第七章脂类代谢
生物化学第七章 脂代谢

(一)、酮体的生成
▪部位:肝线粒体 ▪原料:乙酰CoA,主要来自脂肪酸的-氧化 ▪关键酶:HMG CoA合成酶
HSCoA
2CH3COSCoA 乙酰CoA
硫解酶
CH3COCH2COSCoA 乙酰乙酰CoA
HMG-CoA合酶 CH3COSCoA
HSCoA
OH
乙酰CoA
HOOCCH2-C-CH2COSCoA 裂解酶CH3 HMG-CoA
脂解激素
受体
AC
G蛋白
ATP cAMP
脂周蛋白 P
P P P P
HSL
PKA P HSL HSL
储脂颗粒
FFA
甘油 脂肪细胞
血液
脂酸转运体
氧化分解 ATP
CO2 清蛋白
肌细胞
一、甘油(Glycerol)的分解
CH2 OH ATP ADP
CH2 OH
NAD+
NADH+H +
磷酸二
HO C H
脱氢 加水 再脱氢 硫解
O
=
RCH2CH2C~SCoA
脂酰CoA
FAD
脱氢酶 β αO
FADH2
=
RCH=CHC~SCoA
⊿2--烯脂酰CoA 水化酶
H2O
β
αO
=
RCHOHCH2C~SCoA
L(+)-β羟脂酰
NAD+
CoA脱氢酶
NADH+H+
βα O
=
RCOCH2C~SCoA
β酮脂酰CoA
硫解酶
CH3COCH2COOH 乙酰乙酸
NADH+H+
β-羟
NAD+
医学生物化学(第七章)脂类代谢

族 ω -7(n-7) ω -9(n-9) ω -6(n-6) ω -3(n-3)
母体脂酸 软油酸(16:1,ω -7)
油酸(18:1,ω -9) 亚油酸(18:2,ω -6,9) α -亚麻酸(18:3,ω -3,6,9)
10
表7-2 常见的不饱和脂酸
习惯名
软油酸 油酸 亚油酸 -亚麻酸 -亚麻酸 花生四烯酸
6656 9791
×
100% = 68% (能量利用效率)
41
表7-3 软脂酸与葡萄糖在体内氧化产生ATP的比较
以1mol计 以100g计 能量利用效率
软脂酸 129 ATP 50.4 ATP
68%
葡萄糖 38 ATP 21.1 ATP
68%
42
3. 脂肪酸的其它氧化方式 * 不饱和脂肪酸的氧化
脂肪 (以CM形式吸收入血)
24
С ³¦ £º Ö¬ ·¾ ×é Ö¯ £º ¸Î Ôà £º
ʳ Îï ¸Ê ÓÍ Ò» õ¥ TG GΪ Ô ÁÏ ¸Ê ÓÍ ¶þ õ¥ TG GΪ Ô ÁÏ ¸Ê ÓÍ ¶þ õ¥ TG
25
二、 甘油三酯的分解代谢
1. 脂肪动员 (1) 概念:
甘油三酯
(均含脂酸)
饱和脂酸
2. 不饱和脂酸
(不含双键) (含双键)
长链脂酸 12-26c 3 . 中链脂酸 6-10c
短链脂酸 2-4c
(16c、18c)
7
* 体内脂酸来源:
1. 机体自身合成: 饱和、单不饱和, 储存于脂肪组织中
2. 食物脂肪供给: 多不饱和(必需脂酸, PG等的前体)
8
第一节 不饱和脂酸的命名及分类
14
辅脂酶 (colipase)
生物化学第七章脂类代谢(共82张PPT)

乙 醛 酸 体
线
粒 体
三酰甘油
甘油
脂肪酸
3-磷酸甘油
氧
合
化
成
乙酰 CoA
三羧酸 循环
丙酮酸
植物和 微生物
乙醛酸 循环
糖原(或淀粉) 1,6-二磷酸果糖
磷酸二羟丙酮 PEP
草酰乙酸
苹果酸
延胡索酸
琥珀酸
第二节 脂肪的合成代谢
一、甘油的生物合成 二、脂肪酸的生物合成
三、三酰甘油的生物合成
一、甘油的生物合成(细胞质中)
OO
H-C-C~ OH 乙醛酸
异柠檬酸 裂解酶
COOCH2 CH2 COO-
琥珀酸
2乙酰 CoA + NAD+ 琥珀酸+ 2CoASH + NADH +
H+
草酰乙酸
糖异生
对于一些细菌和藻 类,乙醛酸循环使它们 能够仅以乙酸盐作为能 源和碳源生长。
在脂肪转变为糖的 过程中,乙醛酸循环 起着关键的作用,它 是连结糖代谢和脂代 谢的枢纽。
β-羟脂酰CoA
NAD +
脱氢酶
O || R-C~ScoA
+
O || CH3C~SCoA
脂酰CoA
乙酰CoA
NADH 硫解酶
CoASH
OO ||
RβC-C酮H酯2C酰-SCCooAA
如:软脂酸(棕搁酸,C15H31COOH)的β-氧化过程
4、β-氧化过程中能量的释放及转换效率
例:软脂酸
CH3(CH2)14COOH
磷酸甘油酯酰转移酶
三、三酰甘油的 生物合成
磷酸酶
二酰甘油酯酰转移酶
溶血磷脂酸 磷脂酸
动物生物化学 第七章 脂类代谢

CH2OH甘油激酶 CH2OPO23- 磷酸甘油脱氢酶 CH2OPO23-
CHOH
CHOH
CO
CH2OHATP ADP CH2OH NAD+ NADH+ H+ CH2OH
2.脂肪酸的分解代谢
(1)脂肪酸的-氧化
• 脂肪酸的-氧化作用是指脂肪酸在氧化 分解时,碳链的断裂发生在脂肪酸的位,即脂肪酸碳链的断裂方式是每次切 除2个碳原子。脂肪酸的-氧化是含偶数 碳原子或奇数碳原子饱和脂肪酸的主要 分解方式。
• 胰脂肪酶是一种非专一性水解酶,对脂肪酸碳 链的长短及饱和度专一性不严格。但该酶具有 较好的位置选择性,即易于水解甘油酯的1位 及3位的酯键,主要产物为甘油单酯和脂肪酸。 甘油单酯则被另一种甘油单酯脂肪酶水解,得 到甘油的脂肪酸。
1.脂肪的动员
1.甘油的代谢
• 甘油经血液输送到肝脏后,在ATP存在下,由甘油激 酶催化,转变成-磷酸甘油。这是一个不可逆反应过 程。-磷酸甘油在脱氢酶(含辅酶NAD+)作用下, 脱氢形成磷酸二羟丙酮。磷酸二羟丙酮是糖酵解途径 的一个中间产物,它可以沿着糖酵解途径的逆过程合 成葡萄糖及糖原;也可以沿着糖酵解正常途径形成丙 酮酸,再进入三羧酸循环被完全氧化。
• (2)许多类脂及其衍生物具有重要生理作用。脂类代 谢的中间产物是合成激素、胆酸和维生素等的基本原 料,对维持机体的正常活动有重要影响作用。
• (3)人类的某些疾病如动脉粥样硬化、脂肪肝和酮尿 症等都与脂类代谢紊乱有关。
7.1 脂肪的分解代谢
• 脂肪在脂肪酶催化下水解成甘油和脂肪酸,它 们在生物体内将沿着不同途径进行代谢。
• 由于软脂酸转化成软脂酰CoA时消耗了1分子ATP中的两个 高能磷酸键的能量(ATP分解为AMP, 可视为消耗了2个 ATP),因此,1分子软脂酸完全氧化净生成 131 – 2 = 129 个ATP。
第七章脂类代谢

第七章脂类代谢一、内容提要脂类包括脂肪和类脂。
脂肪又称甘油三酯,类脂包括胆固醇及其酯、磷脂、糖脂等。
脂肪是体内重要的储能和供能物质,而类脂除构成生物膜的重要成份外,还可转化为体内某些生物活性物质、参与细胞识别及信息传递等。
储存在脂肪组织中的甘油三酯在脂肪酶的催化下逐步水解为游离脂肪酸和甘油并释放入血,以供其它组织氧化利用的过程称为脂肪动员。
激素敏感性甘油三酯脂肪酶(HSL)为脂肪动员限速酶,其活性受多种激素的调节。
脂肪酸的氧化可分为脂肪酸的活化、脂酰CoA进入线粒体、脂肪酸的β-氧化及乙酰CoA彻底氧化四个阶段。
存在于内质网及线粒体外膜上的脂酰CoA合成酶,催化脂肪酸与HSCoA反应生成脂酰CoA,反应由ATP供能;催化脂肪酸氧化的酶存在于线粒体基质内,胞液中活化的脂酰CoA需要线粒体外膜和内膜内侧的肉碱脂酰转移酶I和肉碱脂酰转移酶Ⅱ及肉碱脂酰转位酶的作用,由肉碱携带进入线粒体,肉碱脂酰转移酶I是脂肪酸β-氧化的限速酶;脂肪酸的β-氧化是从脂酰基的β-碳原子开始,进行脱氢、加水、再脱氢、硫解四步连续的反应,将脂酰基断裂生成一分子乙酰CoA和比原来少二个碳原子的脂酰CoA的过程,脂酰基可继续进行β-氧化,最终可将脂酰基生成乙酰CoA;乙酰CoA经三羧酸循环彻底氧化,生成的FADH2和NADH+H+可经氧化磷酸化产生能量。
酮体包括乙酰乙酸、β-羟丁酸及丙酮。
肝细胞线粒体存在活性较强的合成酮体酶类,尤其是羟甲基戊二酰CoA(HMG-CoA)合酶,利用脂肪酸β-氧化生成的大量乙酰CoA 缩合为HMG-CoA,经HMG-CoA裂解后生成乙酰乙酸,乙酰乙酸还原生成β-羟丁酸或脱羧生成丙酮。
肝没有利用酮体的酶,而肝外组织具有活性很强的利用酮体的酶,如琥珀酰CoA转硫酶、乙酰乙酰硫激酶,可将酮体转化为乙酰CoA,再经三羧酸循环彻底氧化。
甘油主要在甘油激酶的催化下,生成α-磷酸甘油,参与糖代谢。
脂肪酸合成的主要原料为乙酰CoA,合成部位在胞液,肝是合成脂肪酸的主要场所。
第7章 脂类代谢

2.熟悉必需脂肪酸的概念和种类;磷脂的代谢; 血脂的种类;载脂蛋白及其功能;LPL和LCAT 的功能。 3.了解脂类的生理功能,脂类的消化吸收;了 解脂肪及脂酸的合成过程,血浆脂蛋白的代谢。
第一节 脂类概述
一、概念
脂类或脂质(lipids)是一类不溶于水而 溶于有机溶剂的有机化合物,包括脂肪及 类脂两大类 O
O CH2OCR2
=
R2COCH CH2OH
R2CO CH
O
=
CH2OCR3 三脂酰甘油 甘油三酯
1,2,二脂酰甘油 1,2-甘油二酯
O R1-C-OH
O R1-C~SCoA
O HO-C-R1 O HO-C-R2 O P HO-C-R3
1
CH2OH CHOH H CH2OH
2
3
第三节 磷脂的代谢★
偶数C n的饱和脂肪酸需 ( 2 n 氧化生成 个乙酰CoA
2
n
1 )次β-
1次β-氧化生成:
1分子FADH2通过呼吸链可生成1.5(2)分子ATP 1分子NADH+H+通过呼吸链生成2.5(3)分子ATP
所以1次β-氧化可生成4(5)分子ATP
4.脂肪酸氧化产生的能量
能量
活化 -2
16C
-2
10C
磷脂酰胆碱 (卵磷脂)
磷脂酰乙醇胺 (脑磷脂) 磷脂酰丝氨酸 磷脂酰甘油
OH
oH
肌醇
-
OH
H OH OH H H OH H
H
H
磷脂酰肌醇
磷脂的功能
1、 生物膜的脂质双分子层
就是由甘油磷脂构成的,它 有两条疏水的酯酰基长链 (疏水尾),又含有极性很 强的磷酸及取代基团如胆碱、 乙醇胺等(极性头),可以 自动排列成极性头向外,疏 水尾朝内的磷脂双分子层, 成为生物膜的基本结构。
第七章脂类代谢

小肠粘膜 细胞内
酯化 载脂蛋白
乳糜微粒
门静脉
肝脏
淋巴管
血液循环
第二节 血脂及其代谢
血脂 :血浆中所含脂类的总称,主要包 括甘油三酯、磷脂、胆固醇、胆 固醇酯及游离脂肪酸等。血浆中 以脂蛋白(脂+载脂蛋白 )形式
存在和运输。
血脂来源:
①外源性 :食物脂类的消化吸收;
②内源性 :组织合成后释放入血;
肾、小肠等组织的 胞浆
合成原料: 乙酰 CoA
1.软脂酸( 16C) 的合成 (1) 合成部位
肝(主要)、 脂肪组织 等胞浆
(2) 合成原料 乙酰 CoA 、ATP、HCO3﹣、NADPH +H+、Mn2+
合成脂肪酸
的供氢体
(3) 合成过程
(1)乙酰 CoA的转移
乙酰 CoA 全部在线粒体内产生, 通过柠檬酸 -丙酮酸循环 出线粒体。 NADPH 的来源:主要来自磷酸戊
脂肪
脂肪酶
甘油
α-磷酸甘油
脂肪酰 CoA
磷酸二羟丙酮 糖原
β-氧化
乙酰 CoA
三羧酸循环
丙酮酸 酮体(乙酰乙酸、 丙酮、β-羟基丁酸 )
H2O、CO2、ATP
二、甘油三酯的合成代谢
(一)合成部位:
肝脏: 合成能力最强,但不能储存脂肪
脂肪组织: 合成、储存、动员
小肠: 利用脂肪消化产物合成
(二)合成原料 甘油、脂肪酸
4.酮体的生成过程
CoASH
OO
==
CH3CCH2CSCoA
(乙酰乙酰 CoA)
HMGCoA 合酶
乙酰乙酰
CoA 硫解酶
O
=
CH3CSCoA
O
[医学]生物化学-07脂类代谢
![[医学]生物化学-07脂类代谢](https://img.taocdn.com/s3/m/17aa2256b52acfc789ebc9c1.png)
Ile Met Thr Val 奇数碳脂酸 胆固醇侧链
L-甲基丙二酰CoA
CH3CH2CO~CoA
CO2
羧化酶 (ATP、生物素)
消旋酶 D-甲基丙二酰CoA
变位酶 5-脱氧腺苷钴胺素
琥珀酰CoA
TCA
第7章 脂类代谢
College of Chemistry & Materials Science
第7章 脂类代谢
1. 甘油的分解
甘油激酶
College of Chemistry & Materials Science
甘油磷酸脱氢酶
异构酶
EMP 途径
(实线为甘油的分解,虚线为甘油的合成)
第7章 脂类代谢
2. 饱和脂肪酸的分解代谢——β-氧化
(1)β-氧化作用的概念及证据
概 念:脂肪酸在体内氧化时在羧基端的β-碳原子
C H 2 C O O H 苯乙酸
College of Chemistry & Materials Science
(2)脂肪酸的活化——脂酰CoA的生成
O RCH2CH2C-OH
脂肪酸
=
=
+ CoA-SH
脂酰CoA合成酶
ATP AMP PPi
O
RCH2CH2C~SCoA 脂酰~SCoA
(3)脂酰CoA进入线粒体(需要载体)
(1)酮体的生成 O O
=
=
= =
=
=
CoASH
CH3CCH2CSCoA (乙酰乙酰CoA)
HMGCoA 合酶
乙酰乙酰
CoA硫解酶
O
O CH3CSCoA
CoASH
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
脂肪酸 (fatty acids) • 简称脂酸,包括饱和脂酸(saturated fatty acid) 和不饱和脂酸(unsaturated fatty acid)。 • 多不饱和脂酸,机体自身不能合成,必须由食 物提供,是动物不可缺少的营养素,故称为营 养必需脂酸(essential fatty acid), • 包括亚油酸、亚麻酸和花生四烯酸。 • 它们是前列腺素、血栓烷及白三烯等生理活性 物质的前体。
不同的饱和脂酸的差别在于这两基团间亚甲基 (-CH2-)的数目不同。
2.不饱和脂酸的碳链含有一个或一个以上双键 ➢ 单不饱和脂酸(monounsaturated fatty acid) ➢ 多不饱和脂酸(polyunsaturated fatty acid)
不饱和脂酸的双键位置不同分属于 w-3、w-6、w-7和w-9簇
维生素、胆汁酸等
3. 构成血浆脂蛋白
第一节
不饱和脂酸的分类及命名
The Classification and Naming of Unsaturated Fatty Acids
一、脂酸的系统命名遵循有机酸 命名的原则
系统命名法 标示脂酸的碳原子数即碳链长度和双键的位置。
➢ △编码体系 从脂酸的羧基碳起计算碳原子的顺序。
簇
母体不饱和脂酸
结构
w-7
软油酸
9-16:1
w -9
油酸
9-18:1
w -6
亚油酸
9,12-18:2
w -3
亚麻酸
9,12,15-18:3
同簇的不饱和脂酸可由其母体代谢产生,如花 生四烯酸可由w-6簇母体亚油酸产生。但w-3、w-6 和w-9簇多不饱和脂酸在体内彼此不能相互转化。 动物只能合成ω-9及ω-7系的多不饱和脂酸,不能 合成ω-6及ω-3系多不饱和脂酸。
脂类的分类、含量、分布及生理功能
分类 脂肪
甘油三酯
含量 95﹪
类脂
5﹪
糖酯、胆固
醇及其酯、
磷脂
分布
生理功能
脂肪组织、 血浆
1. 储能供能 2. 提供必需脂酸 3. 促脂溶性维生素吸收 4. 热垫作用 5. 保护垫作用 6. 构成血浆脂蛋白
生物膜、神 经、血浆
1. 维持生物膜的结构和功能 2. 胆固醇可转变成类固醇激素、
第七章
脂质代谢
Metabolism of Lipid
脂类概述
定义: 脂肪和类脂总称为脂类(lipids) 。 分类:
脂肪 三脂酰甘油 (triacylglycerol, TAG),也 (fat) 称为甘油三酯 (triglyceride, TG)
胆固醇 (cholesterol, CHOL) 类脂 胆固醇酯 (cholesterol ester, CE) (lipoid) 磷脂 (phospholipid, PL)
clupanodonic acid (DPA)
7,10,13,16,19-二十二 碳五烯酸
22:5
w-3 CH3CH2(CH═CHCH2)5(CH2)4COOH
4, 7,10,13,16,19-二十
花生四烯酸 (arachidonic acid)
5,8,11,14-二十碳四 烯酸
20:4 w-6 CH3(CH2)4(CH═CHCH2)4(CH2)2COOH
timnodonic acid (EPA)
5,8,11,14,17-二十碳
五烯酸
20:5 w-3 CH3CH2(CH═CHCH2)5(CH2)2COOH
➢ ω或η编码体系 从脂酸的甲基碳起计算其碳原子顺序。
哺乳动物不饱和脂酸按ω(或η)编码体系分类
族
ω-7(η -7) ω-9(η -9) ω-6(η -6) ω-3(η -3)
母体脂酸 软油酸(16:1,ω-7) 油酸(18:1,ω-9) 亚油酸(18:2,ω-6,9) α-亚麻酸(18:3,ω-3,6,9)
酸
η -二十烷
酸
12:0
- CH3(CH2)10COOH
14:0
- CH3(CH2)12COOH
16:0
- CH3(CH2)14COOH
18:0
- CH3(CH2)16COOH
20:0
- CH3(CH2)18COOH
不饱和脂酸
棕榈(软)油酸 (palmitoleic acid)
9-十六碳一烯酸
16:1 w-7 CH3(CH2)5CH═CH(CH2)7COOH
油酸(oleic acid)
9-十八碳一烯酸
18:1 w-9 CH3(CH2)7CH═CH(CH2)7COOH
异油酸 (Vaccenic acid)
反式11-十八碳一烯
酸
18:1 w-7 CH3(CH2)5CH═CH(CH2)9COOH
亚油酸 (linoleic acid)
9,12-十八碳二烯酸 18:2 w-6 CH3(CH2)4(CH═CHCH2)2(CH2)6COOH
脂类物质的基本构成:
甘油三酯
甘 FA 油 FAceride) 油
FA FA Pi X
胆固醇酯
胆固醇 FA
X= 胆 碱 、 水 、 乙 醇胺、丝氨酸、 甘油、肌醇、 磷脂酰甘油等。
鞘脂 鞘磷脂 鞘糖脂
鞘 氨 FA 醇
鞘 氨 FA 醇 Pi X
鞘 氨 FA 醇糖
惯名
饱和脂酸 月桂酸 (lauric acid)
豆寇酸 (myristic acid)
软脂酸 (palmitic acid)
硬脂酸 (stearic acid)
花生酸 (arachidic acid)
表5-1 常见的脂酸
系统名
碳原子数 和双键数
簇
分子式
η -十二烷
酸
η -十四烷
酸
η -十六烷
酸
η -十八烷
a-亚麻酸 (a-linolenic acid)
9,12,15-十八碳三烯
酸
18:3 w-3 CH3CH2(CH═CHCH2)3(CH2)6COOH
g-亚麻酸 (g-linolenic acid)
6,9,12-十八碳三烯酸 18:3 w-6 CH3(CH2)4(CH═CHCH2)3(CH2)3COOH
二、脂酸主要根据其碳链长度和 饱和度分类
(一)脂酸根据其碳链长度分为短链、中链 和长链脂酸
• 碳链长度≤10的脂酸称为短链脂酸 • 将碳链长度≥20的脂酸称为长链脂酸
(二)脂酸根据其碳链是否存在双键分为 饱和脂酸和不饱和脂酸
1.饱和脂酸的碳链不含双键 饱和脂酸以乙酸(CH3-COOH)为基本结构,