ,coscos y x z a a a aaaαβγ===,cos ,coscos a e αβγ=(,cos ,cos ) 222cos 1αβγ+=+cos cos 点乘(数量积) θcos b a b a =⋅,θ为向量a 与b 的夹角 z z y y x x b a b a b a ++=⋅b a叉乘(向量积)b ac ⨯=θsin b a c =θ为向量a 与b 的夹角向量c 与a ,b 都垂直 zyxz y xb b b a a a k j ib a =⨯ 定理与公式垂直 0a b a b ⊥⇔⋅= 0x x y y z z a b a b a b a b ⊥⇔++=平行 //0a b a b ⇔⨯=//y zx x y za a a ab b b b ⇔== 交角余弦两向量夹角余弦ba ba ⋅=θcos222222cos x x y y z zx y z x y za b a b a b a a a b b b θ++=++⋅++投影向量a 在非零向量b 上的投影cos()b a bprj a a a b b∧⋅==222x x y y z zb x y za b a b a b prj a b b b ++=++空间曲面∑:0),,(=z y x F法向量000000000((,,),(,,),(,,))x y z n F x y z F x y z F x y z = 切平“面”方程:000000000000(,,)()(,,)()(,,)()0x x x F x y z x x F x y z y y F x y z z z -+-+-=法“线“方程:),,(),,(),,(000000000000z y x F z z z y x F y y z y x F x x z y x -=-=- ),(y x f z = 0000((,),(,),1)x y n f x y f x y =--或0000((,),(,),1)x y n f x y f x y =-切平“面”方程:0)())(,())(,(0000000=---+-z z y y y x f x x y x f y x法“线“方程:1),(),(0000000--=-=-z z y x f y y y x f x x y x 重积分 积分类型计算方法典型例题二重积分()σd ,⎰⎰=Dy x f I平面薄片的质量质量=面密度⨯面积(1) 利用直角坐标系X —型⎰⎰⎰⎰=Dbax x dy y x f dx dxdy y x f )()(21),(),(φφY —型⎰⎰⎰⎰=dcy y Ddx y x f dy dxdy y x f )()(21),(),(ϕϕP141—例1、例3(2)利用极坐标系 使用原则(1) 积分区域的边界曲线易于用极坐标方程表示(含圆弧,直线段 ); (2) 被积函数用极坐标变量表示较简单(含22()x y α+,α为实数)21()()(cos ,sin )(cos ,sin )Df d d d f d βϕθαϕθρθρθρρθθρθρθρρ=⎰⎰⎰⎰02θπ≤≤0θπ≤≤2πθπ≤≤P147—例5(3)利用积分区域的对称性与被积函数的奇偶性当D 关于y 轴对称时,(关于x 轴对称时,有类似结论)P141—例2应用该性质更方便所有类型的积分:○1定义:四步法——分割、代替、求和、取极限;○2性质:对积分的范围具有可加性,具有线性性;○3对坐标的积分,积分区域对称与被积函数的奇偶性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章 线性空间一 线性空间的判定线性空间中两种运算的8条运算规律缺一不可,要证明一个集合是线性空间必须逐条验证.若要证明某个集合对于所定义的两种运算不构成线性空间,只需说明在两个封闭性和8条运算规律中有一条不满足即可。
例:检验以下集合对于所指的线性运算是否构成实数域上的线性空间:1) 次数等于n (n ≥1)的实系数多项式的全体,对于多项式的加法和数量乘法;2)全体n 阶反对称矩阵,对于矩阵的加法和数量乘法;解: 1)否。
因两个n 次多项式相加不一定是n 次多项式,例如523n nx x ++--=()()。
2) n 阶矩阵的加法和和数量乘法满足线性空间定义的1~8条性质,即全体n 阶矩阵对矩阵的加法和和数量乘法是构成线性空间的。
“全体n 阶反对称矩阵”是“n 阶矩阵”的子集,故只需验证反对称矩阵对加法与数量乘法是否封闭即可。
当A ,B 为反对称矩阵,k 为任意一实数时,有'''(A+B )=A +B =-A-B=-(A+B ),即A+B 仍是反对称矩阵。
A kA k A A ''==-=-(k )()(k ),所以kA 是反对称矩阵。
故反对称矩阵的全体构成线性空间。
例:齐次线性方程组Ax =0的全体解向量的集合,对于向量的加法和数乘向量构成一个线性空间,通常称为解空间。
而非齐次线性方程组 Ax =b 的全体解向量的集合,在上述运算下则不是线性空间,因为它们的两个解向量的和已经不是它的解向量。
二、基 维数 坐标定义:在线性空间V 中,如果存在n 个线性无关的向量12n ,,,ααα使得:V 中任一向量α都可由12n ,,,ααα线性表示,那么,12n ,,,ααα就称为线性空间V 的一个基,n 称为线性空间V 的维数。
记作dim V =n 。
维数为n 的线性空间称为n 维线性空间。
定义(向量的坐标):设12n ,,,ααα是线性空间n V 的一个基。
对于任一元素∈αn V ,总有且仅有一组有序数,,,,21n x x x 使 则n x x x ,,,21 这组有序数就称为元素a 在基底12n ,,,ααα下的坐标,并记作()12,,,Tn x x x x =例: 在线性空间22⨯R 中, 就是22⨯R的一个基。
22⨯R的维数为4.任一2阶矩阵 因此A 在4321,,,A A A A 这个基下的坐标为()T d c b a ,,,。
若另取一个基⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=1111,0111,0101,00014321B B B B 。
则4321)()()(dB B d c B c b B b a d b c a A +-+-+-=⎪⎭⎫ ⎝⎛=因此A 在4321,,,B B B B 这个基下的坐标为()T d d c c b b a ,,,---。
例:考虑全体n 阶对称矩阵构成的线性空间的基底和维数。
3) 解:n 阶矩阵的加法和和数量乘法满足线性空间定义的1~8条性质,即全体n 阶矩阵对矩阵的加法和和数量乘法是构成线性空间的。
“全体n 阶对称矩阵”是“n 阶矩阵”的子集,故只需验证对称矩阵对加法与数量乘法是否封闭即可。
从而全体n 阶对称矩阵构成的线性空间。
(1)ij ji E E i j n +≤≤≤即为它的一组基。
共(1)122n n n ++++=个,维数是(1)2n n + 例:设1234(1,1,1,1),(1,1,1,1),(1,1,11),(1,1,1,1),(1,2,1,1)εεεεξ==--=--=--=。
在4P 中,求向量ξ在基4321,,,εεεε下的坐标。
设有线性关系1234a b c d ξεεεε=+++,则⎪⎪⎩⎪⎪⎨⎧=+--=-+-=--+=+++1121d c b a d c b a d c b a d c b a ,可得ξ在基4321,,,εεεε下的坐标为41,41,41,45-=-===d c b a 。
例:在4P 中,由齐次方程组 确定的解空间的基与维数。
解:对系数矩阵作行初等变换,有 所以解空间的维数是2,它的一组基为⎪⎭⎫⎝⎛-=0,1,38,911a ,⎪⎭⎫ ⎝⎛=1,0,37,922a 。
例:设1V 与2V 分别是齐次方程组n n n x x x x x x x =====+++-12121...,0...的解空间,证明:.21V V P n ⊕=证: 由于0 (21)=+++n x x x 的解空间是n -1维的,其基为)1,...,0,0,1(),...,0,...,1,0,1(),0,...,0,1,1(121-=-=-=-n ααα而由 n n x x x x ====-121...知其解空间是1维的,令,1=n x 则其基为).1,...,1,1(=β且βααα,,...,,121-n 即为n P 的一组基,从而.21V V P n +=又)dim ()dim ()dim (21V V P n+=,(也可由交为零向量知) 故 .21V V Pn⊕=三、基变换与坐标变换 基变换:设n ααα,,,21 及n βββ,,,21 是线性空间nV 中的两个基,若或简记为=(n ααα,,,21 )⎪⎪⎪⎪⎪⎭⎫ ⎝⎛nn n n n n a a aa a a a a a212222111211 =(n ααα,,,21 )A (☆)则矩阵A 称为由基n ααα,,,21 到基n βββ,,,21 的过渡矩阵。
(☆)式称为基变换公式. 坐标变换: 设n V中的元素α,在基n ααα,,,21 下的坐标为()Tn x x x ,,,21 ,在基n βββ,,,21 下的坐标为()Tn y y y ,,,21 。
若两个基满足关系式(6-2),则有坐标变换公式=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n x x x 21A ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n y y y 21, 或⎪⎪⎪⎪⎪⎭⎫ ⎝⎛n y y y 21=1-A ⎪⎪⎪⎪⎪⎭⎫⎝⎛n x x x 21 第七章 线性变换 一、线性变换的定义线性空间V到自身的映射称为V的一个变换.定义: 线性空间V的一个变换A 称为线性变换,如果对于V中任意的元素βα,和数域P 中任意数k ,都有A (βα+)=A (α)+A (β); A (αk )=A k (α).一般用花体拉丁字母A ,B ,…表示V 的线性变换,A (α)或A α代表元素α在变换A 下的像.例 判别下面所定义的变换那些是线性的,那些不是:1) 在线性空间V 中,A αξξ+=,其中∈αV 是一固定的向量;2) 在线性空间V 中,A αξ=其中∈αV 是一固定的向量;3) 在P3中,A ),,(),,(233221321x x x x x x x +=; 4) 在P 3中,A ),,2(),,(13221321x x x x x x x x +-=;解: 1)当0=α时,是;当0≠α时,不是。
2)当0=α时,是;当0≠α时,不是。
3)不是. 例如当)0,0,1(=α,2=k 时,k A )0,0,2()(=α,A )0,0,4()(=αk ,A ≠)(αk k A()α。
4)是.因取),,(),,,(321321y y y x x x ==βα,有A )(βα+= A ),,(332211y x y x y x +++=),,22(1133222211y x y x y x y x y x ++++--+ =),,2(),,2(1322113221y y y y y x x x x x +-++-= A α+ A β, A =)(αk A ),,(321kx kx kx=k A )(α,故A 是3P上的线性变换。
二、线性变换关于基的矩阵定义: 设n εεε,,,21 是数域P 上n 维线性空间V的一组基,A 是V中的一个线性变换.基向量的像可以被基线性表出:用矩阵表示就是A (n εεε,,,21)=(A(1ε),A(2ε),…, A(n ε))=A n ),,,(21εεε其中矩阵A 称为线性变换A 在基n εεε,,,21 下的矩阵.定理: 设线性变换A 在基n εεε,,,21 下的矩阵是A ,向量ξ在基n εεε,,,21 下的坐标是),,,(21n x x x ,则A ξ在基n εεε,,,21 下的坐标),,,(21n y y y 可以按公式计算. 例: 在空间n x P ][中,线性变换D)()(x f x f '=在基)!1(,,!2,,112--n x x x n 下的矩阵是三、同一个线性变换在不同基下的矩阵的关系.线性变换的矩阵是与空间中一组基联系在一起的.一般说来,随着基的改变,同一个线性变换就有不同的矩阵.为了利用矩阵来研究线性变换,有必要弄清楚线性变换的矩阵是如何随着基的改变而改变的. 定理:设线性空间V中线性变换A 在两组n εεε,,,21 (6) n ηηη,,,21 (7)下的矩阵分别为A 和B ,从基(6)到(7)的过渡矩阵是X ,于是AX X B 1-=.定理告诉我们,同一个线性变换A 在不同基下的矩阵之间的关系为相似.定义: 设A ,B 为数域P 上两个n 级方阵,如果可以找到数域P 上的n 级可逆方阵X ,使得AX XB 1-=,就说A 相似于B ,记作B A ~.相似是矩阵之间的一种关系,这种关系具有下面三个性质:1. 反身性:A A ~2. 对称性:如果B A ~,那么A B ~.3. 传递性:如果B A ~,C B ~,那么C A ~.线性变换在不同基下所对应的矩阵是相似的;反过来,如果两个矩阵相似,那么它们可以看作同一个线性变换在两组基下所对应的矩阵. 矩阵的相似对于运算有下面的性质.如果XA XB 111-=, XA XB 212-=,那么XA A XB B )(21121+=+-,由此可知,如果AX X B 1-=,且)(x f 是数域P 上一多项式,那么利用矩阵相似的这个性质可以简化矩阵的计算.例:3R 上的线性变换T 在基1111000,1,0001ααα⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪=== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭下的矩阵为121012111A ⎛⎫ ⎪= ⎪ ⎪-⎝⎭ 则基在123,2,ααα下的矩阵为( A )(A )141011121⎛⎫⎪ ⎪ ⎪-⎝⎭(B )141044121⎛⎫ ⎪⎪ ⎪-⎝⎭ (C )1211012111⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭(D )242024222⎛⎫⎪ ⎪⎪-⎝⎭例:已知3P中线性变换A 在基1η=(-1,1,1),2η=(1,0,-1),3η=(0,1,1)下的矩阵是⎪⎪⎪⎭⎫⎝⎛-121011101,求A 在基1ε=(1,0,0),2ε=(0,1,0),3ε=(0,0,1)下的矩阵。