第二十二章 曲面积分

合集下载

曲面积分习题课(供参考)

曲面积分习题课(供参考)

第二十二章曲面积分习题课一 疑难问题与注意事项1.第一型曲面积分的计算方法:答 1)先把S 的方程代入,再利用SdS ⎰⎰为S 的表面积;例如,22⎰⎰+S yx dS其中S 为柱面222R y x =+被平面H z z ==,0所截取的部分; 解22221122SSdS H dS RH x y R R Rππ===+⎰⎰⎰⎰. 2)利用公式(1)设有光滑曲面:(,),(,)S z z x y x y D =∈,(,,)f x y z 为S 上的连续函数,则(,,)(,,(,SDf x y z dS f x y z x y =⎰⎰⎰⎰.注 一投------将曲面S 向xOy 面投影得D ;二代------将(,)z z x y =代入到(,,)f x y z 中; 三变换------dS.(2)类似地,如果光滑曲面S 由方程(,),(,)x x y z y z D =∈,则(,,)d ((,),,d SDf x y z S f x y z y z y z =⎰⎰⎰⎰,其中D 表示曲面S 在yOz 面上的投影.(3)如果光滑曲面S 由方程(,),(,)y y x z x z D =∈,则(,,)d (,(,),d SDf x y z S f x y x z z x z =⎰⎰⎰⎰.其中D 表示曲面S 在xOz 面上的投影.3)利用对称性(1)若曲面∑关于xoy 坐标面对称,()z y x f ,,为∑上的连续函数,1∑为∑位于xoy 上部的曲面,则()()()()10,,,,,d 2,,d ,,,f x y z z f x y z S f x y z S f x y z z ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.(2)若曲面∑关于yoz 坐标面对称,()z y x f ,,为∑上的连续函数,1∑为∑中0x ≥的那部分曲面,则()()()()10,,,,,d 2,,d ,,,f x y z x f x y z S f x y z S f x y z x ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.(3)若曲面∑关于xoz 坐标面对称,()z y x f ,,为∑上的连续函数,1∑为∑中0y ≥的那部分曲面,则()()()()10,,,,,d 2,,d ,,,f x y z y f x y z S f x y z S f x y z y ∑∑⎧⎪=⎨⎪⎩⎰⎰⎰⎰为的奇函数,为的偶函数.(4)若积分曲面∑关于,,x y z 具有轮换对称性,则有[]1(,,)(,,)(,,)3f x y z f y z x f z x y ds ∑=++⎰⎰. 2.第二型曲面积分的方法:答 1)公式:(1)设R 是定义在光滑曲面上的连续函数, 以S 的上侧为正侧,则有注一投-----曲面:(,)S z z x y =向xOy 面投影得D ;二代----将(,)z z x y =代入到(,,)R x y z 中;三定向—看S 的法线方向与z 轴的夹角,若夹角为锐角,则为正,否则为负. (2)类似地,当P 在光滑曲面 上连续时,有这里S 是以S 的法线方向与x 轴的正向成锐角的那一侧为正侧,(3)当Q 在光滑曲面 上连续时,有这里S 是以S 的法线方向与y 轴的正向成锐角的那一侧为正侧. 2)若(,)z z x y =,则 3)高斯公式注 高斯公式(),VSP Q R dxdydz Pdydz Qdzdx Rdxdy x y z∂∂∂++=++∂∂∂⎰⎰⎰⎰⎰的适用条件是:1)函数(,,)P x y z ,(,,)Q x y z ,(,,)R x y z 在V 上具有一阶连续的偏导数. 2)S 封闭,若S 不封闭需要补面,让它封闭,假如补面S *后封闭,则有 3)S 取外侧;如果S 取内侧,则S -取外侧,则有 3.各种积分间的联系τ格林公式 n二 1.计算第一型曲面积分()Sx y z dS ++⎰⎰,其中S 是上半球面2222x y z a ++=(0)a >,0z ≥.解 把:S z=xoy 面投影得222:D x y a +≤(()SDx y z dS x y ++=+⎰⎰⎰⎰3a π=.注(0Dx y +=⎰⎰,因为222:D x y a +≤关于,x y 轴对称,且(x y +2.计算曲面积分2Sz dS ⎰⎰,其中S 是球面2222xy z a ++=.解: ∵球面2222x y z a ++=关于x ,y ,z 具有对称性, ∴222SSSx dS y dS z dS ==⎰⎰⎰⎰⎰⎰ ∴2Sz dS ⎰⎰=2221()3Sx y z dS ++⎰⎰ =22133S Sa a ds ds =⎰⎰⎰⎰22214.433a a a ππ==. 3.计算曲面积分⎰⎰∑-+zdxdy dydz x z )(2,其中∑是旋转抛物面)(2122y x z +=介于平面0=z 及2=z 之间部分的下侧.解 补平面2:1=∑z 的上侧,则1∑+∑为封闭曲面,在其上应用高斯公式:π82)11(=+-=⎰⎰⎰⎰⎰ΩxyD dxdy dxdydz .4.计算第二型曲面积分Sxdydz ydzdx zdxdy -+⎰⎰,其中曲面S为椭球面2222221x y z a b c ++=的上半部分,其方向为下侧. 解:为求1SI xdydz ydzdx zdxdy =-+⎰⎰ (S 取下侧),只须求2SI xdydz ydzdx zdxdy =-+⎰⎰(S 取上侧),那么12I I =-.为求2I ,将S 与底面'S (其中'S 是S 在xoy 坐标面上的投影)组成的封闭曲面记为total S ,即'total S SS =,其中S 方向取上侧,'S 方向取下侧.设total S 围成的区域为()222222,,|1,0x y z V x y z z a b c ⎧⎫=++≤≥⎨⎬⎩⎭,由高斯公式:213Vabcdxdydz π==⎰⎰⎰. 又由于'0S xdydz ydzdx zdxdy -+=⎰⎰,那么223I abc π=,从而 123SabcI xdydz ydzdx zdxdy π=-+=-⎰⎰. 5.计算Sxdydz ydzdx zdxdy ++⎰⎰,其中S是上半球面z =解:曲面S 不封闭,补上曲面2221:0()S z x y a =+≤,取下侧6.⎰⎰++Sdxdy z dzdx y dydz x 333,其中S 是单位球面1222=++z y x 的外侧. 解333222()SVx dydz y dzdx z dxdy x y z dxdydz ++=++⎰⎰⎰⎰⎰2140123sin 5d d r dr ππϕθϕπ==⎰⎰⎰.7.求222222()()()CI y z dx z x dy x y dz =-+-+-⎰,其中C 是立方体{0,0,0,}x a y a z a ≤≤≤≤≤≤的表面与平面32x y z a ++=的交线,取向从z 轴正向看去是逆时针方向. 解:可见交线若分为六段积分的计算量很大,且C 也不便于表示为一个统一的参数式,因C 为闭曲线,且22P y z =-,22Q z x =-,22R x y =-连续可微,故考虑用斯托克斯公式,令∑为32x y z a ++=被C 所围的一块,取上侧,则C 的取向与∑的取侧相容,应用斯托克斯公式得23394()242a x y z dS dS a a ∑∑=-++==-⋅=-⎰⎰⎰⎰. 8.计算()d ()d ()d I z y x x z y x y z Γ=-+-+-⎰,其中221:2x y x y z ⎧+=Γ⎨-+=⎩,从z 轴正向看为顺时针方向(图10-23).解 用斯托克斯公式取:2x y z ∑-+=以Γ为边界所围有限部分的下侧,它在xOy 面上的投影区域为22{(,)1}xy D x y x y =+≤,则d d d d d d y z z x x yI x y z z yx zx y∑∂∂∂=∂∂∂---⎰⎰2d d 2d d 2xyD x y x y π∑==-=-⎰⎰⎰⎰.。

曲面曲线积分复习课

曲面曲线积分复习课

S6
3
x
S3 S1
S4 S6
y
y( x z)dydz x2dzdx ( y2 xz)dxdy a4
S
2024/10/13
13
P289 1(3) xydydz yzdzdx xzdxdy, S为平面
S
x y z 0, x y z 1外侧四面体表面取外侧. z
数学分析
xydydz yzdzdx xzdxdy 0
D By
2(dydz dzdx dxdy)
A x
原式=2 dydz dzdx dxdy 6 dxdy 6 dxdy
S
S
D
3a2
2024/10/13
24
P296 4(1) 求yzdx xzdy xydz的原函数.
dydz dzdx dxdy dydz dzdx dxdy
x2 + y2 = z2与平面z h所区域表面的外侧.
数学分析
解:P Q R 2( x y z) x y z
z
原式 2( x y z)dxdydz
V
2 ( x y)dxdydz 2 zdxdydz
V
0 V
2
h
zdz
2
d
z rdr h4 .
0
0
0
2
截面法, 利用柱坐标
2024/10/13
S4 y
15
数学分析
P289 1(4) yzdzdx, S为球面x2 y2 z2 1的上半部取外侧.
S
z
S1 : y 1 x2 z2 ,
S2 S1
S2 : y 1 x2 z2 .
y
S1、S2在zx面上的投影均为D:
xz

2202第一型曲面积分的计算(续)

2202第一型曲面积分的计算(续)

z =z x2 + y2
下的部分 (图22-2). 解 对于圆锥面=z x2 + y2 ,
O
y
x
x2 + y2 = 2ax
图 22 − 2
有 zx
= x2x+ y2 , z y
y
, x2 + y2
1
+
z
2 x
+
z
2 y
=2;
而 S 在 xy 平面上的投影为 D( xy) : ( x − a)2 + y2 ≤ a2 . 因此
∫∫ f ( x, y, z( x, y))
1
+
z
2 x
+
z
2 y
dxdy
.
S
D
(2)
数学分析 第二十二章 曲面积分
高等教育出版社
§1 第一型曲面积分 第一型曲面积分的概念 第一型曲面积分的计算
例2 计算 ∫∫( xy + zx + yz)dS,
S
其中 S 为圆锥面=z x2 + y2
被圆柱面 x2 + y2 = 2ax 所割
数学分析 第二十二章 曲面积分
高等教育出版社
§1 第一型曲面积分 第一型曲面积分的概念 第一型曲面积分的计算
EG − F 2 = 1 + u2 .
然后由公式 (3) 求得:
∫∫ ∫ ∫ =I
v 1= + u2dudv

vdv
a
1 + u2du
0
0
D
( ) =

2

u 2
1 + u2 + 1 ln u + 2

第二十二章曲面积分

第二十二章曲面积分

第二十二章 曲面积分1. 计算曲面积分⎰⎰++SdS zx yz xy )(,其中S 为圆锥曲面22y x z +=被曲面ax y x 222=+所割下的部分.2. 计算⎰⎰SdS xyz ,其中S 是曲面22y x z +=介于两平面1,0==z z 之间的部分.3. 计算⎰⎰S dS z xγcos 2,其中S 是球面2222a z y x =++的下半部, γ是曲面的法线方向与z 轴正向的夹角.4. 计算⎰⎰+S dS y x 221, 其中S 是柱面222R y x =+在平面0=z 和H z =之间的部分.5. 计算⎰⎰S dydz xz 2,其中S 是上半球面222y x a z --=的上侧.6. 计算⎰⎰++S dxdy z dxdz y dydz x 222, 其中S 为球体2222)()()(R c z b y a x ≤-+-+-的表面, 并取外侧.7. 计算⎰⎰++Sdxdy z h dxdz y g dydz x f )()()(,其中)(),(),(z h y g x f 为连续函数; S 为平行六面体c z b y a x <<<<<<0,0,0的外表面.8. 计算曲面积分⎰⎰++S zdxdy x ydzdx xdydz x 223,其中S 为b z z a y x ===+,0,222所围成的立体的表面积.9. 计算⎰⎰+++S xydxdy ydzdx z xyzdydz )(22,其中S 为曲面224z x y +=-上0≥y 的那部分取正侧.10. 计算曲线积分⎰+++++Ldz x dy z dx y )3()2()1(,其中L 是圆周,0,2222=++=++z y x R z y x 若从x 轴正向看去, L 是沿逆时针方向运行.11. 计算⎰+++++=Ldz y x dy x z dx z y I )()()(222222, L 是曲线)0,0(2,222222><<=+==++z R a ax y x Rx a z y x , 且L 的正向是使它在求外表面所围小区域在它的左方.12. 计算⎰⎰+++S z dxdy dzdx dydz e y x ),(22其中S 是为曲面22y x z +=及平面2,1==z z 所围成的立体的表面外侧.13. 计算⎰⎰+S y dxdz z x e 22,其中S 是由曲面22z x y +=与平面2,1==y y 所围成立体表面的外侧.。

第二十二章曲面积分

第二十二章曲面积分

定义 设S 为空间上可求面积的曲面块,它把s 分成n 个可求面积的小曲面S i ( 11,2,,n ) , S i 的面积记为 S ,分割T 的细度为),T max S i 的直径,在S i 上任取一点i ,(1 1,2, , n).若有极限且J 的值与分割T 与点i , i, 记作l Tlm 0ii的取法无关,i , i ,iSi=J ,则称此极限为fx,y,z 在S 上的第一型曲面积分, f x, y,z dSs(1)第二十二章曲面积分§ 1第一型曲面积分教学目的 掌握第一型曲面积分的定义和计算公式. 教学内容第一型曲面积分的定义和计算公式.(1) 基本要求:掌握第一型曲面积分的定义和用显式方程表示的曲面的第一型曲面积分计 算公式.(2) 较高要求:掌握用隐式方程或参量表示的曲面的第一型曲面积分计算公式. 教学建议(1) 要求学生必须熟练掌握用显式方程表示的曲面的第一型曲面积分的定义和计算公式. (2) 对较好学生要求他们掌握用隐式方程或参量表示的曲面的第一型曲面积分计算公式. 教学程序背景:求具有某种非均匀密度物质的曲面块的质量时,利用求均匀密度的平面块的质量的 方法,通过“分割、近似、求和、取极限”的步骤来得到结果•一类大量的“非均匀”问题都 采用类似的方法,从而归结出下面一类积分的定义.一、第一型曲面积分的概念与性质x ,y ,z 为定义在S 上的函数.对曲面S 作分割T ,第一型曲面积分的性质(1)线性性:设gds存在,-R, c( f f)ds存在,且cc gds . c( f f )ds fdsc⑵可加性:设fds存在,s si s2,则sfds, fds 存在, si s2fds s sifdss2fds反之亦然.f x,y,zdSS = D2 2例i计算S z,其中S是球面x yz2a2被平面z h 0 h a所截的顶部.解S : z a" 2 2x y , x, y x, y 2 2 , 2yah1 z;2 zya2dSS z=D2dxdy da x y =oa2h2a2h—rdr 2ar = o/7dra In a2h22a ln h.、第一型曲面积分的计算定理22.1设有光滑曲面S: z zx,y x,y D,f x,y,z为定义在S上的连续函数,则x, y, z x,y . 1 f x2f:dxdydS作业P2821;2;3;4.§ 2第二型曲面积分教学目的掌握第二型曲面积分的定义和计算公式.教学内容曲面的侧;第二型曲面积分的定义和计算公式.(1) 基本要求:掌握用显式方程的第二型曲面积分的定义和计算公式.(2) 较高要求:掌握用隐式方程或参量表示的曲面的第二型曲面积分计算公式,掌握两类曲面积分的联系.教学建议(1)本节的重点是要求学生必须掌握第二型曲面积分的定义和计算公式,要强调一、二型曲面积分的区别,要讲清确定有向曲面侧的重要性.S i xy为负(i 1,2, ,n).在每个小曲面S i(2)本节的难点是用隐式方程或参数方程给出的曲面的第二型曲面积分的计算公式以及两类曲面积分的联系,可对较好学生要求他们掌握.教学程序曲面的侧双侧曲面的概念、曲面的侧的概念背景:求非均匀流速的物质流单位时间流过曲面块的流量时,利用均匀流速的物质流单位时间流过平面块的流量的方法,通过“分害IJ、近似、求和、取极限”的步骤,来得到结果•一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义.一、第二型曲面积分的概念与性质定义设函数P,Q, R与定义在双侧曲面S上的函数.在S所指定的一侧作分割T它把S 分成n个小曲面沁2 S( i 12 ,n),分割T的细度阳maX S的直径,以S i yz,%,丸分别为S在三个坐标上的投影区域的面积,它们的符号由S的方向来确定.如S的法线正向与z轴正向成锐角时,S i在xy平面上的投影区域的面积S i xy为正,反之,如°的法线正向与z轴正向成钝角时,S i在xy平面上的投影区域的面积任取一点i,i,i,若极限n n nT m0p i, i, i S i yz T m0Q i,i,i S i zx 啊0R i, i, i 氐I 0 i 1 +〔T I 0 i 1 +1 I 0 i 1存在且与分割T与点i, i, i的取法无关,则称此极限为函数P,Q,R d曲面S所指定的一侧的第二型曲面积分,记为Px,y, zdydz Qx, y,zdzdx Rx, y,zdxdyS,(1)上述积分(1)也可写作P x, y, z dydz Q x, y, z dzdx R x, y,z dxdyS + S + S第二型曲面积分的性质(1)若 S(i 1,2, ,nnnc i p dydzC i QiS i 1i 1)都存在,C i( i 1,2, ,n ),为常数,则有ndzdz c i R i dxdyi 1C i p i dydz Q i dzdx R i dxdyp i dydz Q i dzdx R i dxdynRomlxymo HdxySS这里d max Sxy,因E max S i的直径0,立刻可推得d max Si xy0,由相关函数xyR x,y,z x, y dxdyRmo HdxyRx, y,z dxdy R x, y, z x, y=Dxydxdy类似地,P 为定义在光滑曲面s : x x y ,zy,z D yz 上的连续函数时,Q 为定义在光滑曲面s : y yz ,x乙X D zx 上的连续函数时,而s 的法Pdydz Qdzdx Rdxdy(2)若曲面S 由两两无公共内点的曲面块S i ,S 2…S n所组成,S iP x, y, z dydz Q x, y,z dzdx R x, y, z dxdy(i 1,2, ,n )都存在,贝U S也存在,且P x, y, z dydz Q x, y, z dzdx R x, y,z dxdySnPdydz Qdzdx Rdxdy=i 1 S i.二、第二型曲面积分的计算定理22.2设R 为定义在光滑曲面S : z zx,y x, yD xy,上的连续函数,以S 的上侧为正侧(这时S 的法线正向与z 轴正向成锐角),则有Rx,y,zdxdy Rx,y ,z x,y dxdyS=D xy. (2)证明 由第二型曲面积分的定义的连续性及二重积分的定义有而s 的法线方向与x 轴的正向成锐角的那一侧为正侧,则有P x, y,z dydz P x y’z’y’zdydzS =D xy线方向与y 轴的正向成锐角的那一侧为正侧,则有Q x,y,z dzdx Q x, y, z x, y dzdxS =D ZX注:按第二型曲面积分的定义可以知道,如果S的法线方向与相应坐标轴的正向成钝角的xyzdxdy 2计算S,其中S 是球面x y1在x 0,y 0部分并取球面外侧.S 1 :乙x, y D xy 2x, y x1,x 0, yS 2 : Z 2 x, y D xy2x,y x1,x 0, yxyzdxdy xyzdxdy S = Si + S 2xyzdxdy那一侧为正侧,则相应的公式右端要加“-”号曲面在第一,五卦限间分的方程分别为xy 1 x 2y 2dxdyD xy D xyxy 1 x 2y 2dxdy2 xy ,1x 2___ 2 2y dxdy 2 d=01r 3cos sin . 1 r 2dr2 15例2计算积分⑺(x y)dydz (y z)dzdx (z 3x)dxdy , 为球面x 2y 2z 2R 2取外侧.分别用前和后记前半球面和后半球面的外侧,贝U 有 前x .R 2y 2z 2,2 2 2D yz : yzR后: xR2y2z 2,2 2 2D yz : y zR .因此,门(xy)dydz== + 前后.BLy 2—z 2D yzD yz解 对积分匚(x y)dydz,y dydzy dydz对积分(y 3 2 2 2r234R 3. 3z)dzdx,分别用右和左记右半球面和左半球面的外侧,则有 yR 2z 2x 2,D zx : x 2z 2R 2;y R 2z 2D zx :x 2z 2R 2.VR 2 z 2x 2z dzdxD zx..RD zx222z xz dzdx2x 2 z 2 R 2下记上半球2R Vw dx2y r cos , z rsin R 一2 , R 2y 2z 2dydz8 ;d ° , R^r 2rdry 2 z 2 R 2'00因此,::(y z)dydz4 R 3.3综上 ‘ IX y)dydz (y z )dzdx (z 3x)dxd y =3 4 R 34 R 3.作业 P289:1;2.上z R 22 2x y ,D xy :2x22y R 下: xR22 2x y ,D xy : 2 x2 2y R因此,:二(z 3x)dxdy=上+下2x 2y 2 3xdxdy.R 22 2x y3x dxdyD xyD xy对积分二:(z 3x)dxdy,分别用上和§ 3高斯公式与斯托克斯公式教学目的学会用高斯公式计算第二型曲面积分,用斯托克斯公式计算第二型曲线积分. 教学内容高斯公式;斯托克斯公式;沿空间曲线的第二型积分与路径无关的条件.P Q x yQ x, y, z dzdx R x, y, z dxdy证只证V类似可证R x, y, z dxdySP x, y, z dydz =S和 dxdydzQ x, y, z dzdx=S这些结果相加z 2x,y .于是按三重积分的计算方法有RdzR x, y,Z 2 x,y dxdy=D xyR x,y,z x, y dxdyD xy(1) 基本要求:学会用高斯公式计算第二型曲面积分,用斯托克斯公式计算第二型曲线积 分.懂得高斯公式与斯托克斯公式证明的思路, 掌握沿空间曲线的第二型积分与路径无关的条 件.(2) 较高要求:应用高斯公式与斯托克斯公式的某些特殊技巧.教学建议本节的重点是要求学生学会用高斯公式计算第二型曲面积分,用斯托克斯公式计算 第二型曲线积分•要讲清应用两公式的条件并强调曲面与曲面的边界定向的关系. 教学程序 一、 高斯公式定理22. 3设有空间区域V 由分片光滑的双侧闭曲面S 围成•若函数PQR 在V 上连续, 且具有一阶连续偏导数,则dxdydz -; P x, y, z dydz=S其中S 取外侧•称为高斯公式便得到了高斯公式.先V 设是一个xy 型区域,即其边界曲面S 由曲面 : z z 2 x, y , x, y D xy$ : z z i x, y , x, y D xy・ ? ・ ? 及垂直于D xy 的边界的柱面S 3组成其中Z i x,yz 2x,yRdxdydz dxdy z D xyz i x,yR x, y, z 2 x, y R x, y,乙 x, y dxdy= D xyR x, y, z dxdy R x, y,z dxdy=S2S iz xR x, y, z dxdy =S2R x, y, z dxdy侧.y x例1计算Sz dydzx2dzdyxz dxdy,其中S是边长为a的正立方体表面并取外解应用高斯公式, 所求曲面积分等于xz dxdydzax dxdydz dz dy y=0 0 0 x dx ay 」a2dy2定理22.4 设光滑曲面S的边界L是按块光滑的连续曲线. 若函数PQR在S (连同L )其中S,S2都取上侧•又由于S3在xy平面上投影区域的面积为零,所以R x, y, z dxdy 0S3因此Rdxdydz R x, y, z dxdy R x,y, zdxdy R x, y, z dxdy V Z= S2 S1 + S3 匚R x, y,z dxdy =S对于不是xy型区域的情形,则用有限个光滑曲面将它分割成若干个xy型区域来讨论.详细的推导与格林相似.空间区域V的体积公式1 dxdydz 「:xdydz ydzdx zdxdy =S1 xdydz ydzdx zdxdyV =3S、斯托克斯公式双侧曲面S的侧与其边界曲线L的方向的规定:右手法则.上连续,且有一阶连续偏导数,则R Q P R Q Pdydz dzdx dxdy ■■- Pdx Qdy RdzS y z z x x y =L(2)其中s的侧与L的方向按右手法则确定.证明先证P—dzdx(3)其中曲面S 由方程zzx,y 确定,它的正侧法线方向数为Z x , Z y , 1,方向余弦为cos ,cos ,cos ,所以z cos z cosx cos y cos若S 在平面上投影区域为D xy , L 在平面上的投影曲线为.现由第二型曲线积分的定义及格林公式有 因为 ::P x, y, z dx L—P x,y,z x,y y:P x, y, z x, y dxD xy—P x, y, z x, y dxdy yy z y ,所以cos—P x, y, z x, y dxdy D Xy yP— dxdyz y由于ycos,从而dxdyP込 dxdy z cosPcosSyP cos z dxdy cosP cosSyP cos z dSP dzdxSzP dxdy y综合上述结果,便得所要证明的(3) 式.同样对于曲面S 表示为x x y ,z 和y y 乙x 时,可证得dydz :: Qdy=L(4)dxdy 一 Pdx y=LdydzR d zRdz =L(5)S 分割为若于小块,使每dydz dzdxdxdyPdx Qdy Rdzx dz,其中L 为平面x y z 1与各坐标面的交线,将(3),(4),(5)三式相加即得(2)式.如果曲面S 不能以z zx ,y 的形式给出,则可用一些光滑曲线把一小块能用这种形式来表示.因而这时(2)式也能成立. 公式(2)称为斯托克斯公式,也可写成如下形式:=Lo 2y z dx x z dy y例2计算L取逆时针方向为正向.解应用斯托克斯公式2y z dx x z dy y x dzL1 1 dydz 1 1 dzdx 12 dxdy=S2dydz 2dzdx 1dxdy 1=S=单连通区域:如果区域V 内任一封闭曲线皆可以不经过 V 以外的点收缩于属于V 的一点, 则称V 为单连通区域.非单连通区域称为复连通区域.定理22.5 设 R 3为空间单连通区域.若函数在上连续,且有一阶连续偏导数,则以下四个条件是等价的:(i ) 对于 内任一按段光滑的封闭曲线L ,有Pdx Qdy RdzL=0.(ii ) 对于 内任一按段光滑的曲线L ,曲线积分Pdx Qdy Rdz L 与路线无关.只与L 的起点及终点有关。

高等数学第22章第3节高斯公式与斯托克斯公式

高等数学第22章第3节高斯公式与斯托克斯公式

由斯托克斯公式,可导出空间曲线积分与路线无关的条件. 区域V称为单连通区域,如果V内任一封闭曲线皆可以不经过V以 外的点而连续收缩于属于V的一点。如球体是单连通区域。非单连通区 域称为复连区域。如环状区域不是单连通区域中,而是复连通区域。
与平面曲线积分相仿,空间曲线积分与路线的无关性也有下面相应 的定理。 定理22.5 设为空间单连通区域。若函数P,Q,R在上连续,且有 一阶连续偏导数,则以下四个条件是等价的: (i)对于内任一按段光滑的封闭曲线L有 (ii)对于内任一按段光滑的曲线L,曲线积分 与路线无关; (iii)是内某一函数u的全微分,即 (6) (iv) 在内处处成立。 这个定理的证明与定理21.12相仿,这里不重复了。 例3 验证曲线积分 与路线无关,并求被积表达式的原函数。 解 由于 所以曲线积分与路线无关。
(4) 和
(5) 将(3)、(4)、(5)三式相加即得(2)式。 如果曲面S不能以的形式给出,则可用一些光滑曲线把S分割为若干 小块,使每一小块能用这种形式来表示。因而这时(2)式也能成 立。 ▌ 公式(2)称为斯托克斯公式。 为了便于记忆,斯托克斯公式也常写成如下形式: 例2 计算 其中L为平面x+y+z=1与各坐标面的交线,取逆时针方向为正向(图22 -8)。 解 应用斯托克斯公式推得
, (1) 其中S取外侧。(1)式称为高斯公式。
证 下面只证 读者可类似地证明 这些结果相加便得到了高斯公式(1)。 先设V是一个xy型区域,即其边界曲面S由曲面
①若S为封闭曲面,则曲面积分的积分号用表示。 及以垂直于的边界的柱面组成(图22-6),其中。于是按三重积分的 计算方法有 其中都取上侧。又由于在xy平面上投影区域的面积为零,所以 因此 对于不是xy型区域的情形,则用有限个光滑曲面将它分割成若干个 xy型 区域来讨论。详细的推导与格林公式相似,这里不再细说 了。 ▌ 高斯公式可用来简化某些曲面积分的计算。 例1 计算 其中S是边长为a的正立方体表面并取外侧(即上节习题1(1))。 解 应用高斯公式,所求曲面积分等于

数学分析第二十二章 曲面积分

数学分析第二十二章  曲面积分

Dxy
2. 若曲面 : y y( x, z), 则
f ( x, y, z)dS f [ x, y( x, z), z] 1 yx2 yz2 dxdz;
Dxz
3. 若曲面 : x x( y, z) 则
f ( x, y, z)dS f [ x( y, z), y, z] 1 xy2 xz2 dydz.
Dxy
一投: 将曲面向 xoy 面投影,得Dxy .
二换: dS 1 z2x ( x, y) z2y ( x, y) dxdy; 三代: f ( x, y, z) : z z( x, y) f ( x, y, z( x, y));
2. 若曲面 : y y(x, z) 则
f ( x, y, z)dS f [ x, y( x, z), z] 1 yx2 yz2 dxdz;
D yz
一投: 将曲面向 yoz 面投影,得Dyz .
二换:
dS
1
x
2 y
(
y,
z)Biblioteka xz2 (y,z)
dydz;
三代: f ( x, y, z) : x x( y, z) f ( x( y, z), y, z);
1. 若曲面 : z z( x, y); 则
f ( x, y, z) dS f [ x, y, z( x, y)] 1 zx2 zy2 dxdy;
原式 xyz dS 4 xy 3(1 x y)dxdy Dxy
其 中 D xy {( x , y ) | x y 1 , x 0 , y 0 }
xyzdS
1
1 x
3 xdx (1 x y)dy
0
0
1 (1 x) 3
3 0 x 6 dx

第二型曲面积分

第二型曲面积分
作为正侧,下侧作为负侧;又把封闭曲面的外侧作为
正侧, 内侧作为负侧.
数学分析 第二十二章 曲面积分
高等教育出版社
§2 第二型曲面积分 曲面的侧
概念
计算
两类曲面积分的联系
第二型曲面积分的概念
先考察一r 个计算流量的问题. 设某流体以流速 v P( x, y, z) i +Q( x, y, z) j +R( x, y, z) k
S : y y(z, x), (z, x) D(zx) 上连续时, 有
Q( x, y, z)dzdx Q( x, y(z, x), z)dzdx. (4)
S
Dzx
这里 S 是取法线方向与 y 轴的正向成锐角的那一
侧为正侧.
数学分析 第二十二章 曲面积分
高等教育出版社
§2 第二型曲面积分 曲面的侧
Pdydz Qdzdx Rdxdy
S
k
Pdydz Qdzdx Rdxdy . i 1 Si
数学分析 第二十二章 曲面积分
高等教育出版社
§2 第二型曲面积分 曲面的侧
概念
计算
两类曲面积分的联系
第二型曲面积分的 计 算
定理22.2
设 R( x, y, z)是定义在光滑曲面 S : z z( x, y),( x, y) D( xy).
H P( x, y, z)dydz Q( x, y, z)dzdx R( x, y, z)dxdy .
S
数学分析 第二十二章 曲面积分
高等教育出版社
§2 第二型曲面积分 曲面的侧
概念
计算
两类曲面积分的联系
若以 S 表示曲面 S 的另一侧, 由定义易知
Pdydz Qdzdx Rdxdy
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二十二章 曲面积分§1 第一型曲面积分教学目的 掌握第一型曲面积分的定义和计算公式. 教学内容 第一型曲面积分的定义和计算公式.(1) 基本要求:掌握第一型曲面积分的定义和用显式方程表示的曲面的第一型曲面积分计算公式.(2) 较高要求:掌握用隐式方程或参量表示的曲面的第一型曲面积分计算公式. 教学建议(1) 要求学生必须熟练掌握用显式方程表示的曲面的第一型曲面积分的定义和计算公式. (2) 对较好学生要求他们掌握用隐式方程或参量表示的曲面的第一型曲面积分计算公式. 教学程序背景:求具有某种非均匀密度物质的曲面块的质量时,利用求均匀密度的平面块的质量的方法,通过“分割、近似、求和、取极限”的步骤来得到结果.一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义. 一、第一型曲面积分的概念与性质定义 设S 为空间上可求面积的曲面块,()z y x f ,,为定义在S 上的函数.对曲面S 作分割T ,它把S 分成n 个可求面积的小曲面i S (n i ,,2,1Λ=),i S 的面积记为i S ∆,分割T 的细度为{}的直径i ni S T ≤≤=1max ,在i S 上任取一点()i i i ζηξ,,(n i ,,2,1Λ=).若有极限()∑=→∆ni iiiiT Sf 1,,limζηξ=J ,且J 的值与分割T 与点()i i i ζηξ,,的取法无关,则称此极限为()z y x f ,,在S 上的第一型曲面积分,记作()dSz y x f S⎰⎰,, . (1)第一型曲面积分的性质(1)线性性:设cfds ⎰⎰,cgds ⎰⎰存在,R ∈βα., 则ds f f c)(⎰⎰+βα存在,且()c ccff ds fds gds αβαβ+=+⎰⎰⎰⎰⎰⎰.(2)可加性:设sfds ⎰⎰存在,,21s s s ⋃=则12,s s fds fds ⎰⎰⎰⎰存在,⎰⎰⎰⎰⎰⎰+=21s s sfds fds fds ;反之亦然.二、第一型曲面积分的计算定理22.1设有光滑曲面S :()()D y x y x z z ∈=,,, ()z y x f ,,为定义在S 上的连续函数,则()dSz y x f S⎰⎰,,=()()⎰⎰++Dy x dxdyf f y x z y x f 221,,,.证 略例1 计算⎰⎰Sz dS ,其中S 是球面2222a z y x =++被平面h z =()a h <<0所截的顶部.解 S :()(){}2222222,,,h a y x y x D y x y x a z -≤+=∈--=,222221y x a az z y x --=++,⎰⎰Sz dS =⎰⎰--D dxdy y x a a222=rdr r a ad h a ⎰⎰--πθ202222=dr r a ra h a ⎰--220222π=()0ln 2222h a ra a ---π=ha a ln 2π.作业 P2821;2;3;4.§2 第二型曲面积分教学目的 掌握第二型曲面积分的定义和计算公式. 教学内容 曲面的侧;第二型曲面积分的定义和计算公式.(1) 基本要求:掌握用显式方程的第二型曲面积分的定义和计算公式.(2) 较高要求:掌握用隐式方程或参量表示的曲面的第二型曲面积分计算公式,掌握两类曲面积分的联系. 教学建议(1) 本节的重点是要求学生必须掌握第二型曲面积分的定义和计算公式,要强调一、二型曲面积分的区别,要讲清确定有向曲面侧的重要性.(2) 本节的难点是用隐式方程或参数方程给出的曲面的第二型曲面积分的计算公式以及两类曲面积分的联系,可对较好学生要求他们掌握. 教学程序曲面的侧 双侧曲面的概念、曲面的侧的概念背景:求非均匀流速的物质流单位时间流过曲面块的流量时,利用均匀流速的物质流单位时间流过平面块的流量的方法,通过“分割、近似、求和、取极限”的步骤,来得到结果.一类大量的“非均匀”问题都采用类似的方法,从而归结出下面一类积分的定义. 一、第二型曲面积分的概念与性质定义 设函数P ,Q ,R 与定义在双侧曲面S 上的函数.在S 所指定的一侧作分割T 它把S分成n 个小曲面n S S S ,,21Λ(n i ,,2,1Λ=),分割T 的细度{}的直径i n i S T ≤≤=1max ,以yz i S ∆,zx i S ∆,xyi S ∆分别为i S 在三个坐标上的投影区域的面积,它们的符号由i S 的方向来确定.如i S 的法线正向与z 轴正向成锐角时,i S 在xy 平面上的投影区域的面积xyi S ∆为正,反之,如i S 的法线正向与z 轴正向成钝角时,i S 在xy 平面上的投影区域的面积xy i S ∆为负(n i ,,2,1Λ=).在每个小曲面i S 任取一点()i i i ζηξ,,,若极限()∑=→∆ni i iiiT yzSP 1,,limζηξ+()∑=→∆ni i iiiT zxSQ 1,,limζηξ+()∑=→∆ni i iiiT xySR 1,,limζηξ存在且与分割T 与点()i i i ζηξ,,的取法无关,则称此极限为函数P ,Q ,R d 曲面S 所指定的一侧的第二型曲面积分,记为()()()⎰⎰++Sdxdyz y x R dzdx z y x Q dydz z y x P ,,,,,,, (1)上述积分(1)也可写作()⎰⎰Sdydz z y x P ,,+()⎰⎰Sdzdx z y x Q ,,+()⎰⎰Sdxdyz y x R ,,.第二型曲面积分的性质(1)若⎰⎰++SiiidxdyR dzdx Q dydz P (n i ,,2,1Λ=)都存在,i c (n i ,,2,1Λ=),为常数,则有dxdy R c dzdz Q c dydz P c n i i i n i i i S n i i i ⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛∑∑⎰⎰∑===111=∑⎰⎰=++ni SiiiidxdyR dzdx Q dydz p c 1.(2)若曲面S 由两两无公共内点的曲面块21,S S …n S 所组成,⎰⎰++iS RdxdyQdzdx Pdydz (n i ,,2,1Λ=)都存在,则()()()⎰⎰++Sdxdyz y x R dzdx z y x Q dydz z y x P ,,,,,,也存在,且()()()⎰⎰++Sdxdyz y x R dzdx z y x Q dydz z y x P ,,,,,,=∑⎰⎰=++ni S iRdxdyQdzdx Pdydz 1.二 、第二型曲面积分的计算定理22.2设R 为定义在光滑曲面S :()()xy D y x y x z z ∈=,,,上的连续函数,以S 的上侧为正侧(这时S 的法线正向与z 轴正向成锐角 ),则有()⎰⎰Sdxdy z y x R ,,=()()⎰⎰xy D dxdyy x z y x R ,,, . (2)证明 由第二型曲面积分的定义()⎰⎰Sdxdyz y x R ,,=()∑=→∆ni i iiiT xySR 1,,limζηξ=()()∑=→∆ni i i i i i d xyS R 1,,,lim ηξζηξ,这里()xyi S d ∆=max ,因{}的直径i ni S T≤≤=1max 0→,立刻可推得()xy i S d ∆=max 0→,由相关函数的连续性及二重积分的定义有()()⎰⎰xy D dxdy y x z y x R ,,,=()()∑=→∆ni i i i i i d xyS R 10,,,lim ηξζηξ,所以()⎰⎰Sdxdy z y x R ,,=()()⎰⎰xy D dxdyy x z y x R ,,, .类似地, P 为定义在光滑曲面S :()()yz D z y z y x x ∈=,,上的连续函数时,而S 的法线方向与x 轴的正向成锐角的那一侧为正侧,则有()⎰⎰Sdydz z y x P ,,=()()⎰⎰xy D dydzz y z y x P ,,, .Q 为定义在光滑曲面S :()()zx D x z x z y y ∈=,,上的连续函数时,而S 的法线方向与y 轴的正向成锐角的那一侧为正侧,则有()⎰⎰Sdzdx z y x Q ,,=()()⎰⎰ZX D dzdxy x z y x Q ,,, .注:按第二型曲面积分的定义可以知道,如果S 的法线方向与相应坐标轴的正向成钝角的那一侧为正侧,则相应的公式右端要加“-”号例1 计算⎰⎰Sxyzdxdy,其中S是球面1222=++zyx在0,0≥≥yx部分并取球面外侧.解曲面在第一,五卦限间分的方程分别为1S:2211yxz--=,()(){0,0,1,,22≥≥≤+=∈yxyxyxDyxxy,2S:2221yxz---=,()(){0,0,1,,22≥≥≤+=∈yxyxyxDyxxy,⎰⎰Sxyzdxdy=⎰⎰1Sxyzdxdy+⎰⎰2Sxyzdxdy=⎰⎰--xyDdxdyyxxy221⎰⎰----xyDdxdyyxxy221=⎰⎰--xyDdxdyyxxy2212=⎰⎰=-21231521sincos2πϑθθdrrrd.例2计算积分⎰⎰∑++-++dxdyxzdzdxzydydzyx)3()()(,∑为球面2222Rzyx=++取外侧.解对积分⎰⎰∑+dydzyx)(, 分别用前∑和后∑记前半球面和后半球面的外侧, 则有前∑ : ,222zyRx--=222:RzyDyz≤+;后∑: ,222zyRx---=222:RzyDyz≤+.因此, ⎰⎰∑+dydzyx)(=⎰⎰∑前+ ⎰⎰∑后()⎰⎰-+--=yzDdydzyzyR222()222yzDR y z y dydz---⎰⎰222cos , sin 2028y r z r y z R d rdr πθθθ==+≤============⎰⎰⎰⎰()3023223432214R r R R r r ππ=⎥⎦⎤⎢⎣⎡⋅--===. 对积分dx dz z y ⎰⎰∑-)(, 分别用右∑和左∑记右半球面和左半球面的外侧, 则有右∑: ,222x z R y --= 222 :R z x D zx ≤+; 左∑: ,222x z R y ---= 222 :R z x D zx ≤+. 因此, =-⎰⎰∑dydz z y )(⎰⎰∑右+⎰⎰∑左()()⎰⎰⎰⎰--------=zxzxD D dzdx z x z R dzdx z x z R 222222⎰⎰≤+=--=2223222342R z x R dzdx x z R π.对积分dxdy x z ⎰⎰∑+)3(, 分别用上∑和下∑记上半球面和下半球面的外侧, 则有上∑: ,222y x R z --= 222 :R y x D xy ≤+; 下∑: ,222y x R x ---= 222 :R y x D xy ≤+. 因此, dxdy x z ⎰⎰∑+)3(=⎰⎰∑上+ ⎰⎰∑下)()33xyxyD D x dxdy x dxdy =-⎰⎰⎰⎰⎰⎰≤+=--=2223222342R y x R dxdy y x R π.综上, ⎰⎰∑++-++dxdy x z dzdx z y dydz y x )3()()(=334343R R ππ=⨯.作业 P289:1;2.§3 高斯公式与斯托克斯公式教学目的 学会用高斯公式计算第二型曲面积分,用斯托克斯公式计算第二型曲线积分. 教学内容 高斯公式;斯托克斯公式;沿空间曲线的第二型积分与路径无关的条件.(1) 基本要求:学会用高斯公式计算第二型曲面积分,用斯托克斯公式计算第二型曲线积分. 懂得高斯公式与斯托克斯公式证明的思路,掌握沿空间曲线的第二型积分与路径无关的条件.(2) 较高要求:应用高斯公式与斯托克斯公式的某些特殊技巧.教学建议 本节的重点是要求学生学会用高斯公式计算第二型曲面积分,用斯托克斯公式计算第二型曲线积分.要讲清应用两公式的条件并强调曲面与曲面的边界定向的关系. 教学程序 一、 高斯公式定理22.3 设有空间区域V 由分片光滑的双侧闭曲面S 围成.若函数R Q P ,,在V 上连续,且具有一阶连续偏导数,则dxdydz z R y Q x P V ⎰⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂=()()()ydxd z y x R dzdx z y x Q dydz z y x P S ⎰⎰++,,,,,,,其中S 取外侧.称为高斯公式.证 只证dxdydz z RV⎰⎰⎰∂∂=()ydxd z y x R S⎰⎰,,.类似可证dxdydz x PV⎰⎰⎰∂∂=()⎰⎰Sdydzz y x P ,,和dxdydz y QV⎰⎰⎰∂∂=()⎰⎰Sdzdxz y x Q ,,. 这些结果相加便得到了高斯公式.先V 设是一个xy 型区域,即其边界曲面S 由曲面2S :()()xy D y x y x z z ∈=,,,2,1S :()()xy D y x y x z z ∈=,,,1, 及垂直于xyD 的边界的柱面3S 组成其中()()y x z y x z ,,21≤.于是按三重积分的计算方法有dxdydz z RV⎰⎰⎰∂∂=()()⎰⎰⎰∂∂xyD y x z y x z dz z Rdxdy,,21=()()()()()⎰⎰-xyD dxdyy x z y x R y x z y x R ,,,,,,12=()()⎰⎰xy D dxdy y x z y x R ,,,2()()⎰⎰-xyD dxdyy x z y x R ,,,1=()⎰⎰2,,S dxdy z y x R ()⎰⎰-1,,S dxdyz y x R=()⎰⎰2,,S dxdy z y x R ()⎰⎰-+1,,S dxdyz y x R其中21,S S 都取上侧.又由于3S 在xy 平面上投影区域的面积为零,所以()0,,3=⎰⎰S dxdy z y x R ,因此dxdydz z RV⎰⎰⎰∂∂=()⎰⎰2,,S dxdy z y x R ()⎰⎰-+1,,S dxdy z y x R +()⎰⎰3,,S dxdyz y x R=()ydxd z y x R S⎰⎰,,对于不是xy 型区域的情形,则用有限个光滑曲面将它分割成若干个xy 型区域来讨论.详细的推导与格林相似. 空间区域V 的体积公式:()dxdydz V⎰⎰⎰++111=yzdxd ydzdx xdydz S⎰⎰++.V ∆=y zdxd ydzdx xdydz S ⎰⎰++31.例1 计算()()⎰⎰+++-Sdxdy xz y dzdy x dydz z x y 22,其中S 是边长为a 的正立方体表面并取外侧.解 应用高斯公式,所求曲面积分等于()()()()⎰⎰⎰⎥⎦⎤⎢⎣⎡+∂∂+∂∂+-∂∂V dxdydz xz y z x y z x y x 22=()⎰⎰⎰+Vdxdydz x y =()⎰⎰⎰+aa a dxx y dy dz 000=40221a dy a ay a a=⎪⎭⎫ ⎝⎛+⎰.二、斯托克斯公式双侧曲面S 的侧与其边界曲线L 的方向的规定:右手法则.定理22.4 设光滑曲面S 的边界L 是按块光滑的连续曲线.若函数R Q P ,,在S (连同L )上连续,且有一阶连续偏导数,则dxdy y P x Q dzdx x R z P dydz z Q y R S ⎪⎪⎭⎫ ⎝⎛∂∂-∂∂+⎪⎭⎫⎝⎛∂∂-∂∂+⎪⎪⎭⎫ ⎝⎛∂∂-∂∂⎰⎰=⎰++L Rdz Qdy Pdx (2)其中S 的侧与L 的方向按右手法则确定.证明 先证dxdy y P dzdx z P S∂∂-∂∂⎰⎰=⎰LPdx, (3)其中曲面S 由方程()y x z z ,=确定,它的正侧法线方向数为()1,,---y x z z ,方向余弦为()γβαcos ,cos ,cos ,所以γαcos cos -=∂∂x z ,γβcos cos -=∂∂y z ,若S 在平面上投影区域为xyD ,L 在平面上的投影曲线为Γ.现由第二型曲线积分的定义及格林公式有()⎰L dx z y x P ,,=()()⎰Γdx y x z y x P ,,,=()()⎰⎰∂∂-xy D dxdy y x z y x P y,,,.因为()()y x z y x P y ,,,∂∂=y z z P y P ∂∂∂∂+∂∂,所以()()⎰⎰∂∂-xy D dxdy y x z y x P y ,,,=dxdy y z z P y P S ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂-.由于γβcos cos -=∂∂yz ,从而 dxdy y z z P y P S ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂∂∂+∂∂-=dxdy z P y P S ⎰⎰⎪⎪⎭⎫⎝⎛∂∂-∂∂-γβcos cos=γβγcos cos cos dxdy z Py P S ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂- =dS z Py P S ⎰⎰⎪⎪⎭⎫ ⎝⎛∂∂-∂∂-βγcos cos =dxdy y Pdzdx z P S∂∂-∂∂⎰⎰.综合上述结果,便得所要证明的(3)式.同样对于曲面S 表示为()z y x x ,=和()x z y y ,=时,可证得dydz z Qdxdy x Q S∂∂-∂∂⎰⎰=⎰LQdy, (4)dzdx x R dydz y R S∂∂-∂∂⎰⎰=⎰LRdz. (5)将(3),(4),(5)三式相加即得(2)式.如果曲面S 不能以()y x z z ,=的形式给出,则可用一些光滑曲线把S 分割为若于小块,使每一小块能用这种形式来表示.因而这时(2)式也能成立. 公式(2)称为斯托克斯公式,也可写成如下形式:⎰⎰∂∂∂∂∂∂SR Q P z y x dxdydzdx dydz =⎰++L Rdz Qdy Pdx .例2 计算()()()⎰-+-++Ldzx y dy z x dx z y 2,其中L 为平面1=++z y x 与各坐标面的交线,取逆时针方向为正向.解 应用斯托克斯公式()()()⎰-+-++Ldzx y dy z x dx z y 2=()()()dxdydzdx dydz S211111-++++⎰⎰=dxdydzdx dydz S122-+⎰⎰=232111=-+.单连通区域:如果区域V 内任一封闭曲线皆可以不经过V 以外的点收缩于属于V 的一点,则称V 为单连通区域.非单连通区域称为复连通区域.定理 22.5 设Ω⊂3R 为空间单连通区域.若函数在上连续,且有一阶连续偏导数,则以下四个条件是等价的:(ⅰ)对于Ω内任一按段光滑的封闭曲线L ,有⎰++LRdzQdy Pdx =0.(ⅱ)对于Ω内任一按段光滑的曲线L ,曲线积分⎰++LRdzQdy Pdx 与路线无关.只与L 的起点及终点有关。

相关文档
最新文档