分式约分及化简

合集下载

分式的处理技巧

分式的处理技巧

分式的处理技巧分式是数学中常见的一种形式,它由分子和分母组成,分子表示分数的一部分,而分母表示整体的一部分。

处理分式可以通过化简、通分、简化等方法来实现。

1. 化简分式化简分式是将分式中的分子和分母进行约分,使得分子和分母的数字尽可能小。

化简分式的关键在于找到可以同时整除分子和分母的最大公因数。

例如,对于分式4/8,可以化简为1/2,因为分子和分母都可以被4整除。

2. 通分分式当两个分式的分母不相同时,需要进行通分操作。

通分的目的是将两个分式的分母变成相同的数字,从而方便比较大小或者进行运算。

通分分式的关键在于找到两个分母的最小公倍数,并将分子和分母都乘以相应的倍数,使得分母相同。

例如,对于分式1/2和2/3,可以通过通分操作将它们变为3/6和4/6,从而方便进行比较。

3. 简化分式简化分式是将分式中的分子和分母进行约简,使得它们没有公因数。

简化分式的关键在于找到分子和分母的最大公因数,并将其约去。

例如,对于分式12/20,可以将其简化为3/5,因为12和20的最大公因数是4,将分子和分母都除以4即可。

4. 相加、相减分式当需要对两个分式进行相加或相减时,需要先进行通分操作,将分母变成相同的数字,然后将分子相加或相减,并保持分母不变。

例如,对于分式1/2和3/4,可以通分为2/4和3/4,然后将分子相加得到5/4。

5. 相乘、相除分式当需要对两个分式进行相乘或相除时,可以直接将分子相乘或相除,分母相乘或相除。

例如,对于分式1/2和3/4,可以相乘得到3/8,相除得到4/6。

6. 分式的倒数一个分式的倒数是将该分式的分子与分母互换位置得到的结果。

例如,分式3/4的倒数是4/3。

7. 分式的平方、开方对于一个分式进行平方或开方时,需要将其分子和分母分别进行平方或开方。

例如,对于分式2/3,其平方是4/9,开方是√2/√3。

8. 分式的整数部分和小数部分对于一个分式,可以通过做除法运算得到它的整数部分和小数部分。

分式化简技巧使用分式化简技巧解决问题

分式化简技巧使用分式化简技巧解决问题

分式化简技巧使用分式化简技巧解决问题在数学中,分式是一种表达形式,由分子和分母组成,中间有一个分割线。

在解决数学问题时,我们经常会遇到需要化简分式的情况。

本文将介绍一些常用的分式化简技巧,以帮助读者更好地解决问题。

一、约分法约分法是最基本的分式化简技巧之一。

当分子和分母有公因子时,可以约去它们的公因子,从而化简分式。

下面以一个例子来说明这个技巧。

例子:将分式$\frac{12}{18}$化简。

解析:12和18都可以被2整除,因此它们的公因子是2。

我们可以将分子和分母都除以2,得到$\frac{6}{9}$。

接着,6和9都可以被3整除,所以它们的公因子是3。

将分子和分母都除以3,最终得到化简后的分式$\frac{2}{3}$。

二、分子因式分解法当分子可以因式分解时,我们可以将分子分解后进行化简。

下面以一个例子来展示这个技巧。

例子:将分式$\frac{x^2-4}{x^2-2x}$化简。

解析:首先,我们可以因式分解分子的二次多项式$x^2-4$,得到$(x-2)(x+2)$。

对于分母$x^2-2x$,我们可以提取公因子$x$,得到$x(x-2)$。

因此,将分子分母带入分式,得到$\frac{(x-2)(x+2)}{x(x-2)}$。

可以看出,分子和分母都含有因式$(x-2)$,我们可以约去这个因式,最终化简得到$\frac{x+2}{x}$。

三、通分法通分法是化简带有分子和分母的分式的常用技巧。

这种情况通常发生在两个或多个分式相加或相减的时候。

下面以一个例子来说明通分法的使用。

例子:将分式$\frac{1}{x}+\frac{x}{1}$化简。

解析:首先,将两个分式通分,得到$\frac{1}{x}+\frac{x}{1}=\frac{1}{x}+\frac{x^2}{x}$。

接下来,我们需要将分子化为相同的形式。

因此,将分子$x^2$化为$\frac{x^2}{x}$。

最后,我们可以将这两个分式合并,并进行化简,得到$\frac{1+x^2}{x}$。

分式运算的八种技巧

分式运算的八种技巧

分式运算的八种技巧分式运算是数学中的一项基础知识,通过巧妙地运用一些技巧,可以简化分式的计算过程,提高计算的效率。

下面将介绍分式运算的八种技巧。

一、分式的通分当两个或多个分式进行加减运算时,需要先进行通分。

通分的目的是使分母相同,从而方便进行分式的加减运算。

二、分式的化简对于分子和分母同时包含因式的分式,可以通过因式分解进行化简。

化简后的分式通常更简洁、易于计算。

三、分式的约分对于分子和分母有公因式的分式,可以通过约分将其化简为最简形式。

约分可以简化计算过程,并且可以减小分子和分母的数字的大小,便于观察和把握。

四、分式的乘法和除法分式的乘法和除法相对简单,只需要将分子与分子相乘,分母与分母相乘即可。

当进行分数的除法运算时,可以将除法转化为乘法,将除法运算转化为分数的倒数,再进行乘法运算。

五、分式的加法和减法分式的加法和减法需要进行通分。

通分后,先对分子进行加减运算,再保持分母不变。

最后结果的分子分母可以进一步进行约分,化简为最简分数形式。

六、分式的分数化整数当分子大于分母时,可以进行分数化整数的运算。

将分子除以分母,得到一个整数,再将余数定为新的分子,保持分母不变,即可将分数化为带分数的形式。

七、小数转分数将小数转化为分数可以更方便地进行运算和比较。

通过将小数的小数位数与整数的数量级相匹配,将小数乘以适当的十的幂,然后化成最简分数即可。

八、分式的比较大小对两个分式进行比较大小的时候,可以化为相同分母的分数,然后比较分子的大小。

若分子相同,再比较分母的大小。

通过掌握这些分式运算的技巧,可以更加熟练地进行分式的计算,提高计算的准确性和效率。

同时,可以将复杂的分式化简为简单形式,便于理解和运算。

初中数学分式约分与化简综合练习题(附答案)

初中数学分式约分与化简综合练习题(附答案)

初中数学分式约分与化简综合练习题一、单选题1.在21115132πx y a x m +++,,,,中分式的个数有( )A.2个B.3个C.4个D.5个2.分式121x +有意义,则x 的取值范围是( ) A.12x >-B.12x >C.12x ≠-D.12x ≠3.下列运算正确的是( ) A.5362x x x ⋅=B.224(2)4x x -=-C.326()x x =D.55x x x ÷=4.某种细菌的直径是0.00000078米,将数据0.00000078用科学记数法表示为( ) A.77.810-⨯ B.87.810-⨯ C.70.7810-⨯ D.87810-⨯5.下列各分式中,最简分式是( ) A.2()5()x y x y -+ B.22m n m n -+C.2222a b a b ab -+D.22222x y x xy y --+ 6.下列算式能用平方差公式计算的是( ) A.()()22a b b a +-B.111122x x ⎛⎫⎛⎫+-- ⎪⎪⎝⎭⎝⎭C.()()33x y x y --+D.()()m n m n ---+7.下列因式分解正确的是( )A.()222 x y x y -=- B.()2211a a a ++=+ C.()1xy x x y -=-D.()22x y x y +=+8.如果把分式3xyx y+中的x 与y 都扩大2倍,那么这个分式的值( ) A.不变B.扩大2倍C.扩大4倍D.扩大6倍9.下列等式从左到右的变形一定正确的是( )A. 11b b a a +=+B. b bm a am =C. 2ab ba a= D. 22b b a a =10.分式22x-可变形为( ) A.22x+ B.22x-+ C.22x - D.22x -- 11.已知A 、C 两地相距40千米,B C ,两地相距50千米,甲、乙两车分别从A B ,两地同时出发到C 地.若乙车每小时比甲车多行驶12千米,则两车同时到达C 地,设乙车的速度为x 千米/小时,依题意列方程正确的是( ) A.405012x x =- B.405012x x=- C.405012x x =+ D.405012x x=+12.如图①,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >,把余下的部分剪拼成一个矩形(如图②),通过计算两个图形的面积,验证了一个等式,则这个等式是( )A.22(2)()2a b a b a ab b +-=+-B.222()2a b a ab b +=++C.222()2a b a ab b -=-+D.22()()a b a b a b -=+-二、解答题13.先化简,再求值222444142x x x x x x -++⎛⎫-÷- ⎪-+⎝⎭其中22150x x +-=. 14.已知关于x 的方程233x mx x -=--的解是正数,求m 的取值范围. 15.某县为了落实中央的“强基惠民工程”,计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙队先合做15天,那么余下的工程由甲队单独完成还需5天 1.这项工程的规定时间是多少天?2.已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙队合做来完成.则该工程施工费用是多少? 16.我们已经学习过“乘方”和“开方”运算,下面给同学们介绍一种新的运算,即对数运算.定义:如果()0,1,0b a N a a N =>≠>,则b 叫做以a 为底N 的对数,记作log a N b =.例如:因为35125=,所以5log 1253=;因为211121=,所以11log 1212=. 1.填空:6log 6=__________,3log 81=__________. 2.如果()2log 23m -=,求m 的值.3.对于“对数”运算,小明同学认为有“()log log ?log 0,1,0,0a a a MN M N a a M N =>≠>>”,他的说法正确吗?如果正确,请给出证明过程;如果不正确,请说明理由,并加以改正. 三、计算题17.计算(1)()()()2323·5ab a b ab -÷-(2)2301(2)|3|(π 3.14)3-⎛⎫-+-+--- ⎪⎝⎭18.用乘法公式计算: (1)()()33x y x y +-++ (2)2199199201-⨯19.因式分解(1)3221218a a a -+- (2)22()94()a x y b y x -+-四、填空题20.计算:2233--+=_________.21.化简:216312m m -=-_______.22.二次三项式29x kx -+是一个完全平方式,则k 的值是______. 23.分解因式:222363x x y xy -+=__________. 24.计算:若113x y -=,求4353x xy yy xy x--+-的值是_____. 25.若关于x 的分式方程2233x m x x -=--.无解,则m 的值为__________. 26.解分式方程 (1)271326x x x +=++ (2)11222x x x-=--- 参考答案1.答案:A解析:由分式的意义知分母中含有字母的式子,所以11a x m+,是分式,故有2个.故选A2.答案:C解析:根据分式有意义的条件:分母不为零.210x +≠得到12x ≠-3.答案:C解析:选项A 是同底数幂的乘法,底数不变,指数相加,结果应是6x ; 选项B 是积的乘方,各因式乘方的积,结果应是44x ; 选项C 是幂的乘方,底数不变,指数相乘;选项D 是同底数幂的除法,底数不变,指数相减,结果应是4x . 故选C.4.答案:A 解析:5.答案:A 解析:A.2()5()x y x y -+的分子、分母都不能再分解,且不能约分,是最简分式,故本选项正确;B.22m n m n m n-=-+故本选项错误;C.2222a b a b a b ab ab--=+,故本选项错误; D.22222x y x y x xy y x y-+=-+-,故本选项错误. 故选A 6.答案:D解析:111122x x ⎛⎫⎛⎫+-- ⎪⎪⎝⎭⎝⎭中不存在相同的相项,故A 不能用平方差公式;2111111*********x x x x x ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫+--=+-+=-+ ⎪⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦,B 不能用平方差公式;()()()()()233333x y x y x y x y x y --+=---=--⎡⎤⎣⎦,C 不能用平方差公式;()()()()()()m n m n m n m n m n m n -+--=---+=-+⎡⎤⎡⎤⎣⎦⎣⎦,D 能用平方差公式.7.答案:C解析:A.()()22 x y x y x y -=+-,故此选项错误; B.21a a ++无法因式分解,故此选项错误; C.()1?xy x x y -=-,故此选项正确; D.2x y +无法因式分解,故此选项错误. 故选C. 8.答案:B 解析:如果把3xyx y+的x 与y 值都扩大2倍,则有:3224323222()x y xy xy x y x y x y ⨯⨯⨯⨯==+++ 所以:这个分式的值扩大2倍. 故选B.9.答案:C解析:分式的基本性质是分式的分子、分母同乘(或除以)一个不为零的整式,分式的值不变.选项A,分子、分母同加1,不符合分式的基本性质,故A 错;选项B,分子、分母同乘m ,没有限制m 不等于零,故B 错;选项D,分子乘b ,分母乘a ,故D 错;选项C,分式2aba中暗含0a ≠这个条件,所以分子、分母同时除以a ,分式值不变,故选C.10.答案:D解析:解法一:直接利用分式的基本性质求解:()22222222x x x x ===---+---; 解法二:采取特殊值法间接求解:不妨令4x =,则原式1=-,四个选项的值分别是11,,1,133--.故选择D. 11.答案:B解析:甲车和乙车到达C 地所用的时间相等,路程已知,乙车的速度为x 千米/小时,甲车的速度为(12)x -千米/小时,所以405012x x=-. 12.答案:D解析:由图①知阴影的面积为22a b -,由图②知阴影的面积为()()a b a b +-,所以验证的等式是22()()a b a b a b -=+-. 故选D 13.答案:415解析:原式22(2)(2)4(2)2x x x x x x x --++=⨯--+ 242x x x x ++=-+ 22(2)44(2)(2)(2)x x x x x x x x x ++=-=+++ 原方程为22150x x +-=,移项、提公因式得(2)15x x +=,将(2)15x x +=代入代数式得,原式415= 14.答案:6m <且3m ≠解析:方程两边同时乘以3x -得23x x m --=(),解得6x m =-,因为要使分式方程有正数解,所以要满足60m ->即6m <,又因为要使分式方程有意义,要满足63x m =-≠,则3m ≠,所以m 的取值范围是6m <且3m ≠.故本题正确答案为6m <且3m ≠15.答案:1.设这项工程的规定时间是x 天, 根据题意得: 1151511.5x x x ⎛⎫+⨯+= ⎪⎝⎭解得:30x =.经检验30x =是原分式方程的解. 答:这项工程的规定时间是30天.2.该工程由甲、乙队合做完成,所需时间为: 1111830 1.530⎛⎫÷+= ⎪⨯⎝⎭(天),则该工程施工费用是:()1865003500180000⨯+=(元). 答:该工程的费用为180000元.解析:本题考查了分式方程的应用,分析题意,首先将工作量看作“单位1”;设这项工程的规定时间是x 天,则甲乙两队工作效率分别为15,正,根据甲、乙队先合做15天,余下的工程由甲队单独需要5天完成即可得出方程,那么(1)便不难解答了;对于(2),先计算甲、乙两队合作需要的时间,然后再用时间乘以两队每天的费用65003500+()元即可得到结论了 16.答案:1.1; 4;2.10;3.不正确,()0,1,0,0a a a log MN log M log N a a M N =+>≠>> 解析:1.166= 6log 61∴=3log 814∴=故答案为:1; 4; 2.2log (2)3m -=, 322m ∴=-,解得:10m = 3.不正确,理由如下:设,x y a M a N ==,则log ,log a a M x N y ==(0,1,,a a M N >≠,均为正数) x y x y a a a +⋅=. x y a MN +∴=,log a MN x y ∴=+,即log log log a a a MN M N =+17.答案:(1)()()2323(5)ab a b ab ⋅-÷-2493(5)a b a b ab =-⋅÷- 117(5)a b ab =-÷- 10615a b = (2)原式9(8)313=+-+-= 解析:18.答案:(1)2229x y xy ++- (2)398- 解析:19.答案:(1)()223a a --(2)()()()3232x y a b a b -+- 解析: 20.答案:79解析: 21.答案:43m +解析: 22.答案:6± 解析:22293x kx x kx -+=-+,23kx x ∴-=±⨯⨯,解得6k =±故答案为:6±23.答案:22(3)x x xy y -+ 解析: 24.答案:12-解析:25.答案:解析:26.答案:(1)16x =(2)2x = 解析:。

分式的加减运算与化简

分式的加减运算与化简

分式的加减运算与化简分式是数学中常见的表达形式之一,它涉及到加减运算和化简。

本文将详细介绍分式的加减运算规则以及如何化简分式。

1. 分式的加减运算规则分式的加减运算遵循以下规则:- 如果两个分式的分母相同,可以直接对分子进行加减操作,并保持分母不变。

例如:$\frac{a}{b} \pm \frac{c}{b} = \frac{a \pm c}{b}$。

- 如果两个分式的分母不同,需要通过通分的方法,即找到两个分母的公倍数,并将分子和分母同时乘以相应的倍数,使得两个分母相同。

然后再按照前述规则进行加减操作。

例如:$\frac{a}{b} \pm\frac{c}{d} = \frac{ad \pm bc}{bd}$。

2. 分式的化简化简分式是指将一个分式表示为更简洁的形式,可以通过约分来实现。

下面是一些常见的化简方法:- 将分子和分母的公因数约掉。

例如:$\frac{4}{6}$可以化简为$\frac{2}{3}$,因为4和6都能够被2整除。

- 如果分子和分母有相同的因式,可以约分为1。

例如:$\frac{12}{12}$可以化简为1。

除了约分以外,我们还可以对分式进行合并运算,将多个分式化简为一个分式。

合并运算的主要方法有:- 将多个分式相加减后再约分。

例如:$\frac{2}{3} + \frac{1}{3} = \frac{3}{3} = 1$。

- 将多个分式进行乘法运算,并对分子和分母分别约分。

例如:$\frac{2}{3} \cdot \frac{3}{4} = \frac{2 \cdot 3}{3 \cdot 4} = \frac{6}{12} = \frac{1}{2}$。

3. 分式的加减运算与化简的综合应用分式的加减运算与化简常常在实际问题中应用。

例如,我们考虑以下问题:已知小明每天早上花1小时做作业,中午花$\frac{3}{4}$小时参加英语课程,晚上又花$\frac{1}{2}$小时上数学辅导课。

初中数学知识归纳分式的化简和运算

初中数学知识归纳分式的化简和运算

初中数学知识归纳分式的化简和运算在初中数学中,分式的化简和运算是一个重要的知识点。

我们将在本文中对这一内容进行归纳和总结。

一、分式的化简要化简一个分式,我们需要将其化简为最简形式。

在化简分式时,我们可以使用以下方法:1.因式分解法如果分子和分母都是多项式,我们可以尝试使用因式分解法来化简分式。

首先,我们需要对分子和分母进行因式分解,然后消去分子和分母的公因式,并将得到的结果写成最简形式。

例如,化简分式$\frac{6x^2}{12x}$,我们可以将分子和分母都因式分解为$2 \cdot 3 \cdot x \cdot x$和$2 \cdot 2 \cdot 3 \cdot x$,然后消去公因式$2 \cdot 3 \cdot x$,得到最简形式$\frac{x}{2}$。

2.约分法如果分式的分子和分母存在公因式,我们可以使用约分法来化简。

具体做法是将分子和分母的公因式约去,保留最简形式。

例如,化简分式$\frac{8y}{12}$,我们可以发现分子和分母都可以被2整除,即存在公因式2。

约去公因式2后,得到最简形式$\frac{4y}{6}$。

再次约分,得到$\frac{2y}{3}$。

二、分式的运算在进行分式运算时,我们主要涉及到加法、减法、乘法和除法。

下面我们将分别介绍这些运算的方法。

1.分式的加法和减法要进行分式的加法和减法,我们需要先找到这些分式的公共分母,然后将分子进行相应的加法或减法操作,并保持公共分母不变。

例如,我们要计算$\frac{1}{2}+\frac{2}{3}$,首先找到这两个分式的公共分母,由于2和3的最小公倍数为6,因此通分后,我们得到$\frac{3}{6}+\frac{4}{6}=\frac{7}{6}$。

最后,我们可以将$\frac{7}{6}$化简为最简形式,得到$\frac{7}{6}$。

2.分式的乘法对于分式的乘法,我们只需要将两个分式的分子相乘,分母相乘即可。

谈谈分式化简的几个小技巧

数学篇初中数学中“分式的化简”是非常重要的知识点,其运算的综合性和技巧性较强.如果化简运算方法选取不当,不仅会使解题过程变得复杂,而且错误率高.下面介绍三种分式化简的常用技巧:通分约分、因式分解、提取公因式.同学们需注意的是,有时候要综合运用这三种技巧,才能实现快速解题的目标.首先,巧借“通分约分”化简分式.此技巧适合包含多个简单分式的题型,分式之间往往通过“+”“-”这两个符号连接.此时,可以尝试“通分”同化分母,再根据具体情况结合部分相同项进行“约分”,从而达到简化分式的目的.其次,妙用“因式分解”化简分式.有的时候,分式化简的式子往往比较复杂,直接求解比较困难.利用“因式分解”可以寻找部分共同项,然后利用乘除法抵消部分或全部共同项,以达到化简分式的目的.在抵消“共同项”时,一定要注意整个式子的“+”“-”符号,以防出错.此方法适合局部可以因式分解的复杂分式,通过局部的因式分解,可以简化分式形式.第三,灵活“提取公因式”化简分式.在化简分式的过程中,首先看多项式的各项是否有公因式,若有公因式,则把它提取出来.及时灵活地提取公因式,可以大大简化计算过程.需要注意的是,提取的公因式应尽量单独放在最前面,而且保持独立性,以便为后续的“约分”或“消项”做准备.例1化简(1x +1-1x -1)÷2x 2-1.分析:先计算(1x +1-1x -1),采用“通分”处理可得-2(x +1)(x -1),再结合后面的2x 2-1计算最终结果.解:(1x +1-1x -1)÷2x 2-1=-2(x +1)(x -1)÷2x 2-1=-2x 2-1÷2x 2-1=-1.评注:该题比较简单,采用“通分”可以整合(1x +1-1x -1),再利用“约分”去掉共同项1x 2-1即可得出最后结果.变式:化简(x +1x -x x -1)÷1(x -1)2.分析:该题同例1,利用“通分”处理(x +1x -x x -1),得到-1x (x -1),结合后面的1(x -1)2,利用“约分”抵消1(x -1)项,最后算出结果即可.解:(x +1x -x x -1)÷1(x -1)2=[(x +1)(x -1)-x 2x (x -1)]÷1(x -1)2=-1x (x -1)÷1(x -1)2=-1x (x -1)∙(x -1)2=1-x x .评注:先计算括号里的内容,利用“通分”处理(x +1x -x x -1)得到-1x (x -1),整个式子就变得简单了.“通分约分”可以简化部分分式.例2化简(xy -x 2)÷x -yxy.分析:解答这道题,可以先把题目中(xy -x 2)因式分解为x (y -x ),这样,与后面的x -yxy 有共同项(x -y ),再通过“约分”抵消,得到结果.解:(xy -x 2)÷x -y xy =x (y -x )÷x -yxy =x (y -x )×xyx -y=-x 2y .谈谈分式化简的几个小技巧新疆阿勒泰地区福海县初级中学李红艳解法荟萃32数学篇评注:通过“因式分解”(xy -x 2),找到共同项(x -y ),再利用乘除法全部或部分“约去”共同项,从而简化分式,得出结果.变式:化简2x -64-4x +x2÷(x +3)∙x 2+x -63-x .分析:可以先“因式分解”寻找共同项,尝试消项.2x -64-4x +x2因式分解为2(x -3)(x -2)2,x 2+x -63-x因式分解为(x +3)(x -2)3-x ,最后综合求解即可.解:2x -64-4x +x2÷(x +3)∙x 2+x -63-x =2(x -3)(x -2)2÷(x +3)∙(x +3)(x -2)3-x =2(x -3)(x -2)2∙1x +3∙(x +3)(x -2)3-x =-2x -2.评注:此题式子比较复杂,但是利用“因式分解”可以找出很多共同项,综合所有项后,发现很多可以抵消的项,从而大大简化了原式.但在抵消“共同项”或“近似共同项”时,一定要注意“+”“-”号,避免出错.例3化简(y +1y 2-4y +3-y -2y 2-6y +9)÷y -5y -1.分析:题目式子比较复杂,先对扩号内部式子的分母进行“因式分解”,得到y +1(y -1)(y -3)-y -2(y -3)2,此时观察发现可以“提取公因式”1y -3,得到1y -3(y +1y -1-y -2y -3).然后再运用“通分”处理(y +1y -1-y -2y -3)得y -5(y -1)(y -3),最后综合计算1y -3∙y -5(y -1)(y -3)÷y -5y -1,得出结果1(y -3)2.=[y +1(y -1)(y -3)-y -2(y -3)2]÷y -5y -1=1y -3(y +1y -1-y -2y -3)∙y -1y -5=1y -3∙(y +1)(y -3)-(y -2)(y -1)(y -1)(y -3)∙y -1y -5=1y -3∙y -5(y -1)(y -3)∙y -1y -5=1(y -3)2.评注:此题两个分式的分母经过因式分解以后有公因式可提取,分解因式并提取公因式后为1y -3(y +1y -1-y -2y -3),然后再计算最后答案.变式:化简(x -2x 2+2x -x -1x 2+4x +4)÷x -4x +2.分析:对(x -2x 2+2x -x -1x 2+4x +4)分母进行因式分解可得(x -2x (x +2)-x -1(x +2)2),然后提取公因式1x +2可得1x +2∙(x -2x -x -1x +2).再通分(x -2x -x -1x +2)可得x -4x (x +2).最后求1x +2∙x -4x (x +2)÷x -4x +2得1x (x +2).解:(x -2x 2+2x -x -1x 2+4x +4)÷x -4x +2=éëêùûúx -2x (x +2)-x -1(x +2)2÷x -4x +2=1x +2∙(x -2x -x -1x +2)÷x -4x +2=1x +2∙x -4x (x +2)÷x -4x +2=1x +2∙x -4x (x +2)∙x +2x -4=1x (x +2).评注:此题的解题关键是综合“因式分解”与“通分约分”,在处理过程中应及时、灵活提取公因式,从而化简分式.分式化简问题虽然复杂难解,但是有规律可循,有技巧可取.只要同学们仔细观察,善于综合运用“通分约分”“因式分解”“提取解法荟萃。

分式的化简与约分

分式的化简与约分分式是数学中常见的一种表示形式,它可以帮助我们表示两个数之间的比例关系或者一个数相对于另外一个数的部分。

在处理分式问题时,为了方便计算和理解,我们经常需要对分式进行化简和约分。

本文将介绍分式的化简和约分的方法及其应用。

一、分式的化简方法1. 提取公因式法当分子与分母有相同的因式时,可以利用提取公因式的方法进行化简。

具体步骤如下:例如:化简分式 12/36首先,我们观察到12和36都可以被2整除,因此可以提取公因式2:12/36 = (2×6)/(2×18) = 6/18然后,我们可以继续提取公因式6:6/18 = (6÷6)/(18÷6) = 1/3最终,我们得到了化简后的分式1/3。

2. 分子分母同乘或同除法当分子和分母可以同时乘以或除以一个数时,可以利用分子分母同乘或同除的方法进行化简。

具体步骤如下:例如:化简分式 8/12我们可以发现,8和12都可以被2整除,因此可以同时除以2:8/12 = (8÷2)/(12÷2) = 4/6然后,我们可以继续同时除以2:4/6 = (4÷2)/(6÷2) = 2/3最终,我们得到了化简后的分式2/3。

二、分式的约分方法1. 提取最大公因数法当分子和分母有一个公共的因数时,可以利用提取最大公因数的方法进行约分。

具体步骤如下:例如:约分分式 16/24首先,我们观察到16和24都可以被2整除,因此可以提取公因式2:16/24 = (2×8)/(2×12)然后,我们继续观察到8和12也可以被2整除,因此可以再次提取公因式2:(2×8)/(2×12) = (2×2×4)/(2×2×6)接着,我们可以继续提取公因式2:(2×2×4)/(2×2×6) = (2×2×2×2)/(2×2×3×1)最后,我们得到了约分后的分式1/3。

分式化简的方法和步骤

分式化简的方法和步骤
首先,我们来看一般的分式化简步骤:
1. 因式分解,如果分子和分母都是多项式,我们可以尝试对其
进行因式分解,将分子和分母分别写成不可约的因式相乘的形式。

2. 约分,将分子和分母中的公因式约去,使分式的值保持不变。

3. 化简,对于含有根式、指数、对数等的分式,可以尝试化简
这些部分,使分式更加简洁。

其次,我们来看具体的化简方法:
1. 因式分解,对于多项式的因式分解,可以运用公式、分组、
换元等方法,将多项式分解为不可约的因式相乘的形式。

例如,对
于分式 (x^2-1)/(x^2-4),我们可以将分子和分母都进行因式分解,然后约分得到最简分式。

2. 约分,约分是化简分式的重要步骤,通过找到分子和分母的
公因式,将其约去,使分式的值保持不变。

例如,对于分式
6x^2/9x,我们可以约去分子和分母中的公因式3和x,得到最简分式2x/3。

3. 化简,对于含有根式、指数、对数等的分式,可以尝试化简这些部分,使分式更加简洁。

例如,对于分式(2√3+√6)/(√2),我们可以利用根式的性质进行化简,将根式部分合并或者有理化等操作,得到最简分式。

最后,需要注意的是,在化简分式的过程中,我们需要遵循数学运算的基本规则,如乘法法则、除法法则、加法法则、减法法则等,确保化简的过程和结果是准确的。

总的来说,分式化简是数学中的基本操作,通过因式分解、约分和化简等步骤,可以将复杂的分式表达式简化为最简形式,使其更易于理解和计算。

希望以上介绍能够帮助你更好地理解分式化简的方法和步骤。

分式的约分及最简分式

分式的约分及最简分式①约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分 ②分式约分的依据:分式的基本性质.③分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.④约分的结果:最简分式(分子与分母没有公因式的分式,叫做最简分式) 约分主要分为两类:第一类:分子分母是单项式的,主要分数字,同字母进行约分。

第二类:分子分母是多项式的,把分子分母能因式分解的都要进行因式分解,再去找共同的因式约去。

例1:下列式子(1)y x y x y x -=--122;(2)ca b a a c a b --=--;(3)1-=--b a a b ; (4)yx y x y x y x +-=--+-中正确的是( ) A 、1个 B 、2 个 C 、 3 个 D 、 4 个例2:下列约分正确的是( )A 、326x x x =;B 、0=++y x y x ;C 、x xy x y x 12=++;D 、214222=y x xy 例3:下列式子正确的是( ) A 022=++y x y x B.1-=-+-y a y a C.xz y x z x y -+=+- D.0=+--=+--ad c d c a d c a d c 例4:下列运算正确的是( )A 、a a a b a b =--+B 、2412x x ÷=C 、22a a b b =D 、1112m m m-= 例5:下列式子正确的是( )A .22a b a b =B .0=++b a b aC .1-=-+-b a b aD .ba b a b a b a +-=+-232.03.01.0例6:化简2293mm m --的结果是( ) A 、3+m m B 、3+-m m C 、3-m m D 、m m -3 例7:约分: =-2264xyy x ;932--x x = ; ()xyxy 132=; ()y x y x y x 536.03151+=-+。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分式的约分及化简测试姓名:班级:一.选择题(共10小题)1.分式约分等于()A.1﹣x B.C.D.2.从分数组中删去两个分数,使剩下的数之和为1,则删去两个数是()A.B.C.D.3.对分式,,通分时,最简公分母是()A.24x2y3B.12x2y2C.24xy D.12xy24.下列分式中,属于最简分式的是()A.B.C.D.5.下列分式是最简分式的是()A.B.C.D.6.把分式,,进行通分,它们的最简公分母是()A.x﹣y B.x+y C.x2﹣y2D.(x+y)(x﹣y)(x2﹣y2)7.有旅客m人,如果每n个人住一间客房,还有一个人无房间住,则客房的间数为()A.B. C.﹣1 D.+18.甲、乙两人分别从相距8千米的两地同时出发,若同向而行,则t1小时后,快者追上慢者,若相向而行,则t2小时后,两人相遇,那么快者速度是慢者速度的()A.B.C.D.9.把,,通分后,各分式的分子之和为()A.2a2+7a+11 B.a2+8a+10 C.2a2+4a+4 D.4a2+11a+1310.化简的结果是()A.B.C. D.二.填空题(共6小题)11.①约分:②通分:与的最简公分母是.12.化简=.13.将,通分可得.14.分式、、、中,最简分式的个数是个.15.写出一个最简分式.16.计算的结果是.三.解答题(共2小题)17.=.18.约分,通分:(1);(2);(3)•.2016年09月04日老师2的初中数学组卷参考答案与试题解析一.选择题(共10小题)1.(2016春•君山区校级期中)分式约分等于()A.1﹣x B.C.D.【分析】先将分式的分子与分母因式分解,再约去它们的公因式,即可求解.【解答】解:==.故选:D.【点评】本题考查了分式约分的定义及方法.约去分式的分子与分母的公因式,不改变分式的值,这样的分式变形叫做分式的约分.约分时,确定公因式要分为系数、字母、字母的指数来分别确定:①分式约分的结果可能是最简分式,也可能是整式.②当分子与分母含有负号时,一般把负号提到分式本身的前面.③约分时,分子与分母都必须是乘积式,如果是多项式的,必须先分解因式.2.从分数组中删去两个分数,使剩下的数之和为1,则删去两个数是()A.B.C.D.【分析】先求出这几个分数的和,看比1大多少,再看大的数是哪两个分数的和,这两个分数即为删去的数.【解答】解:由,而,故删去后,可使剩下的数之和为1.故选C.【点评】本题考查了分数的通分和有理数的加法,是基础知识要熟练掌握.3.(2015秋•德州校级期末)对分式,,通分时,最简公分母是()A.24x2y3B.12x2y2C.24xy D.12xy2【分析】由于几个分式的分母分别是2x,3y2,4xy,首先确定2、3、4的最小公倍数,然后确定各个字母的最高指数,由此即可确定它们的最简公分母.【解答】解:∵分式,,的分母是2x,3y2,4xy,∴它们的最简公分母为12xy2.故选D.【点评】此题主要考查了几个分式的最简公分母的确定,确定公分母的系数找最小公倍数,确定公分母的字母找最高指数.4.(2016春•江都区期末)下列分式中,属于最简分式的是()A.B.C.D.【分析】最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.【解答】解:A、=,故A选项错误.B、是最简分式,不能化简,故B选项,C、=,能进行化简,故C选项错误.D、=﹣1,故D选项错误.故选B.【点评】本题主要考查了最简分式的概念,解题时要注意对分式进行化简.5.(2016春•吴兴区期末)下列分式是最简分式的是()A.B.C.D.【分析】要判断分式是否是最简分式,只需判断它能否化简,不能化简的即为最简分式.【解答】解:A、=﹣1;B、=;C、分子、分母中不含公因式,不能化简,故为最简分式;D、=.故选:C.【点评】本题考查最简分式,是简单的基础题.6.(2016春•商河县期末)把分式,,进行通分,它们的最简公分母是()A.x﹣y B.x+y C.x2﹣y2D.(x+y)(x﹣y)(x2﹣y2)【分析】确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母.【解答】解:分式,,的分母分别是(x﹣y)、(x+y)、(x+y)(x﹣y).则最简公分母是(x+y)(x﹣y)=x2﹣y2.故选:C.【点评】本题考查了最简公分母的定义及确定方法,通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.7.(2016春•马鞍山期末)有旅客m人,如果每n个人住一间客房,还有一个人无房间住,则客房的间数为()A.B. C.﹣1 D.+1【分析】房间数=住进房间人数÷每个房间能住的人数;一人无房住,那么住进房间的人数为:m﹣1.【解答】解:住进房间的人数为:m﹣1,依题意得,客房的间数为,故选:A.【点评】此题考查的是列代数式的应用,解决问题的关键是读懂题意,找到关键描述语,找到所求的量的等量关系.8.(2016春•重庆校级期中)甲、乙两人分别从相距8千米的两地同时出发,若同向而行,则t1小时后,快者追上慢者,若相向而行,则t2小时后,两人相遇,那么快者速度是慢者速度的()A.B.C. D.【分析】由题意可知:两人同向过程中,在相同的时间中甲比乙多了距离8千米,速度差为;在两人相向而行的过程中,速度为两人速度之和为,由此求得快者的速度为(+),慢者的速度为(﹣),进一步求得答案即可.【解答】解:快者的速度为(+)=,慢者的速度为(﹣)=,则快者速度是慢者速度的÷=.故选:C.【点评】此题考查列代数式,掌握行程问题中的基本数量关系是解决问题的关键.9.把,,通分后,各分式的分子之和为()A.2a2+7a+11 B.a2+8a+10 C.2a2+4a+4 D.4a2+11a+13【分析】先找出三个分式的最简公分母,再根据分式的基本性质进行解答即可.【解答】解:,,,所以把,,通分后,各分式的分子之和为﹣(a+1)2+6(a+2)+3a(a+1)=2a2+7a+11,故选A.【点评】此题考查了通分,用到的知识点是分式的基本性质,关键是找出分式的最简公分母.10.(2016•柳州模拟)化简的结果是()A.B.C. D.【分析】利用完全平方公式及平方差公式化简约分即可.【解答】解:==.故选:A.【点评】本题主要考查了约分,解题的关键是正确的分解因式.二.填空题(共6小题)11.(2013春•东莞市校级期中)①约分:;②通分:与的最简公分母是18a2b2c.【分析】①约去分式的分子与分母的公因式即可;②最简公分母的系数取各分母系数的最小公倍数,最简公分母的字母因式取各分母所有字母的最高次幂的积.【解答】解:①原式==﹣;②与的最简公分母为:18a2b2c.故答案为:18a2b2c.【点评】本题考查了通分和约分的知识,属于基础题,解答本题的关键是掌握通分及约分的定义.12.(2016•白云区一模)化简=.【分析】首先把分子分母分解因式,再约去分子分母的公因式即可.【解答】解:原式==,故答案为:.【点评】此题主要考查了分式的约分,关键是正确把分子分母分解因式,找出公因式.13.(2012春•丰县校级月考)将,通分可得和.【分析】将两式系数取各系数的最小公倍数,相同因式的次数取最高次幂.【解答】解:∵两个分式分母分别为3a,2c未知数系数的最小公倍数为3×2=6,∵a,c的最高次数为1,∴最简公分母为6ac,将,通分可得:和.【点评】解答此题的关键是熟知找公分母的方法:(1)系数取各系数的最小公倍数;(2)凡出现的因式都要取;(3)相同因式的次数取最高次幂.14.(2014春•江阴市校级期中)分式、、、中,最简分式的个数是1个.【分析】最简分式的标准是分子、分母中不含有公因式,不能再约分.【解答】解:=x2.的分子、分母都不能再分解,且不能约分,是最简分式;==;==.综上所述,上述分式中,是最简分式的个数是:1.故答案是:1.【点评】本题考查了最简分式.分式的化简过程,首先要把分子、分母分解因式,观察分子、分母中有无公因式.15.(2014秋•烟台期中)写出一个最简分式.【分析】根据最简分式的定义写出一个最简分式即可,答案不唯一.【解答】解:根据最简分式的定义如:.故答案为:.【点评】此题考查了最简分式,最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.16.(2016•淄博)计算的结果是1﹣2a.【分析】分子是多项式1﹣4a2,将其分解为(1﹣2a)(1+2a),然后再约分即可化简.【解答】解:原式==1﹣2a.【点评】本题考查分式的约分,若分子和分母有多项式,先将其因式分解,然后将相同的因式约去即可.三.解答题(共2小题)17.(2015春•泰兴市校级期中)=.【分析】直接利用完全平方公式分解因式进而化简求出即可.【解答】解:原式==.故答案为:y+1.【点评】此题主要考查了约分,正确因式分解因式是解题关键.18.(2016春•东台市月考)约分,通分:(1);(2);(3)•.【分析】(1)把分子与分母进行约分即可;(2)根据平方差公式和完全平方公式先把分子与分母进行因式分解,然后约分即可;(3)先把分母进行因式分解,然后通分,即可得出答案.【解答】解:(1)=﹣;(2)==;(3)•=•=.【点评】此题考查了约分与通分,用到的知识点是平方差公式和完全平方公式,注意先把分母因式分解,再进行约分和通分.。

相关文档
最新文档