电路元件特性曲线的伏安测量法和示波器观测法实验报告

合集下载

电路元件伏安特性的测量(实验报告答案)

电路元件伏安特性的测量(实验报告答案)

电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f(U)来表示,即用I-U平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。

(a)线性电阻(b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U 作用下,测量出相应的电流I ,然后逐点绘制出伏安特性曲线I =f (U ),根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件1.直流稳压电源 1 台2.直流电压表 1 块3.直流电流表 1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管 1 只7.稳压二极管 1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。

调节直流稳压电源的输出电压U ,从0伏开始缓慢地增加(不得超过10V ),在表1-1中记下相应的电压表和电流表的读数。

2将图1-2中的1kΩ线性电阻R 换成一只12V ,0.1A 的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。

电路元件特性曲线的伏安测量法实验报告

电路元件特性曲线的伏安测量法实验报告

电路元件特性曲线的伏安测量法实验报告
伏安测量法实验报告
本实验旨在运用伏安测量法来观察电路元件的特性曲线。

通过对分立元件进行伏安测量,来分析元件的特性,以便进行电子系统的设计与应用。

实验目的:
1、观察电路元件特性曲线;
2、通过实验,分析电路元件的特性;
3、掌握伏安测量法实验技术;
4、了解电路元件特性测量的步骤和方法。

实验内容:
本实验共完成了电感串联L-C谐振管、PWR电阻负反馈和zener限流三种分立元件的
测量,具体步骤如下:
1、找出测量元件。

根据实验要求,准备所需的电子元件,及相应的测试仪器和电阻、电容;
2、连接电路。

按照试验仪示意图,连接元件及电路,并确保连线正确;
3、电流、电压表读数采集比较。

启动测量仪,根据实验要求,依次调节电压、电流
量观察表上的读数;
4、根据变化规律绘制特性曲线图。

观察表上的读数,据此绘制元件特性的时域变化
曲线;
5、完成特性曲线图的建立。

实验结果及分析:
通过本次实验,测量了三种分立元件的特性曲线,对其进行伏安测量,完成其特性曲
线图的建立,从而了解电路元件特性测量的步骤和方法,并熟悉伏安测量法的实验技术。

结论:。

元件伏安特性测试实验报告

元件伏安特性测试实验报告

元件伏安特性测试实验报告元件伏安特性测试实验报告摘要:本实验旨在通过测试不同元件的伏安特性曲线,分析元件的电流-电压关系。

实验中使用了不同类型的元件,包括二极管、电阻和电容。

通过测试,我们得出了不同元件的伏安特性曲线,并对其特性进行了分析和讨论。

1. 引言元件的伏安特性是描述元件电流和电压之间关系的重要参数。

通过测试元件的伏安特性曲线,可以了解元件的电流传导能力、电压稳定性以及工作范围等信息。

本实验中,我们测试了二极管、电阻和电容的伏安特性,并对其进行了分析和讨论。

2. 实验方法2.1 实验仪器与材料本实验使用的仪器包括数字万用表、直流电源和元件测试台。

材料包括二极管、电阻和电容等。

2.2 实验步骤(1)将二极管连接到元件测试台上,设置直流电源的电压为0V,逐渐增加电压并记录相应的电流值,得到二极管的伏安特性曲线。

(2)将电阻连接到元件测试台上,通过改变直流电源的电压,记录电流值,并绘制电阻的伏安特性曲线。

(3)将电容连接到元件测试台上,通过改变直流电源的电压,记录电流值,并绘制电容的伏安特性曲线。

3. 实验结果与分析3.1 二极管的伏安特性曲线通过实验测试,我们得到了二极管的伏安特性曲线。

在正向偏置情况下,二极管呈现出导通状态,电流随着电压的增加而迅速增加;而在反向偏置情况下,二极管处于截止状态,电流基本为零。

通过分析曲线,我们可以得出二极管的导通电压和反向击穿电压等重要参数。

3.2 电阻的伏安特性曲线电阻的伏安特性曲线是一条直线,表明电阻的电流和电压成正比。

通过实验测试,我们可以得到电阻的电阻值,并验证欧姆定律。

此外,通过观察曲线的斜率,还可以了解电阻的阻值大小。

3.3 电容的伏安特性曲线电容的伏安特性曲线呈现出充电和放电的过程。

在充电过程中,电流逐渐减小,直到趋于稳定;在放电过程中,电流逐渐增加,直到趋于稳定。

通过实验测试,我们可以得到电容的充电时间常数,并分析电容的充放电过程。

4. 结论通过本次实验,我们测试了二极管、电阻和电容的伏安特性曲线,并对其特性进行了分析和讨论。

伏安特性曲线的测量实验报告

伏安特性曲线的测量实验报告

竭诚为您提供优质文档/双击可除伏安特性曲线的测量实验报告篇一:电路元件伏安特性的测量(实验报告答案)实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。

二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。

任何一个二端电阻元件的特性可用该元件上的端电压u与通过该元件的电流I之间的函数关系式I=f(u)来表示,即用I-u平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。

根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。

线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。

该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压u和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。

常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。

在图1-1中,u>0的部分为正向特性,u<0的部分为反向特性。

(a)线性电阻(b)白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压u作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f(u),根据伏安特性曲线便可计算出电阻元件的阻值。

三、实验设备与器件1.直流稳压电源1台2.直流电压表1块3.直流电流表1块4.万用表1块5.白炽灯泡1只6.二极管1只7.稳压二极管1只8.电阻元件2只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。

调节直流稳压电源的输出电压u,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。

2将图1-2中的1kΩ线性电阻R换成一只12V,0.1A的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。

电学元件伏安特性的测量实验报告doc

电学元件伏安特性的测量实验报告doc

电学元件伏安特性的测量实验报告篇一:电路分析实验报告(电阻元件伏安特性的测量) 电力分析实验报告实验一电阻元件伏安特性的测量一、实验目的:(1)学习线性电阻元件和非线性电阻元件伏安特性的测试方式。

(2)学习直流稳压电源、万用表、电压表的利用方式。

二、实验原理及说明(1)元件的伏安特性。

若是把电阻元件的电压取为横坐标,电流取为纵坐标,画出电压与电流的关系曲线,这条曲线称为该电阻元件的伏安特性。

(2)线性电阻元件的伏安特性在u-i平面上是通过坐标原点的直线,与元件电压和电流方向无关,是双向性的元件。

元件的电阻值可由下式肯定:R=u/i=(mu/mi)tgα,期中mu 和mi别离是电压和电流在u-i平面坐标上的比例。

三、实验原件Us是接电源端口,R1=120Ω,R2=51Ω,二极管D3为IN5404,电位器Rw四、实验内容(1)线性电阻元件的正向特性测量。

(2)反向特性测量。

(3)计算阻值,将结果记入表中(4)测试非线性电阻元件D3的伏安特性(5)测试非线性电阻元件的反向特性。

表1-1 线性电阻元件正(反)向特性测量表1-5二极管IN4007正(反)向特性测量五、实验心得(1)每次测量或测量后都要将稳压电源的输出电压跳回到零值(2)接线时必然要考虑正确利用导线篇二:电学元件的伏安特性实验报告v1预习报告【实验目的】l.学习利用大体电学仪器及线路连接方式。

2.掌握测量电学元件伏安特性曲线的大体方式及一种消除线路误差的方式。

3.学习按照仪表品级正确记录有效数字及计算仪表误差。

准确度品级见书66页。

100mA量程,0.5级电流表最大允许误差?xm?100mA?0.5%?0.5mA,应读到小数点后1位,如42.3(mA) 3V量程,0.5级电压表最大允许误差?Vm?3V?0.5%?0.015V,应读到小数点后2位,如2.36(V) 【仪器用具】直流稳压电源,电流表,电压表,滑线变阻器,小白炽灯泡,接线板,电阻,导线等。

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告元件伏安特性的测定实验报告摘要:本实验旨在通过测量电阻、二极管和电容的伏安特性曲线,探究元件的电流与电压之间的关系。

实验结果表明,电阻的伏安特性为线性关系,二极管的伏安特性为非线性关系,而电容的伏安特性则呈现出充放电的特点。

引言:伏安特性是描述电子元件电流与电压之间关系的重要参数。

通过测量元件的伏安特性曲线,可以了解元件的工作状态、性能以及应用范围。

本实验将选取常见的电阻、二极管和电容进行测量,以探究它们的伏安特性。

实验方法:1. 实验仪器:万用表、电源、电阻箱、示波器等。

2. 实验步骤:a. 将电阻、二极管和电容依次连接到电路中。

b. 通过电源调节电压,同时用万用表测量电流和电压。

c. 记录不同电压下的电流数值,并绘制伏安特性曲线。

结果与讨论:1. 电阻的伏安特性:实验中选取了一个100欧姆的固定电阻进行测量。

结果显示,在不同电压下,电流与电压呈线性关系,即伏安特性为直线。

这符合欧姆定律,即电流与电压成正比,电阻为常数。

通过斜率可以计算出电阻值。

2. 二极管的伏安特性:实验中选取了一颗常见的硅二极管进行测量。

结果显示,在正向偏置时,电流与电压呈非线性关系,即伏安特性为曲线。

随着电压的增加,电流迅速增大,但增长速度逐渐减慢。

而在反向偏置时,二极管基本上不导电。

这说明二极管具有单向导电性,可用于整流等电路。

3. 电容的伏安特性:实验中选取了一个100μF的电容进行测量。

结果显示,在充电过程中,电容两端的电压随时间线性增加,而电流逐渐减小。

当电容充满电后,电流变为零。

而在放电过程中,电容两端的电压随时间线性减小,电流逐渐增大。

这说明电容具有储存和释放电能的特性,可用于滤波等电路。

结论:通过本实验的测量结果,可以得出以下结论:1. 电阻的伏安特性为线性关系,即电流与电压成正比。

2. 二极管的伏安特性为非线性关系,即正向偏置时电流迅速增大,反向偏置时基本不导电。

3. 电容的伏安特性表现为充放电过程,可储存和释放电能。

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告

元件伏安特性的测定实验报告一、实验目的。

本实验旨在通过对电路中元件的伏安特性进行测定,掌握元件的电压-电流关系,并进一步了解元件的特性及其在电路中的应用。

二、实验仪器与设备。

1. 直流稳压电源。

2. 万用表。

3. 电阻箱。

4. 耐压表。

5. 电路连接线。

6. 待测元件。

三、实验原理。

在电路中,元件的伏安特性是指元件的电压与电流之间的关系。

对于电阻元件,其伏安特性为线性关系,即电阻元件的电流与电压成正比。

而对于二极管等非线性元件,其伏安特性则呈现出非线性关系。

四、实验步骤。

1. 将待测元件与电路连接线连接到电路中,注意连接的正确性和稳固性。

2. 调节直流稳压电源,使其输出电压逐渐增加,同时通过万用表记录电路中元件的电压和电流数值。

3. 根据记录的电压-电流数值,绘制出元件的伏安特性曲线。

4. 对非线性元件,如二极管等,进行反向电压测量,记录其反向击穿电压。

五、实验数据与分析。

通过实验测得的数据,我们可以得到元件的伏安特性曲线。

对于电阻元件,其伏安特性曲线为一条直线,而对于二极管等非线性元件,则呈现出非线性特性的曲线。

通过分析伏安特性曲线,我们可以了解元件的工作状态及其在电路中的作用。

六、实验结论。

通过本次实验,我们成功测定了元件的伏安特性,并绘制出了相应的伏安特性曲线。

通过对曲线的分析,我们可以更加深入地了解元件的特性及其在电路中的应用。

同时,我们也掌握了测定伏安特性的实验方法和步骤。

七、实验总结。

本次实验通过测定元件的伏安特性,使我们对元件的工作特性有了更深入的了解。

同时,实验过程中我们也掌握了一定的实验技能和操作方法。

在今后的学习和工作中,我们将能更加熟练地运用这些知识和技能,为电路设计和调试提供更加可靠的支持。

八、参考文献。

[1] 《电路原理与技术》。

[2] 《电子技术基础》。

以上为本次实验的实验报告,希望能对大家的学习和工作有所帮助。

电路元件伏安特性的测绘实验报告

电路元件伏安特性的测绘实验报告

电路元件伏安特性的测绘实验报告一、实验目的1、掌握电路元件伏安特性的测量方法。

2、学会识别常用电路元件(电阻、二极管、稳压管等)的伏安特性曲线。

3、加深对欧姆定律的理解和应用。

二、实验原理1、电阻元件电阻元件遵循欧姆定律,即$U =IR$,其中$U$是电阻两端的电压,$I$是通过电阻的电流,$R$是电阻的阻值。

电阻的伏安特性曲线是一条通过原点的直线。

2、二极管二极管是一种非线性元件,具有单向导电性。

当二极管正向偏置时,其电阻很小,电流随电压的增加迅速上升;当反向偏置时,电阻很大,电流很小,通常可忽略不计。

3、稳压管稳压管也是一种二极管,但它工作在反向击穿状态。

在一定的电流范围内,其两端的电压基本保持不变。

三、实验设备1、直流稳压电源2、数字万用表3、电阻箱4、二极管5、稳压管6、导线若干四、实验内容与步骤1、测量线性电阻的伏安特性(1)按图 1 连接电路,将电阻箱的阻值调至100Ω。

(2)调节直流稳压电源,使输出电压从 0V 开始,每次增加 05V,直至 5V。

用万用表测量相应的电流值,并记录在表 1 中。

|电压(V)| 0 | 05 | 1 | 15 | 2 | 25 | 3 | 35 | 4 |45 | 5 ||||||||||||||电流(mA)| 0 | 5 | 10 | 15 | 20 | 25 | 30 | 35 |40 | 45 | 50 |(3)以电压为横坐标,电流为纵坐标,绘制电阻的伏安特性曲线。

2、测量二极管的伏安特性(1)按图 2 连接电路,将二极管接入电路。

(2)调节直流稳压电源,使输出电压从 0V 开始,每次增加 01V,直至1V(正向偏置)。

用万用表测量相应的电流值,并记录在表 2 中。

|电压(V)| 0 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 |09 | 1 ||||||||||||||电流(mA)| 0 | 01 | 05 | 1 | 2 | 5 | 10 | 20 | 50 |100 | 500 |(3)将电源极性反转,使二极管反向偏置,调节电压从 0V 开始,每次增加 1V,直至 10V。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程名称:电路与模拟电子技术实验指导老师:孙晖成绩:__________________
实验名称:电路元件特性曲线的伏安测量法和示波器观测法实验类型:______ _同组学生姓名:__________
一、实验目的和要求(必填)二、实验内容和原理(必填)
三、主要仪器设备(必填)四、操作方法和实验步骤
五、实验数据记录和处理六、实验结果与分析(必填)
七、讨论、心得
一、实验目的和要求
1、熟悉电路元件的特性曲线
2、学习非线性电阻元件的特性曲线的伏安测量法
3、掌握伏安测量法中测量样点的选择和绘制曲线的方法
4、学习非线性电阻元件特性曲线的示波器观测方法
5、设计实验方案,用示波器观测电容的特性曲线。

二、实验内容和原理
1、在电路原理中,元件特性曲线是指特定平面上的定义的一条线,其函数关系式称为
元件的伏安特性曲线。

电阻元件的伏安特性曲线是在U-I平面上的一条曲线,当曲
线为直线时,对应的元件是线性元件,斜率为电阻值。

线性电阻的伏安特性曲线符
合欧姆定律,在U-I平面内是过原点的直线,与电压、电流无关;非线性元件在U-
I内是一条曲线。

2、普通警惕二极管的特点是正反向电阻差别很大,正向压降很小,正向电流随着正向
压降的上升而急骤上升,而反向电压从零一直增加到十几伏到几十伏时,其反向电
流增加很小,粗略地可视为零。

可见,二极管具有单向导电性,如果反响电压加的
过高,超过管子的极限值,会导致管子击穿损坏。

3、稳压二极管是一种特殊的半导体二极管,其正向特性与普通二极管类似,但其反向
特性则与普通二极管不同。

在反向电压开始增加时,其反向电流几乎为零,但当反
向电压增加到一定数值时(称为管子的稳压值)。

电流将突然增加,以后它的端电压
将维持恒定,不再随外加的反向电压升高而增大。

这两种二极管的特性属于单调型,电压与电流之间为单调函数。

二极管的特性参数有开启电压U th、导通电压U on,反
向电流I R、反向击穿电压U Br以及最大整流电流I F。

三、主要仪器设备。

1、数字万用表;
2、电工综合实验台;
3、DG07多功能网络实验组件;
4、信号源;
5、示波器。

四、操作方法和实验步骤。

1、元件的伏安特性曲线可以用电压表、电流表测定,称为逐点伏安测量法。

伏安法原
理简单,测量方便,但由于一起内阻会影响测量的结果,因此必须注意仪表的合理接法。

采用伏安法测量二极管特性时,限流电阻以及之流稳压源的变化范围与特性曲线的测量范围是有关系的,要根据实验室设备的具体要求来确定。

在综合考虑测量效率和获得良好曲线效果的前提下,测量点的选择十分关键,由于二极管的特性曲线在不同的电压区间具有不同的形状,因此测量时要合理采用调电压或调电阻的方法来有效控制测量样点。

2、在示波器观测法中,U s(t)是正弦波信号发生器提供的输出电压,R是被测电阻元件,
r是电流取样电阻。

将示波器置于X-Y工作模式,电阻电压接入示波器Y轴输入端,取样电阻电压接入X轴输入端,适当调节Y轴和X轴的幅值,荧光屏上就会显示出R的伏安特性曲线。

五、实验数据记录与处理
1、伏安逐点测量法
310.75619.83
六、实验结果及分析
1、(1)、对普通二极管的特性进行分析:施加正向电压时,在0~0.400V之间几乎没有电流,之后随着二极管导通,电压升高,电流增大。

在电压超过0.600V之后,电流急剧增大。

由于施加反向电压可能造成二极管击穿,所以没有采集反向电压电流数据。

(2)、对稳压二极管的特性进行分析:施加正向电压的结果与普通二极管类似,只是导通电压,也就是电流急剧增大的时候,是在电压超过0.700V之后,但是最大电压并没有超过0.800V。

施加反向电压时,当电压很小时基本没有电流,当电压达到-4.7V以上时,电流急剧增大。

但是当电压接近-5.1V时,电压不再增大,也就是实现了稳压。

观察电阻箱上的二极管标志,为“5.1V/5.4W”,说明实验数据符合理论情况。

2、用示波器观察二极管的伏安特性曲线时,信号源提供电源,示波器CH1是显示总电压,CH2是显示电阻电压,在Y-T模式下两者都为正弦波,当消去时间T之后,切换到X-Y模式,一开始二极管未导通,则电阻无穷大,即电阻所占的电压为零,符合曲线一开始的水平线情况。

当二极管导通后,随着总电压升高,电阻与二极管成比例分得电压,于是出现了一条斜线。

实验结果符合理论分析。

七、讨论、心得
1、在使用逐点测量法时,需要预先对被测的元件进行预处理,确认是否正常工作。

其次,确定大致的工作范围,选择测量取样的样本数据间隔。

推荐的范围是在正向:(0~0.5V)3 点;
(0.5~0.65V)5 点;(0.66~0.8V)8 点;反向:5 点测定稳压二极管的伏安特性曲线反向:(0~4.7V)8 点;(4.7~5.5V)12 点。

当然,数据越多,测量结果越精确。

2、对于不同的测量仪表,先确认其测量精度。

不同的测量精度会有对应的误差,这些应该予以消除。

这一步往往在设计实验电路的时候就需要考虑到,以及对应的参数。

在供电端,既要控制输出电压,也需要将电路调整加入一个限流电阻R,防止电流表在二级管击穿时被烧坏。

3. 使用示波器和函数发生器时,最大的问题是不能快速的找到需要的功能,我们需要熟悉示波器的操作。

同时,对于得到的波形图像往往需要进行适当的调整,才能够满足分析的需要。

对于使用的双通道示波器,主要部件都已经数字化,在接线上需要唯一注意的是接地极是否已经连接(示波器内部已经连接)。

4. 函数发生器的输出电压不应该过低,如果过低就会无法实现稳压管的半波整流和反向稳压,实际上应该大于5V。

相关文档
最新文档