重庆2021年中考数学专题二次函数(新题型)(无答案)

合集下载

2021年重庆年中考二次函数综合专题练习

2021年重庆年中考二次函数综合专题练习

2021年重庆年中考25题二次函数综合专题练习(11月中旬期中集合)1(一外2021级初三上期中测试)如果,直线3y x =-与x 轴,y 轴分别交于B 、C 两点,点A 为x 轴上一点,抛物线2y x bx c =++恰好经过A 、B 、C 三点,对称轴分别与抛物线交于点D ,与x 轴交于点E ,连接AC 、EC , (1)求抛物线的解析式(2)点P 是抛物线上异于点D 的一动点,若PBCAECSS=求此时点P 的坐标;(3)在(2)的条件下,若P 在BC 下方,Q 是直线PO 上一点,M 是射线PC 上一点,请问对称轴上是否存在一点N ,使得P 、Q 、M 、N 构成以PN 为对角线的菱形,若存在,请直接写出点N 的坐标;若不存在,请说明.2(南开2021级初三上期中测试)抛物线21+4y x bx c =-+与x 轴交于A 、B 两点,与y 轴交于点C ,且A (2,0),B (-6,0).(1)求抛物线以及直线BC 的解析式;(2)如图1,点P 是直线BC 上方抛物线的一动点,谷点P 作PQ//y 轴交直线BC 于点Q ,点T 在直线QB 上,连接PT ,若△PQT 是以PQ 为底的等腰三角形,则△PQT 的周长是否存在最大值?若存在,求出周长的最大值以及此时点P 的坐标;若不存在,请说明理由;(3)如图2,过点A 作AF//y 轴交直线BC 于点F ,点D 是抛物线的顶点,连接BD 、CD 、OF,△OAF 沿射线AB 防线以每秒1个单位长度运动,运动时间为t (t>0),当点F 与点D 重合时立即停止运动,设运动过程中△OAF 与四边形OCDB 重叠部分面积为S ,请直接写出S 与t 的函数关系式.3(育才2020级初三上期中考试)如图,在平面直角坐标系中,抛物线223y x x =--与x 轴交于A 、B 两点,与y 轴交于点C.(1)求直线BC 的解析式;(2)若点P 为抛物线上一动点,当点P 运动到某一位置时,43ABPABC SS =,求此时点P 的左边.(3)若将△AOC 沿射线CB 方向平移,平移后的三角形记为111A O C △,连接1A A 交抛物线于M 点,是否存在点1C ,使得1AMC △为等腰三角形?若存在,直接写出1C 点横坐标;若不存在,请说明理由.4(一中共同体2021级初三上期中测试)如图,在平面直角坐标系xOy中,已知抛物线223=-++与x轴交y x x=+恰好经过于A、B两点,与y轴交于点D,抛物线顶点为E,C、D两点关于抛物线的对称轴对称,直线y kx bA、C两点.(1)求直线AC的解析式;(2)设点P是直线AC上方抛物线上的一动点,求当△PAC的面积取得最大值时,求此时点P的坐标;(3)若点M在此抛物线上,点N在对称轴上,则以A、C、M、N为顶点的四边形能否成为以AC为边的平行四边形?若能,请直接写出所有满足要求的点M的坐标;若不能,请说明理由.5(巴蜀2021级初三上期中测试)如图,点A 在抛物线26y x x =-+上,且横坐标为1,点B 与点A 关于抛物线的对称轴对称,直线AB 与y 轴交于点C ,点D 为抛物线的顶点,点E 的坐标为(2,2). (1)求线段AB 的长;(2)点P 为线段AB 上方抛物线上的任意一点,P 作AB 的垂线交AB 于点H ,点F 为y 轴上一点,当△PBE 的面积最大时,求PH HF +的最小值;(3)在(2)中,2PH HF ++取得最小值时,将△CFH 绕点C 顺时针旋转60后得到''CF H △,过点'F 作'CF 的垂直与直线AB 交于点Q ,点R 为y 轴上一动点,M 为平面直角坐标系中的一动点,是否存在使以点D 、Q 、R 、M 为顶点的四边形为矩形?若存在,请直接写出点R 的坐标;若不存在,请说明理由.6(八中2021级初三上期中测试)如图1,抛物线)0(32≠++=a bx ax y 与x 轴交于点A (-3,0)和B(1,0)两点,与y 轴交于点C (1)求该抛物线的函数表达式;(2)P 是抛物线上位于直线AC 上方的一个动点,过点P 作PD ∥y 轴交AC 于点D ,过点P 作PE ⊥AC 于点E ,过点E 作EF ⊥y 轴于点F ,求出PD +EF 的最大值及此时点P 的坐标;M ,点N 为,N ,H 为顶点的四边7(南开2021级初三上阶段测试二)如图,抛物线21322y x x =-++与坐标轴分别交于A ,B ,C 三点,D 是抛物线的顶点,连接BC ,BD ,(1)求点D 的坐标及直线BC 的解析式;(2)点P 是直线BC 上方抛物线上的一点,E 为BD 上一动点,当PBC 面积为2716时,求点P 的坐标,并求出此时2PE BE +的最小值; (3)在(2)的条件下,延长PE 交x 轴于点F ,在抛物线的对称轴上是否存在一点Q ,使得PFQ △为直角三角形?若存在请直接写出点Q 的坐标,若不存在请说明理由.8(十八中2021级初三上周测五)如图1,抛物线21333y x x =--+与x 轴交于点A 、B 两点,与y 轴交于点C,连接AC 、BC. (1)求线段AC 的长;(2)如图2,E 为抛物线的顶点,F 为AC 上方的抛物线上一动点,M 、N 为直线AC 上的两动点(M 在N 的左侧),且MN=4,作FP ⊥AC 于点P ,FQ//y 轴交AC 于点Q ,当△FPQ 的面积最大时,连接EF 、EN 、FM,求四边形ENMF 周长的最小值.(3)如图3,将△BCO 沿x '''B C O △,再将'''B C O △绕点'O 顺时针旋转α度,得到'''''B C O △(其中0180α<<),旋转过程中直线''''B C 与直线AC 交于点G ,与x 轴交于点H ,当△AGH 时等腰三角形时,求α的度数.9(八中2021级九上周测六)如图1,抛物线与坐标轴分别交于A(-1,0),B(3,0),与y轴交于C点,D是抛物线的顶点且纵坐标为2.(1)求点D的坐标及直线BC的解析式;(2)如图2,连接BD,P点为BD上方抛物线一点,过点P作PH⊥BD于H,过P点作y轴平行线交BC于E,有最大值时的P点坐标及最大值为多少?PE(3)在抛物线对称上有一点M ,在平面直角坐标系中有一点N ,使以B 、C 、M 、N 为顶点的四边形为矩形,求出N 点坐标.10(八中2021级九上定时训练八)如图1,在平面直角坐标系中,抛物线2(0)y ax bx c a =++≠与x 轴交于点A (-1,0),B (6,0)两点,与y 轴交于点C (0,3),顶点为D. (1)求该抛物线的解析式;(2)P 是抛物线上且位于直线BC 上方的一个动点,过点P 作PQ//y 轴交BC 于点Q ,求5PQ CQ +的最大值及此时点P 的坐标;(3)如图2,将原抛物线向右下方平移得到抛物线'y ,使得'y 的顶点在直线BC 上且过点F (2,-1),'y 与原抛物线相交于点E ,点G 我射线BC 上的一动点,是否存在点G ,使得180DBE BEG ∠+∠=,若存在,请直接写出点G 的坐标;若不存在,请说明理由.11(一中2021级初三上国庆作业一)如图,已知抛物线y=﹣x2+x﹣4与x轴交于A、B两点(点A在点B 的左侧),与y轴交于点C.(1)连接BC,P是线段BC上方抛物线上的一动点,过点P作PH⊥BC于点H,当PH长度最大时,在△APB 内部有一点M,连接AM、BM、PM,求AM+BM+PM的最小值.(2)若点D是OC的中点,将抛物线y=﹣x2+x﹣4沿射线AD方向平移个单位得到新抛物线y′,C′是抛物线y′上与C对应的点,抛物线y'的对称轴上有一动点N,在平面直角坐标系中是否存在一点S,使得C′、N、B、S为顶点的四边形是矩形?若存在,请直接写出点S的坐标;若不存在,请说明理由.12(巴蜀2021级初三上第一次月考)如图1,在平面直角坐标系中,抛物线6332612++-=x x y 与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C 。

2021年九年级数学重庆中考22题新型函数研究专题(2)(无答案)

2021年九年级数学重庆中考22题新型函数研究专题(2)(无答案)

2021重庆年中考12题反比例函数综合专题(2)1(巴蜀2021级初三上第一次月考)在函数的学习中,我们经历了“确定函数表达式—华函数图像—利用图像研究函数性质—利用图像解决问题”的学习过程在画函数图像时,我们常常通过描点法画函数图像,已知函数,2(50)21(x 2)4(x 0)4kx x y ⎧-≤<⎪⎪+=⎨⎪--+≥⎪⎩探究函数的表达式,函数和性质。

解决问题的过程:(1)下表是y 与x 的几组值,则函数表达式中的k= ,表格中的a= .(2)在平面直角坐标系中,补全描出表格中数据对应的各点,补全函数图像;(3)观察函数2(50)21(x 2)4(x 0)4kx x y ⎧-≤<⎪⎪+=⎨⎪--+≥⎪⎩的图像,请描述该函数(x ≥0时)性质: ;(4)若直线y=m (m 为常数)与该函数图像有且仅有两个交点,则m 的取值范围为 。

2(重一外2021级九上第一次月考)某班兴趣小组对函数21mxyx+=-的图像和性质进行了探究,探究过程如下,请补充完整。

(1)x与y的几组对应值列表如下:其中,m= ,n= 。

(2)根据表中数据,在如图所示的平面直角坐标系中描点,请画出该函数的图像;(3)观察函数图像,写出一条函数的性质:。

(4)若关于x的方程2=1mxax+-有两个实数根,则a的取值范围是。

3(重庆西师附中2021级九上次定时训练)我们学习用过列表、描点、连线的方法作出函数图像,探究函数性质,请运用已有的学习经验,画出函数2182y x =-+的图像并探究该函数的性质,列表如下:(1)直接写出a 、b 的值:a= ,b ,并描点、连线,在所给平面直角坐标系中画出该函数图像;(2)观察函数图像,写出该函数的两条性质:性质1: ;性质2:(3)请结合所画函数图像,直接写出不等式218212x x ->-++的解集.4(重庆一中2021级九上第一定时练习)在研究函数的性质时,我们通过列表、描点、连线画出函数图像,并结合函数的图像研究函数的性质,结合已有的学习经验,请画出函数2262x y x =+的图像并研究该函数图像的性质.(1)直接写出表中a,b 的值,并在所给的平面直角坐标系中画函数图像;(2)观察函数图像,判断下列关于函数的性质的说法是否正确;①该函数2262xyx=+的图像关于y轴对称②该函数在自变量的取值范围内,有最大值和最小值;③当x>0时,y随x的增大而增大,当x<0,y随x的增大而减小;(3)请画出函数2833y x=+的吐下,结合你所画的函数图像,直接写出不等式22628233xxx>++的解集。

2021年重庆中考25题二次函数综合专题(八中试题集) (无答案)

2021年重庆中考25题二次函数综合专题(八中试题集)  (无答案)

2021年重庆年中考25题二次函数综合专题(八中试题集)1(八中2020级初三下定时训练九)如图,直线y=﹣x+4与x轴交于点C,与y轴交于点B,抛物线y=﹣2+bx+c 经过B、C两点.(1)求抛物线的解析式;(2)如图,点E是抛物线上的一动点(不与B,C两点重合),当S△BEC=S△BOC时,求点E的坐标;(3)若点F是抛物线上的一动点,当S△BFC为什么取值范围时,对应的点F有且只有两个?2(八中2020级初三下定时训练五))如图,在平⾯直⻆坐标系中,⾯次函数y=ax2+bx+c的图象与直线AB交于A、B两点,A(1,﹣)、B(﹣2,0),其中点A是抛物线y=ax2+bx+c的顶点,交y轴于点D.(1)求⾯次函数解析式;(2)如图1,点P是第四象限抛物线上⾯动点,若∠PBA=∠BAD,抛物线交x轴于点C.求△BPC的⾯积;(3)如图2,点Q是抛物线第三象限上⾯点(不与点B、D重合),连接BQ,以BQ为边作正⾯形BEFQ,当顶点E或F恰好落在抛物线对称轴上时,直接写出对应的Q点的坐标.3(八中2020级初三下定时训练八)如图,抛物线y=﹣x2+bx+c与直线y=x+2交于C、D两点,其中点C在y 轴上,点D的坐标为(3,).点P是y轴右侧的抛物线上一动点,过点P作PE⊥x轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使∠PCF=45°,请直接写出相应的点P的坐标.4(八中2021级初三上第一次月考模拟)己知抛物线与x轴交于点A(﹣2,0)、B(3,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)如图1,点P是抛物线上位于第一象限内的一点,当四边形ABPC的面积最大时,求出四边形ABPC的面积最大值及此时点P的坐标.(3)如图2,将抛物线向右平移个单位,再向下平移2个单位.记平移后的抛物线为y',若抛物线y'与原抛物线对称轴交于点Q.点E是新抛物线y'对称轴上一动点,在(2)的条件下,当△PQE是等腰三角形时,求点E的坐标.5(八中2020级初三上定时练习十四)已知:抛物线y =ax 2 +bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB<OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线2-=x .(1)求此抛物线的表达式;(2)若点E 是线段AB 上的一个动点(与点A 、B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 的最大值;(3)若点M 在抛物线的对称轴上,P 是平面坐标系上一点,在抛物线上是否存在一点N ,使以P 、C 、M 、N 为顶点的四边形是正方形?如果存在,请写出满足条件的点N 的坐标;如果不存在,请说明理由。

2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)

2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)

2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)1.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.2.如图1,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图2,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.3.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.已知点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,连接AP、PC、CD.(1)求这个抛物线的表达式.(2)当四边形ADCP面积等于4时,求点P的坐标.(3)①点M在平面内,当△CDM是以CM为斜边的等腰直角三角形时,直接写出满足条件的所有点M的坐标;②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,直接写出满足条件的所有点N的坐标.4.如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于点D.若PD=m,△PCD的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②当S取得最值时,求点P的坐标.(3)在(2)的条件下,在线段MB上是否存在点P,使△PCD为等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.6.如图,抛物线y=ax2+bx+c与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),抛物线的对称轴与直线BC交于点D.(1)求抛物线的表达式;(2)在抛物线的对称轴上找一点M,使|BM﹣CM|的值最大,求出点M的坐标;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,直接写出点E的坐标.7.如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数解析式;(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.8.已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).(1)求二次函数的解析式.(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=,求点K的坐标.9.如图,在平面直角坐标系中,抛物线y=x2+bx+c与y轴交于点A(0,2),与x轴交于B(﹣3,0)、C两点(点B在点C的左侧),抛物线的顶点为D.(1)求抛物线的表达式;(2)用配方法求点D的坐标;(3)点P是线段OB上的动点.①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是射线OA上的动点,且始终满足OQ=OP,连接AP,DQ,请直接写出AP+DQ的最小值.10.如图1,已知:抛物线y=a(x+1)(x﹣3)交x轴于A,C两点,交y轴于点B,且OB =2CO.(1)求二次函数解析式;(2)在二次函数图象(如图2)位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案1.解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3),∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,∵a=﹣1<0,∴当x=时,线段PD的长度有最大值;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1),综上所述,点P(1,0)或(2,﹣1)时,△APD能构成直角三角形.2.解:(1)∵点B(3,0),点C(0,3)在抛物线y=﹣x2+bx+c图象上,∴,解得:,∴抛物线解析式为:y=﹣x2+2x+3;(2)∵点B(3,0),点C(0,3),∴直线BC解析式为:y=﹣x+3,如图,过点P作PH⊥x轴于H,交BC于点G,设点P(m,﹣m2+2m+3),则点G(m,﹣m+3),∴PG=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,=×PG×OB=×3×(﹣m2+3m)=﹣(m﹣)2+,∵S△PBC有最大值,∴当m=时,S△PBC∴点P(,);(3)存在N满足条件,理由如下:∵抛物线y=﹣x2+2x+3与x轴交于A、B两点,∴点A(﹣1,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M为(1,4),∵点M为(1,4),点C(0,3),∴直线MC的解析式为:y=x+3,如图,设直线MC与x轴交于点E,过点N作NQ⊥MC于Q,∴DE=4=MD,∴∠NMQ=45°,∵NQ⊥MC,∴∠NMQ=∠MNQ=45°,∴MQ=NQ,∴MQ=NQ=MN,设点N(1,n),∵点N到直线MC的距离等于点N到点A的距离,∴NQ=AN,∴NQ2=AN2,∴(MN)2=AN2,∴(|4﹣n|)2=4+n2,∴n2+8n﹣8=0,∴n=﹣4±2,∴存在点N满足要求,点N坐标为(1,﹣4+2)或(1,﹣4﹣2).3.解:(1)∵抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),∴抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2﹣x+2;(2)连接OP,设点P(x,﹣x2﹣x+2),∵抛物线y=﹣x2﹣x+2交y轴于点C,∵S =S 四边形ADCP =S △APO +S △CPO ﹣S △ODC =×AO ×y P +×OC ×|x P |﹣×CO ×OD =4,∴×3×(﹣x 2﹣x +2)+×2×(﹣x )﹣×1×2=4,∴x 1=﹣1,x 2=﹣2, ∴点P (﹣1,)或(﹣2,2);(3)①如图2,若点M 在CD 左侧,连接AM ,∵∠MDC =90°,∴∠MDA +∠CDO =90°,且∠CDO +∠DCO =90°, ∴∠MDA =∠DCO ,且AD =CO =2,MD =CD , ∴△MAD ≌△DOC (SAS )∴AM =DO ,∠MAD =∠DOC =90°, ∴点M 坐标(﹣3,1),若点M 在CD 右侧,同理可求点M '(1,﹣1); ②如图3,∵抛物线的表达式为:y =﹣x 2﹣x +2=﹣(x +1)2+;∴对称轴为:直线x =﹣1,∴点D在对称轴上,∵MD=CD=M'D,∠MDC=∠M'DC=90°,∴点D是MM'的中点,∵∠MCD=∠M'CD=45°,∴∠MCM'=90°,∴点M,点C,点M'在以MM'为直径的圆上,当点N在以MM'为直径的圆上时,∠M'NC=∠M'MC=45°,符合题意,∵点C(0,2),点D(﹣1,0)∴DC=,∴DN=DN'=,且点N在抛物线对称轴上,∴点N(﹣1,),点N'(﹣1,﹣)延长M'C交对称轴与N'',∵点M'(1,﹣1),点C(0,2),∴直线M'C解析式为:y=﹣3x+2,∴当x=﹣1时,y=5,∴点N''的坐标(﹣1,5),∵点N''的坐标(﹣1,5),点M'(1,﹣1),点C(0,2),∴N''C==M'C,且∠MCM'=90°,∴MM'=MN'',∴∠MM'C=∠MN''C=45°∴点N''(﹣1,5)符合题意,综上所述:点N的坐标为:(﹣1,)或(﹣1,﹣)或(﹣1,5).4.解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标为(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△DAB∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).5.解:(1)∵直线x=1是抛物线的对称轴,且点C的坐标为(0,3),∴c=3,﹣=1,∴b=2,∴抛物线的解析式为:y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点M(1,4),∵抛物线的解析式为:y=﹣x2+2x+3与x轴相交于A,B两点(点A位于点B的左侧),∴0=﹣x2+2x+3∴x1=3,x2=﹣1,∴点A(﹣1,0),点B(3,0),∵点M(1,4),点B(3,0)∴直线BM解析式为y=﹣2x+6,∵点P在直线BM上,且PD⊥x轴于点D,PD=m,∴点P(3﹣,m),∴S△PCD=×PD×OD=m×(3﹣)=﹣m2+m,∵点P在线段BM上,且点M(1,4),点B(3,0),∴0<m≤4∴S与m之间的函数关系式为S=﹣m2+m(0<m≤4)②∵S=﹣m2+m=﹣(m﹣3)2+,∴当m=3时,S有最大值为,∴点P(,3)∵0<m≤4时,S没有最小值,综上所述:当m=3时,S有最大值为,此时点P(,3);(3)存在,若PC=PD=m时,∵PD=m,点P(3﹣,m),点C(0,3),∴(3﹣﹣0)2+(m﹣3)2=m2,∴m1=18+6(舍去),m2=18﹣6,∴点P(﹣6+3,18﹣6);若DC=PD=m时,∴(3﹣﹣0)2+(﹣3)2=m2,∴m3=﹣2﹣2(舍去),m4=﹣2+2,∴点P(4﹣,﹣2+2);若DC=PC时,∴(3﹣﹣0)2+(m﹣3)2=(3﹣﹣0)2+(﹣3)2,∴m5=0(舍去),m6=6(舍去)综上所述:当点P的坐标为:(﹣6+3,18﹣6)或(4﹣,﹣2+2)时,使△PCD为等腰三角形.6.解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、B(3,0)、C(0,3),∴,解得,∴抛物线的表达式为y=x2﹣4x+3;(2)∵抛物线对称轴是线段AB的垂直平分线,∴AM=BM,由三角形的三边关系,|BM﹣CM|=|AM﹣CM|<AC,∴点A、C、M三点共线时,|BM﹣CM|最大,设直线AC的解析式为y=mx+n,则,解得,∴直线AC的解析式为y=﹣3x+3,又∵抛物线对称轴为直线x=﹣=2,∴x=2时,y=﹣3×2+3=﹣3,故,点M的坐标为(2,﹣3);(3))∵OB=OC=3,OB⊥OC,∴△BOC是等腰直角三角形,∵EF∥y轴,直线BC的解析式为y=﹣x+3,∴△DEF只要是直角三角形即可与△BOC相似,∵D(2,1),A(1,0),B(3,0),∴点D垂直平分AB且到点AB的距离等于AB,∴△ABD是等腰直角三角形,∴∠ADB =90°,如图,①点F 是直角顶点时,点F 的纵坐标与点D 的纵坐标相同,是1,∴x 2﹣4x +3=1,整理得x 2﹣4x +2=0,解得x =2±, 当x =2﹣时,y =﹣(2﹣)+3=1+, 当x =2+时,y =﹣(2+)+3=1﹣, ∴点E 1(2﹣,1+)E 2(2+,1﹣), ②点D 是直角顶点时,易求直线AD 的解析式为y =x ﹣1,联立,解得,,当x =1时,y =﹣1+3=2,当x =4时,y =﹣4+3=﹣1,∴点E 3(1,2),E 4(4,﹣1),综上所述,存在点E 1(2﹣,1+)或E 2(2+,1﹣)或E 3(1,2)或E 4(4,﹣1),使以D 、E 、F 为顶点的三角形与△BCO 相似.7.解:(1)∵抛物线y =x 2+bx +c 交x 轴于点A (1,0),与y 轴交于点C (0,﹣3),∴,解得:,∴抛物线解析式为:y=x2+2x﹣3;(2)∵抛物线y=x2+2x﹣3与x轴于A,B两点,∴点B(﹣3,0),∵点B(﹣3,0),点C(0,﹣3),∴OB=OC=3,∴∠OBC=∠OCB=45°,如图1,当点D在点C上方时,∵∠DBC=15°,∴∠OBD=30°,∴tan∠DBO==,∴OD=×3=,∴CD=3﹣;若点D在点C下方时,∵∠DBC=15°,∴∠OBD=60°,∴tan∠DBO==,∴OD=3,∴DC=3﹣3,综上所述:线段CD的长度为3﹣或3﹣3;(3)如图2,在BO上截取OE=OA,连接CE,过点E作EF⊥AC,∵点A(1,0),点C(0,﹣3),∴OA=1,OC=3,∴AC===,∵OE=OA,∠COE=∠COA=90°,OC=OC,∴△OCE≌△OCA(SAS),∴∠ACO=∠ECO,CE=AC=,∴∠ECA=2∠ACO,∵∠PAB=2∠ACO,∴∠PAB=∠ECA,=AE×OC=AC×EF,∵S△AEC∴EF==,∴CF===,∴tan∠ECA==,如图2,当点P在AB的下方时,设AP与y轴交于点N,∵∠PAB=∠ECA,∴tan∠ECA=tan∠PAB==,∴ON=,∴点N(0,﹣),又∵点A(1,0),∴直线AP解析式为:y=x﹣,联立方程组得:,解得:或,∴点P坐标为:(﹣,﹣),当点P在AB的上方时,同理可求直线AP解析式为:y=﹣x+,联立方程组得:,解得:或,∴点P坐标为:(﹣,),综上所述:点P的坐标为(﹣,),(﹣,﹣).8.解:(1)∵二次函数图象过点B(4,0),点A(﹣2,0),∴设二次函数的解析式为y=a(x+2)(x﹣4),∵二次函数图象过点C(0,4),∴4=a(0+2)(0﹣4),∴a=﹣,∴二次函数的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)存在,理由如下:如图1,取BC中点Q,连接MQ,∵点A(﹣2,0),B(4,0),C(0,4),点P是AC中点,点Q是BC中点,∴P(﹣1,2),点Q(2,2),BC==4,设直线BP解析式为:y=kx+b,由题意可得:,解得:∴直线BP的解析式为:y=﹣x+,∵∠BMC=90°∴点M在以BC为直径的圆上,∴设点M(c,﹣c+),∵点Q是Rt△BCM的中点,∴MQ=BC=2,∴MQ2=8,∴(c﹣2)2+(﹣c+﹣2)2=8,∴c=4或﹣,当c=4时,点B,点M重合,即c=4,不合题意舍去,∴c=﹣,则点M坐标(﹣,),故线段PB上存在点M(﹣,),使得∠BMC=90°;(3)如图2,过点D作DE⊥BC于点E,设直线DK与BC交于点N,∵点A(﹣2,0),B(4,0),C(0,4),点D是AB中点,∴点D(1,0),OB=OC=4,AB=6,BD=3,∴∠OBC=45°,∵DE⊥BC,∴∠EDB=∠EBD=45°,∴DE=BE==,∵点B(4,0),C(0,4),∴直线BC解析式为:y=﹣x+4,设点E(n,﹣n+4),∴﹣n+4=,∴n=,∴点E(,),在Rt△DNE中,NE===,①若DK与射线EC交于点N(m,4﹣m),∵NE=BN﹣BE,∴=(4﹣m)﹣,∴m=,∴点N(,),∴直线DK解析式为:y=4x﹣4,联立方程组可得:,解得:或,∴点K坐标为(2,4)或(﹣8,﹣36);②若DK与射线EB交于N(m,4﹣m),∵NE=BE﹣BN,∴=﹣(4﹣m),∴m=,∴点N(,),∴直线DK解析式为:y=x﹣,联立方程组可得:,解得:或,∴点K坐标为(,)或(,),综上所述:点K的坐标为(2,4)或(﹣8,﹣36)或(,)或(,).9.解:(1)∵抛物线y=x2+bx+c与y轴交于点A(0,2),与x轴交于B(﹣3,0),∴∴∴抛物线解析式为:y=x2﹣x+2;(2)∵y=x2﹣x+2=﹣(x+1)2+,∴顶点D坐标(﹣1,);(3)①∵抛物线y=x2﹣x+2与x轴交于B(﹣3,0)、C两点,∴点C(1,0)设点E(m,m2﹣m+2),则点P(m,0),∵PE=PC,∴m2﹣m+2=1﹣m,∴m=1(舍去),m=﹣,∴点E(﹣,)②如图,连接AE交对称轴于点N,连接DE,作EH⊥DN于H,交y轴于点F,∵点A(0,2),点E(﹣,),∴直线AE解析式为y=﹣x+2,∴点N坐标(﹣1,)∴DH==,HN==,∴DH=NH,且EH⊥DN,∴∠DEH=∠NEH,∴点F到AE,DE的距离相等,∴DN∥y轴,EH⊥DN,∴EH⊥y轴,∴EF=;③在x轴正半轴取点H,使OH=OA=2,∵OH=OA,∠AOP=∠QOH=90°,OP=OQ,∴△AOP≌△HOQ(SAS)∴AP=QH,∴AP+DQ=DQ+QH≥DH,∴点Q在DH上时,DQ+AP有最小值,最小值为DH的长,∴AP+DQ的最小值==.10.解:(1)对于抛物线y=a(x+1)(x﹣3),令y=0,得到a(x+1)(x﹣3)=0,解得x=﹣1或3,∴C(﹣1,0),A(3,0),∴OC=1,∵OB=2OC=2,∴B(0,2),把B(0,2)代入y=a(x+1)(x﹣3)中得:2=﹣3a,a=﹣∴二次函数解析式为=;(2)设点M的坐标为(m,),则点N的坐标为(2﹣m,),MN=m﹣2+m=2m﹣2,GM=矩形MNHG的周长C=2MN+2GM=2(2m﹣2)+2()==∴当时,C有最大值,最大值为;(3)∵A(3,0),B(0,2),∴OA=3,OB=2,由对称得:抛物线的对称轴是:x=1,∴AE=3﹣1=2,设抛物线的对称轴与x轴相交于点E,当△ABP为直角三角形时,存在以下三种情况:①如图1,当∠BAP=90°时,点P在AB的下方,∵∠PAE+∠BAO=∠BAO+∠ABO=90°,∴∠PAE=∠ABO,∵∠AOB=∠AEP,∴△ABO∽△PAE,∴,即,∴PE=3,∴P(1,﹣3);②如图2,当∠PBA=90°时,点P在AB的上方,过P作PF⊥y轴于F,同理得:△PFB∽△BOA,∴,即,∴BF=,∴OF=2+=,∴P(1,);③如图3,以AB为直径作圆与对称轴交于P1、P2,则∠AP1B=∠AP2B=90°,设P1(1,y),∵AB2=22+32=13,由勾股定理得:AB2=P1B2+P1A2,∴12+(y﹣2)2+(3﹣1)2+y2=13,解得:y=1±,∴P(1,1+)或(1,1﹣),综上所述,点P的坐标为(1,﹣3)或(1,)或(1,1+)或(1,1﹣)。

2021年九年级数学中考复习专题之二次函数考察:最值问题综合(五)

2021年九年级数学中考复习专题之二次函数考察:最值问题综合(五)

2021年九年级数学中考复习专题之二次函数考察:最值问题综合(五)1.如图,抛物线y=ax2+bx+4交x轴于A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求抛物线的解析式;(2)点P是第一象限抛物线上一点,设P点的横坐标为m.过点P作PD⊥x轴,交BC 于点D,过点D作DE⊥y轴,垂足为E,连接PE,当△PDE和△BOC相似时,求点P的坐标;(3)连接AC,Q是线段BC上一动点,过Q作QF⊥AC于F,QG⊥AB于G,连接FG.请直接写出FG的最小值和此时点Q的坐标.2.图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=x ﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上.(1)求此二次函数的表达式;(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由.3.如图,直线y=x+2与x轴,y轴分别交于点A,C,抛物线y=﹣x2+bx+c经过A,C 两点,与x轴的另一交点为B.点D是AC上方抛物线上一点.(1)求抛物线的函数表达式;,(2)连接BC,CD,设直线BD交线段AC于点E,如图1,△CDE,△BCE的面积分别为S1 S,求的最大值;2(3)过点D作DF⊥AC于F,连接CD,如图2,是否存在点D,使得△CDF中的某个角等于∠BAC的两倍?若存在,求点D的横坐标;若不存在,说明理由.4.已知,抛物线y=x2+bx+c与x轴交点为A(﹣1,0)和点B,与y轴交点为C(0,﹣3),直线L:y=kx﹣1与抛物线的交点为点A和点D.(1)求抛物线和直线L的解析式;(2)如图,点M为抛物线上一动点(不与A、D重合),当点M在直线L下方时,过点M 作MN∥x轴交L于点N,求MN的最大值;(3)点M为抛物线上一动点(不与A、D重合),M'为直线AD上一动点,是否存在点M,使得以C、D、M、M′为顶点的四边形是平行四边形?如果存在,请直接写出点M的坐标,如果不存在,请说明理由.5.如图1,抛物线y=x2+2x﹣6交x轴于A、B两点(点A在点B的左侧),交y轴于C点,D点是该抛物线的顶点,连接AC、AD、CD.(1)求△ACD的面积;(2)如图1,点P是线段AD下方的抛物线上的一点,过P作PE∥y轴分别交AC于点E,交AD于点F,过P作PG⊥AD于点G,求EF+FG的最大值,以及此时P点的坐标;(3)如图2,在对称轴左侧抛物线上有一动点M,在y轴上有一动点N,是否存在以BN 为直角边的等腰Rt△BMN?若存在,求出点M的横坐标,若不存在,请说明理由.6.如图,在平面直角坐标系xOy 中,直线l :y =x +m 与x 轴、y 轴分别交于点A 和点B (0,﹣1),抛物线y =+bx +c 经过点B ,且与直线l 的另一个交点为C (4,n ).(1)求n 的值和抛物线的解析式;(2)P 是直线AC 下方的抛物线上一动点,设其横坐标为a .当a 为何值时,△APC 的面积最大,并求出其最大值.(3)M 是平面内一点,将△AOB 绕点M 沿逆时针方向旋转90°后,得到△A 1O 1B 1,点A 、O 、B 的对应点分别是点A 1、O 1、B 1,若△A 1O 1B 1的两个顶点恰好落在抛物线上,请直接写出点A 1的横坐标.7.如图1,已知抛物线y =ax 2﹣12ax +32a (a >0)与x 轴交于A ,B 两点(A 在B 的左侧),与y 轴交于点C .(1)连接BC ,若∠ABC =30°,求a 的值.(2)如图2,已知M 为△ABC 的外心,试判断弦AB 的弦心距d 是否有最小值,若有,求出此时a 的值,若没有,请说明理由;(3)如图3,已知动点P (t ,t )在第一象限,t 为常数.问:是否存在一点P ,使得∠APB 达到最大,若存在,求出此时∠APB 的正弦值,若不存在,也请说明理由.8.如图,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C.直线y=x﹣5经过点B、C.(1)求抛物线的解析;(2)点P是直线BC上方抛物线上一动点,连接PB、PC.①当△PBC的面积最大时,求点P的坐标;②在①的条件下,y轴上存在点M,使四边形PMAB的周长最小,请求出点M的坐标;③连接AC,当tan∠PBO=2tan∠ACO时,请直接写出点P的坐标.9.如图,已知二次函数y=﹣x2+bx+c的图象与x轴交于点A、C,与y轴交于点B,直线y=x+3经过A、B两点.(1)求b、c的值.(2)若点P是直线AB上方抛物线上的一动点,过点P作PF⊥x轴于点F,交直线AB于点D,求线段PD的最大值.(3)在(2)的结论下,连接CD,点Q是抛物线对称轴上的一动点,在抛物线上是否存在点G,使得以C、D、G、Q为顶点的四边形是平行四边形,若存在,请直接写出点G的坐标;若不存在,请说明理由.10.如图,已知二次函数图象的顶点坐标为C(1,0),直线y=x+m与该二次函数的图象交于A、B两点,其中A点的坐标为(3,4),B点在轴y上.(1)求m的值及这个二次函数的关系式;(2)P为线段AB上的一个动点(点P与A、B不重合),过P作x轴的垂线与这个二次函数的图象交于点E点,设线段PE的长为h,点P的横坐标为x.①求h与x之间的函数关系式,并写出自变量x的取值范围;②线段PE的长h是否存在最大值?若存在,求出它的最大值及此时的x值;若不存在,请说明理由?参考答案1.解:(1)∵抛物线y=ax2+bx+4交x轴于A(﹣1,0)、B(3,0)两点,∴,解得:,∴抛物线的解析式为:y=﹣;(2)如图1,令x=0,得y=4,∴C(0,4),∴OC=4,∵B(3,0),∴OB=3,设直线BC的解析式为y=kx+n(k≠0),则,解得:,∴直线BC的解析式为:y=﹣x+4,设P(m,﹣m2+m+4),则D(m,﹣m+4),∴DP=(﹣m2+m+4)﹣(﹣m+4)=﹣m2+4m,DE=m,∵∠BOC=∠PDE=90°,∵,∴当△PDE和△BOC相似时,∴=或,∴3PD=4ED或4PD=3ED,①当3PD=4ED时,3(﹣m2+4m)=4m,4m2﹣8m=0,m=0(舍)或2,∴P(2,4),②当4PD=3ED时,4(﹣m2+4m)=3m,解得:m=0(舍)或,∴P(,);综上,点P的坐标为:(2,4)或(,);(3)∵A(﹣1,0),C(0,4),同理可得:AC的解析式为:y=4x+4,设F(t,4t+4),﹣1<t<0,∵FQ⊥AC,∴k FQ=﹣=﹣,同理可得:FQ的解析式为:y=﹣x+t+4,则,解得:x=﹣t,∴G(﹣t,0),∴FG2=(t+t)2+(4t+4)2=,∴当t=﹣时,FG2有最小值=,∴FG的最小值是,此时Q(,).2.解:(1)对于直线y=x﹣2,令x=0,则y=﹣2,令y=0,即x﹣2=0,解得:x=4,故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=,故抛物线的表达式为y=x2﹣x﹣2①;(2)如图2,过点P作PH∥y轴交BC于点H,设点P(x,x2﹣x﹣2),则点H(x,x﹣2),S=S△PHB +S△PHC=PH•(x B﹣x C)=×4×(x﹣2﹣x2+x+2)=﹣x2+4x,∵﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)①当点Q在BC下方时,如图2,延长BQ交y轴于点H,过点C作SC⊥BC交x轴于点R,交BQ于点S,过点S作SK⊥x 轴于点K,∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RSB为等腰三角形,则点C是RS的中点,在△BOC中,tan∠OBC===tan∠ROC=,则设RC=x=SB,则BC=2x,则RB==x=BS,=×SR•BC=BR•SK,即2x•2x=KS•x,解得:KS=,在△SRB中,S△RSB∴sin∠RBS===,则tan∠RBH=,在Rt△OBH中,OH=OB•tan∠RBH=4×=,则点H(0,﹣),由点B、H的坐标得,直线BH的表达式为y=(x﹣4)②,联立①②并解得:x=4(舍去)或,当x=时,y=﹣,故点Q(,﹣);②当点Q在BC上方时,同理可得:点Q的坐标为(﹣,);综上,点Q的坐标为(,﹣)或(﹣,).3.解:(1)根据题意得A(﹣4,0),C(0,2),∵抛物线y=﹣x2+bx+c经过A、C两点,∴,∴,∴y=﹣x2﹣x+2;(2)如图1,令y=0,∴﹣x2﹣x+2=0,∴x1=﹣4,x2=1,∴B(1,0),过D作DM⊥x轴交AC于点M,过B作BN⊥x轴交AC于N,∴DM∥BN,∴△DME∽△BNE,∴==,设D(a,﹣a2﹣a+2),∴M(a,a+2),∵B(1,0),∴N(1,),∴===﹣(a+2)2+;∴当a=﹣2时,的最大值是;(3)∵A(﹣4,0),B(1,0),C(0,2),∴AC=2,BC=,AB=5,∴AC2+BC2=AB2,∴△ABC是以∠ACB为直角的直角三角形,取AB的中点P,∴P(﹣,0),∴PA=PC=PB=,∴∠CPO=2∠BAC,∴tan∠CPO=tan(2∠BAC)=,过D作x轴的平行线交y轴于R,交AC的延长线于G,情况一:如图2,∴∠DCF=2∠BAC=∠DGC+∠CDG,∴∠CDG=∠BAC,∴tan∠CDG=tan∠BAC=,即=,令D(a,﹣a2﹣a+2),∴DR=﹣a,RC=﹣a2﹣a,∴=,∴a1=0(舍去),a2=﹣2,∴x D=﹣2,情况二,∴∠FDC=2∠BAC,∴tan∠FDC=,设FC=4k,∴DF=3k,DC=5k,∵tan∠DGC==,∴FG=6k,∴CG=2k,DG=3k,∴RC=k,RG=k,DR=3k﹣k=k,∴==,∴a1=0(舍去),a2=﹣,∴点D的横坐标为﹣2或﹣.4.解:(1)将点A、C的坐标代入抛物线表达式得,解得:,故抛物线的表达式为:y=x2﹣2x﹣3①,将点A的坐标代入直线L的表达式得:0=﹣k﹣1,解得:k=﹣1,故直线L的表达式为:y=﹣x﹣1②;(2)设点M的坐标为(m,m2﹣2m﹣3),点N的纵坐标与点M的纵坐标相同,将点N的纵坐标代入y=﹣x﹣1得:m2﹣2m﹣3=﹣x﹣1,解得:x=﹣m2+2m+2,故点N(﹣m2+2m+2,m2﹣2m﹣3),则MN=﹣m2+2m+2﹣m=﹣m2+m+2,∵﹣1<0,故MN有最大值,当m=﹣=时,MN的最大值为;(3)设点M(m,n),则n=m2﹣2m﹣3③,点M′(s,﹣s﹣1),①当CD为边时,点C向右平移2个单位得到D,同样点M(M′)向右平移2个单位得到M′(M),即m±2=s且n=﹣s﹣1④,联立③④并解得:m=0(舍去)或1或,故点M的坐标为(1,﹣4)或(,)或(,);②当CD为对角线时,由中点公式得:(0+2)=(m+s)且(﹣3﹣3)=(n﹣s﹣1)⑤,联立③⑤并解得:m=0(舍去)或﹣1,故点M(1,﹣4);综上,点M的坐标为(1,﹣4)或(,)或(,).5.解:(1)令x=0,得y=x2+2x﹣6=﹣6,∴C(0,﹣6),令y=0,得y=x2+2x﹣6=0,解得,x=﹣6或2,∴A(﹣6,0),点B(2,0),设直线AC的解析式为:y=kx+b(k≠0),则,∴,∴直线AC的解析式为:y=﹣x﹣6,∵y=x2+2x﹣6=(x+2)2﹣8,∴D(﹣2,﹣8),过D作DM⊥x轴于点M,交AC于点N,如图1,则N(﹣2,﹣4),∴,∴△ACD的面积=;(2)如图1,过点D作x轴的平行线交FP的延长线于点H,由点A、D的坐标得,直线AD的表达式为:y=﹣2x﹣12,故tan∠FDH=2,则sin∠FDH=,∵∠HDF+∠HFD=90°,∠FPG+∠PFG=90°,而∠HFD=∠PFG,∴∠FPG=∠FDH,在Rt△PGF中,PF===FG,则EF+FG=EF+PF=EP,设点P(x,x2+2x﹣6),则点E(x,﹣x﹣6),则EF+FG=EF+PF=EP=﹣x﹣6﹣(x2+2x﹣6)=﹣x2﹣3x,∵﹣<0,故EP有最大值,此时x=﹣=﹣3,最大值为;当x=﹣3时,y=x2+2x﹣6=﹣,故点P(﹣3,﹣);(3)存在,理由:设点M的坐标为(m,n),则n=m2+2m﹣6①,点N(0,s),(Ⅰ)当点M在x轴下方时,①当∠MNB为直角时,如图2,过点N作x轴的平行线交过点B与y轴的平行线于点H,交过点M与y轴的平行线于点G,∵∠MNG+∠BNH=90°,∠MNG+∠GMN=90°,∴∠GMN=∠BNH,∵∠NGM=∠BHN=90°,MN=BN,∴△NGM≌△BHN(AAS),∴GN=BH,MG=NH,即n﹣s=2且﹣m=﹣s②,联立①②并解得:m=﹣2±2(舍去正值),故m=﹣2﹣2;②当∠NBM为直角时,如图3,过点B作y轴的平行线交过点N与x轴的平行线于点G,交过点M与x轴的平行线于点H,同理可证:△MHB≌△BGN(AAS),则BH=NG,即n=﹣2,当n=﹣2时,m2+2m﹣6=﹣2,解得:m=﹣2±2(舍去正值),故m=﹣2﹣2;(Ⅱ)当点M在x轴上方时,同理可得:m=﹣﹣或﹣3﹣;综上,点M的横坐标为﹣2﹣2或﹣2﹣2或﹣﹣或﹣3﹣.6.解:(1)直线l:y=x+m过点B(0,﹣1),则m=﹣1,则直线l:y=x﹣1,将点C(4,n)代入上式并解得:n=2,故点C(4,2),将点B、C的坐标代入二次函数表达式得:,解得:,故抛物线的表达式为:y=x2﹣x﹣1;(2)如图1,过点P作PD∥y轴交AC于点D,点D在线段AC上,由题意得P(a,a﹣1),则D(a,a﹣1),A(,0),∴PD==﹣+2a,∵A(,0),C(4,2),∴△APC 的面积=S △PAD +S △PDC =×PD ×(4﹣)=××=﹣(a ﹣2)2+,∴a =2时,△APC 的面积最大,最大值为.同理当点D 在线段AB 上时,S △APC =S △PDC ﹣S △PAD =×PD ×(4﹣)=﹣(a ﹣2)2+, ∴a =2时,△APC 的面积最大,最大值为.综合以上可得a =2时,△APC 的面积最大,最大值为. (3)∵△AOB 绕点M 沿逆时针方向旋转90°, ∴A 1O 1∥y 轴时,B 1O 1∥x 轴,设点A 1的横坐标为x ,①如图2,点O 1、B 1在抛物线上时,点O 1的横坐标为x ,点B 1的横坐标为x +1,∴x 2﹣x ﹣1=(x +1)2﹣(x +1)﹣1, 解得x =,②如图3,点A 1、B 1在抛物线上时,点B 1的横坐标为x +1,点A 1的纵坐标比点B 1的纵坐标大,∴x 2﹣x ﹣1=(x +1)2﹣(x +1)﹣1+, 解得x =﹣,综上所述,点A 1的横坐标为或﹣.7.解:(1)连接BC ,令y=0,得y=ax2﹣12ax+32a=0,解得,x=4或8,∴A(4,0),B(8,0),令x=0,得y=ax2﹣12ax+32a=32a,∴C(0,32a),又∠ABC=30°,∴tan∠ABC=,解得,a=;(2)过M点作MH⊥AB于点H,连接MA、MC,如图2,∴AH=BH==2,∴OH=6,设M(6,d),∵MA=MC,∴4+d2=36+(d﹣32a)2,得2ad=32a2+1,∴d=16a+=,∴当4时,有,即当a=时,有;(3)∵P(t,t),∴点P在直线y=x上,如图3,取AB的中点T,过T作MT⊥AB,以M为圆心,MA为半径作⊙M,MT与直线y=x 交于点S,P′为直线y=x上异于P的任意一点,连接AP′,交⊙M于点K,连接BK,MP,AP,BP,MB,MA,当⊙M与直线y=x相切时,有∠APB=∠AKB>∠AP′B,∴∠APB最大,此时相切点为P,设M(6,d),而T(6,0),∴S(6,6),∴∠PSM=90°﹣∠SOT=45°,又MP=MB=,∴MS==,∵MS+MT=ST=6,∴,解得,d=2(负根舍去),经检验,d=2是原方程的解,也符合题意,∴M(6,2),∴MB=2,∵∠AMB=2∠APB,MT⊥AB,MA=MB,∴∠AMT=∠BMT=∠AMB=∠APB,∴sin∠APB=sin∠BMT=.8.解(1)∵直线y=x﹣5经过点B,C,∴点B(5,0),C(0,﹣5),∵抛物线y=﹣x2+bx+c经过点B,C,∴,解得:,∴抛物线的解析式为y=﹣x2+6x﹣5①;(2)①如图1,过点P作PD⊥x轴,交BC于点D,设点P(m,﹣m2+6m﹣5),则点D的坐标为(m,m﹣5),∴PD=﹣m2+6m﹣5﹣(m﹣5)=﹣m2+5m,S=PD×OB=×(﹣m2+5m)×5=﹣m2+m=﹣,△PBC取得最大值,此时点P的坐标为(,);∵0<m<5,当m=时,S△PBC②如图2,作点P关于y轴的对称点P’,连接P’A交y轴于点M,连接MP,此时,MP+MA的值最小,∵PB,AB为定长线段,此时四边形PMAB的周长最小,∵P 的坐标为(,); ∴点P ′的坐标为(﹣,), ∵抛物线y =﹣x 2+6x ﹣5交x 轴于A ,B 两点,且B (5,0),点A 的坐标为(1,0), ∴直线P ′A 的解析式为y =﹣x +, ∴点M 的坐标为(0,);③在Rt △AOC 中,tan ∠ACO ==,则tan ∠P ′BO =2tan ∠ACO =, 如图3,当点P ′位于第一象限时,过点B 作直线BE 交抛物线于点P ′、交y 轴于点E ,∵tan ∠P ′BO ==,∴, ∴OE =2,∴E (0,2),设直线BP ′的表达式为:y =kx +2,将点B 的坐标代入上式并计算得:k =﹣, 故直线BP ′的表达式为:y =﹣x +2②,联立①②并解得:x 1=0(不合题意值舍去),x 2=, 则点P ′的坐标为(,); 当点P ″位于第四象限时,同理可得P ″(,﹣); 综上,点P 的坐标为(,)或(,﹣).9.解:(1)∵直线y=x+3经过A、B两点.∴当x=0时,y=3,当y=0时,x=﹣4,∴直线y=x+3与坐标轴的交点坐标为A(﹣4,0),B(0,3).分别将x=0,y=3,x=﹣4,y=0代入y=﹣x2+bx+c得,,解得,b=﹣,c=3,(2)由(1)得y=﹣x2﹣x+3,设点P(m,﹣m+3),则D(m,m+3),∴PD=﹣=﹣,∴当m=﹣2时,PD最大,最大值是.(3)存在点G,使得以C、D、G、Q为顶点的四边形是平行四边形,G点的坐标为或或;∵y=﹣x2﹣x+3,∴y=0时,x=﹣4或x=2,∴C(2,0),由(2)可知D(﹣2,),抛物线的对称轴为x=﹣1,设G(n,﹣n+3),Q(﹣1,p),CD与y轴交于点E,E为CD的中点,①当CD为对角线时,n+(﹣1)=0,∴n=1,此时G(1,).②当CD为边时,若点G在点Q上边,则n+4=﹣1,则n=﹣5,此时点G的坐标为(﹣5,﹣).若点G在点Q上边,则﹣1+4=n,则n=3,此时点G的坐标为(3,﹣).综合以上可得使得以C、D、G、Q为顶点的四边形是平行四边形的G点的坐标为或或;10.解:(1)∵点A(3,4)在直线y=x+m上,∴4=3+m.∴m=1.设所求二次函数的关系式为y=a(x﹣1)2.∵点A(3,4)在二次函数y=a(x﹣1)2的图象上,∴4=a(3﹣1)2,∴a=1.∴所求二次函数的关系式为y=(x﹣1)2.即y=x2﹣2x+1.(2)①设P、E两点的纵坐标分别为y P和y E.∴PE=h=y P﹣y E=(x+1)﹣(x2﹣2x+1)=﹣x2+3x.即h=﹣x2+3x(0<x<3).②存在.∵h=﹣(x﹣)2+,又∵a=﹣1<0,∴x=时,h的值最大,最大值为.。

重庆中考数学2021年应用题和二次函数专题训练及答案(1)

重庆中考数学2021年应用题和二次函数专题训练及答案(1)

重庆中考数学2021年应用题和二次函数专题训练及答案(1)重庆中考数学2021年应用题和二次函数专题训练及答案(1)1.超市首次从生产基地以3000元的价格购买了某种水果,并很快售罄。

该公司第二次以2400元购买了同一品种的水果。

第二次购买每公斤水果的购买价格是第一次的1.2倍,重量比第一次少20公斤(1)求两次购进水果每千克的进价分别是多少元?(2)在两个购买水果的运输过程中,总重量减少了10%。

如果两种水果的售价相同,超市必须在所有水果售完后获得至少20%的总利润,那么每公斤水果的最低售价应该是多少?(结果保持整数)解:(1)设第一次购进水果单价x元,则第二次购进水果单价1.2x元由题意得3000x-24001.2x=20,解决方案是:x=50,经检验的x=50是原方程的解,而1.2x=60,因此,两次购买的水果每公斤售价分别为50元和60元。

(2)最低应为每公斤y元,购买的水果总质量为:(300050+240060)=100公斤,由题意得:100×90%y-3000-2400≥5400×20%,解得:y≥72,A:水果的最低价格应该是每公斤72元2.一水果店主分两批购进同一种水果,第一批所用资金为2400元,因天气原因,水果涨价,第二批所用资金是2700元,但由于第二批单价比第一批单价每箱多10元,以致购买的数量比第一批少25%.(1)水果主人买了两次多少盒这种水果?(2)该水果店主计划第一批水果每箱售价定为40元,第二批水果每箱售价定为50元,每天销售水果30箱.实际销售时按计划售完第一批后发现第二批水果品质不如第一批,必须打折销售才能保证每天销售水果30箱.在销售过程中,该店主每天还需要支出其他费用60元,为了使这两批水果销售完后总利润率不低于30%,那么该店主销售第二批水果时最低可打几折?解决方案:(1)方法1:如果第一次购买x盒,那么第二次购买x盒(1-25%)=0.75x盒。

2021年数学二次函数中考真题(附解析)

2021年数学二次函数中考真题(附解析)

2021年数学二次函数中考真题(附解析)一、选择题(共5小题;共25分)1. 抛物线的顶点坐标是A. B.2. 下列函数中,属于二次函数的是A. B.C. D.3. 将抛物线向左平移个单位,再向上平移个单位后,所得抛物线顶点坐标是A. C. D.4. 二次函数的图象如图所示,那么点在A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 下列对二次函数的图象的描述中,不正确的是A. 抛物线开口向下B. 抛物线的对称轴是直线C. 抛物线与轴的交点坐标是D. 抛物线的顶点坐标是二、填空题(共15小题;共75分)6. 如果抛物线开口向下,那么的取值范围是.7. 已知点,为函数的图象上的两点,若,则(填“”、“”或“”).8. 如果抛物线过点,且与轴的交点是,那么抛物线的对称轴是直线.9. 已知二次函数的图象经过原点,则的值是.10. 如果抛物线的对称轴是轴,那么顶点坐标为.11. 已知一条抛物线经过点,且在对称轴右侧的部分是下降的,该抛物战的表达式可以是(写出一个即可).12. 如果抛物线的顶点在轴上,那么常数的值是.13. 如果某抛物线开口方向与抛物线的开口方向相同,那么该抛物线有最点(填“高”或“低”)14. 如图,已知点是抛物线图象上一点,将点向下平移个单位到点,再把绕点顺时针旋转得到点,如果点也在该抛物线上,那么点的坐标是.15. 如果点,在二次函数图象上,那么(填,,).16. 将抛物线先向左平移个单位,再向下平移个单位后,所得抛物线的表达式是.17. 已知二次函数(为常数),若该函数图象与轴只有一个公共点,则.18. 抛物线的对称轴是直线.19. 若抛物线的顶点为,抛物线的顶点为,且满足顶点在抛物线上,顶点在抛物线上,则称抛物线与抛物线互为“关联抛物线”,已知顶点为的抛物线与顶点为的抛物线互为“关联抛物线”,直线与轴正半轴交于点,如果,那么顶点为的抛物线的表达式为.20. 定义:直线与抛物线两个交点之间的距离称作抛物线关于直线的“割距”,如图,线段长就是抛物线关于直线的“割距”.已知直线与轴交于点,与轴交于点,点恰好是抛物线的顶点,则此时抛物线关于直线的割距是.三、解答题(共10小题;共130分)21. 我们将平面直角坐标系中的图形和点给出如下定义:如果将图形绕点顺时针旋转得到图形,那么图形称为图形关于点的“垂直图形”.已知点的坐标为,点的坐标为,关于原点的“垂直图形”记为,点,的对应点分别为点,.(1)请写出:点的坐标为;点的坐标为;(2)请求出经过点,,的二次函数解析式;(3)请直接写出经过点,,的抛物线的表达式为.22. 已知抛物线上部分点的横坐标与纵坐标的对应值如下表:(1)求该抛物线的表达式;(2)将抛物线沿轴向右平移个单位,使得新抛物线经过原点,求的值以及新抛物线的表达式.23. 如图,在平面直角坐标系中,二次函数的图象与轴交于和点(点在点的左侧),与轴交于点,且.(1)求这个函数的解析式,并直接写出顶点的坐标;(2)点是二次函数图象上一个动点,作直线轴交抛物线于点(点在点的左侧),点关于直线的对称点为,如果四边形是正方形,求点的坐标;(3)若射线与射线相交于点,求的大小.24. 如图,在平面直角坐标系中,已知抛物线经过点和点,顶点为点.(1)求直线的表达式;(2)求的值;(3)设线段与轴交于点,如果点在轴上,且与相似,求点的坐标.25. 如图,抛物线与轴相交于点,与轴交于点,为线段上的一个动点,过点作轴的垂线,交直线于点,交该抛物线于点.(1)求直线的表达式,直接写出顶点的坐标;(2)当以,,为顶点的三角形与相似时,求点的坐标;(3)当时,求与的面积之比.26. 二次函数的自变量的取值与函数的值列表如下:(1)根据表中的信息求二次函数的解析式,并用配方法求出顶点的坐标;(2)请你写出两种平移的方法,使平移后二次函数图象的顶点落在直线上,并写出平移后二次函数的解析式.27. 已知,二次函数的图象与轴交于点,点,与轴交点.(1)求二次函数解析式;(2)设点为轴上一点,且,求的值;(3)若点是直线上方抛物线上一动点,连接,过点作,交于点,求线段的最大值及此时点的坐标.28. 在平面直角坐标系中,抛物线与轴交于点和点(点在轴的正半轴上),与轴交于点,已知.(1)求顶点和点的坐标;(2)将抛物线向右平移个单位,得到的新抛物线与轴交于点,求点的坐标和的面积;(3)如果点在原抛物线的对称轴上,当与相似时,求点的坐标.29. 已知开口向上的抛物线与轴的交点为,顶点为,点与点关于对称轴对称,直线与交于点.(1)求点的坐标,并用含的代数式表示点的坐标;(2)当时,求抛物线的表达式;(3)当时,求的长.30. 如图,在平面直角坐标系中,抛物线与轴交于,两点与轴交于点,点是抛物线的顶点,抛物线的对称轴与交于点,与轴交于点.(1)求抛物线的对称轴及点的坐标;(2)如果,求抛物线的表达式;(3)在()的条件下,已知点是该抛物线对称轴上一点,且在线段的下方,,求点的坐标.答案第一部分1. A【解析】由,根据顶点式的坐标特点可知,顶点坐标为.2. C【解析】A、是二次根式的的形式,不是二次函数,故本选项不符合题意;B、,不是二次函数,故本选项不符合题意;C、是二次函数,故本选项符合题意;D、,不是二次函数,故本选项不符合题意;故选:C.3. D【解析】抛物线化成顶点式为,顶点坐标为,将抛物线向左平移个单位,再向上平移个单位后,所得抛物线的顶点坐标是.4. C【解析】由函数图象可得:抛物线开口向上,,又对称轴在轴右侧,,,又图象与轴交于负半轴,,,在第三象限.故选:C.5. C【解析】,抛物线的开口向下,故选项A正确,不符合题意;对称轴为直线,故选项B正确,不符合题意;当时,,即抛物线与轴的交点坐标是,故选项C错误,符合题意;顶点坐标为,故选项D正确,不符合题意.第二部分6.【解析】抛物线开口向下,,即.7.【解析】根据题意得:抛物线的对称轴为直线,且开口向下,在对称轴的左侧随的增大而增大,,.8.【解析】当和时,的值都是,该抛物线的对称轴是直线.【解析】二次函数的图象经过原点,..10.【解析】中,,故,解得,故抛物线为,将代入有,故顶点坐标为.故答案为:.11.【解析】在对称轴右侧部分是下降,设抛物线的解析式可以为,经过点,解析式可以是.12.【解析】,二次函数顶点坐标为,顶点在轴上,,13. 低【解析】抛物线开口方向与抛物线的开口方向相同,抛物线中,开口方向向上,该抛物线有最低点.【解析】点是抛物线图象上一点,故设,将点向下平移个单位到点,故把绕点顺时针旋转得到点,如图,过点作于,过点作于,,,,故,,故,把代入,,解得,.15.【解析】二次函数的图象的对称轴是直线,且,在对称轴的右边随的增大而增大,点,是二次函数的图象上两点,,16.【解析】抛物线先向左平移个单位,再向下平移个单位后,所得抛物线的表达式是:,即,故答案为:.17.【解析】二次函数图象与轴有且只有一个公共点,,解得:.18.【解析】抛物线的对称轴方程,抛物线的对称轴是.即对称轴是.19.【解析】设顶点为的抛物线顶点坐标为,已知抛物线的顶点坐标为,,,即,解得,直线与轴正半轴交于点,点坐标为,则直线解析式为,点在直线上,点也在抛物线,故有化简得联立得,化简得,解得或(舍),将代入有,解得故点坐标为,则顶点为的抛物线的表达式为,将代入有,化简得,解得,故顶点为的抛物线的表达式为.20.【解析】直线与轴的交点,点坐标为,是抛物线的顶点,抛物线解析式为,解得或直线与抛物线的两个交点坐标为,,抛物线关于直线的割距是.第三部分21. (1);【解析】根据题意作下图:根据旋转的性质得:,,,.(2)设过点,,的二次函数解析式为:,将点,,分别代入中得:解得:,,,.(3)【解析】设过点,的二次函数解析式为:,将点,,分别代入中得:解得:,,,.22. (1),;,,抛物线的对称轴为直线,则抛物线的顶点坐标为,设抛物线解析式为,把代入得,解得,抛物线解析式为.(2)将抛物线沿轴向右平移个单位,得到,经过原点,,解得,(舍去),,新抛物线的表达式为.23. (1)因为抛物线为的对称轴为直线,,所以,,把代入得,所以,所以抛物线的解析式为,;【解析】因为,所以;(2)因为四边形是正方形,所以是等腰直角三角形,连接交于点,所以,设,,则,即,,解得(舍),,所以;(3)因为,,,,所以直线:,直线:,所以点,,所以,作,所以,,所以,所以是等腰直角三角形,所以.24. (1)抛物线经过点,,解得:,抛物线解析式为,当时,,点的坐标为,设直线的解析式为,把,,代入得:解得:直线的解析式为;(2)如图,连接,,,点的坐标为,,,,,,,为直角三角形,;(3)设直线的解析式为,把点,代入得:解得:直线的解析式为,当时,,点的坐标为,当时,,如图,过点作轴于点,则,,,,由()知,,,,,点的坐标为;当时,,此时点与点重合,点的坐标为,综上所述,点的坐标为.25. (1)令,则,或,,令,则,,设直线的解析式为;;【解析】,.(2),,是直角三角形,设,①如图,当时,,,,(舍)或,;②如图,当时,过点作交于点,,,,,,即,,,,(舍)或,;综上所述:点的坐标为或.(3)如图,作的垂直平分线交轴于点,连接,过点作于点,,,,,在中,,,,,,,设,则,,,,,,,,,,,.26. (1)因为二次函数过,,设,把代入抛物线的解析式可得:,解得:,所以抛物线为:.而,所以顶点坐标为:.(2)因为平移后二次函数图象的顶点落在直线上,所以顶点的横坐标与纵坐标相等,而顶点坐标为:,当顶点坐标变为:时,把抛物线向下平移个单位长度即可;此时抛物线为:,当顶点坐标变为:时,把抛物线向右平移个单位长度即可.此时抛物线为:.27. (1)把,代入中,得解得:,,.(2)在二次函数解析式为,令,则,则点坐标,而,,,,,,.(3)设直线为:,把和代入得:解得:,,,过点作轴,交于点,,,是等腰直角三角形,,设点,则,,当且仅当时,的最大值是,当点时,的最大值是.28. (1),.(2),.(3).29. (1)令,可得,点的坐标为,抛物线的对称轴为:,点的坐标为,令,可得,顶点的坐标为.(2)如图:当时,即是直角三角形,,,解得,抛物线的表达式为:或.(3)如图:在抛物线的对称轴上,,,,,点,点,直线的解析式为,点坐标为,,或,解得或,点的坐标为或,设直线的解析式为,则或解得:或直线的解析式为或.或解得:或点的坐标为或,,的长为或.30. (1)二次函数,对称轴是,,,,.(2)二次函数,在轴上,的横坐标是,纵坐标是,轴平行于对称轴,,,,,的纵坐标是的横坐标是对称轴,,,解这个方程组得:,.(3)假设点在如图所示的位置上,连接,,,与相交于点,由()可知:,,,,,,,,,,,,,,设,,,,,解这个方程组得:,,点在线段的下方,(舍去),.。

2021年重庆年中考25题二次函数综合专题(3)

2021年重庆年中考25题二次函数综合专题(3)

2021重庆年中考25题二次函数综合专题(3)1(巴蜀2021级初三上定时训练二)如图,已知二次函数2y ax bx c =++的图像与x 轴交于A 、B ,与y 轴交于点C , ∠ACB=90,且OC=2OA 。

(1)求此二次函数的关系式;(2)若点P 为直线BC 上方抛物线上的一动点,PM ⊥BC 与M ,PN//y 轴交BC 于N ,求△PMN 的周长的最大值及此时P 的坐标;(3)过点A 作BC 的平行线交抛物线与D 、E 为直线AD 上一动点,F 为平面内一动点,当以B 、C 、E 、F 为顶点的四边形为菱形是,请直接写出点E 的坐标。

2(重庆一外2021级九上第四次周考)如图1,3y x =+与x 轴交于点B ,作点A 关于y 轴的对称点C ,连接BC ,作∠ABD 的平分线交x 轴于点D. (1)求线段CD 的长;(2)如图2,点E 为直线AB 位于y 轴右侧部分图像的一点,连接CE ,当32BCEABCSS =时,点F 为直线BC 上的一动点,当EF DF -的值最大时,求EF DF -的最大值及此时点F 的坐标;(3)将△BOD 沿水平方向平移个单位得到'''B O D △绕点'D 逆时针防线旋转,旋转角毒α满足0180α<<,在旋转的过程中直线''O B 分别于直线AB 、直线AC 交于点M 、点N ,是否存在某一时刻是的△AMN 是以∠MAN 为底角的等腰三三角形?若存在请直接写出AN 的长;若不存在请说明理由。

3(重庆育才成功学校2021级九上第一次周考)如图,抛物线23233y x x =-++与x 轴相交于点A 、B 两点,交y 轴于点C (A 点在B 点左侧),连接AC 、BC 。

(1)若点M 为线段BC 上方的抛物线上的一动点,过点M 作MN//y 轴交BC 于点N 当23MN 长度最大时,求点M 的坐标;(2)点P 为直线BC 上一动点,点Q 为抛物线上一动点,是否存在这样的点P 、Q 使得以O 、C 、P 、Q 为顶点的四边形时平行四边形?若存在。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

word
版初中数学类型一:面积问题
重庆2021年中考数学专题二次函数(新题型)
1、(西附初
2020 九上十二月周考)已知抛物线y =ax2 +b +c 经过点A(-1, 0),且经过直线y =x - 3
与x 轴的交点B 及与y 轴的交点C。

(1)求抛物线的解析式;
(2)求抛物线的顶点坐标;
(3)将直线BC 向左平移27
个单位,与抛物线交于点E、F,与x 轴交于点G,求△BEF 的面积。

4
2、(巴蜀初2020 九下自主测试二)如图,在平面直角坐标系中,抛物线y =a (x + 1)(x- 3)与x 轴
交于点A、B(点A 在点B 的左侧),交y 轴于点C (0, - 3 ),连接BC。

(1)求a 的值及直线BC 的解析式;
(2)如图,点D 为直线BC 下方抛物线上动点,过D 作DE⊥BC 于点E,过D 作直线DF⊥x 轴
于点F,交BC 于点G,若S
∆DEG : S
∆BFG
= 1: 4 ,求点D 的坐标。

3、(八中初2020 九下定时练习四)如图,抛物线y =ax2 +bx + 6 经过点A(-2, 0), B (4, 0)两点,与y 轴交于点C,点D 是抛物线上一个动点,设点D 的横坐标为m,连接AC,BC,DB,DC。

(1)求抛物线的函数表达式;
(2)△BCD 的面积等于△AOC 的面积的3
时,求点D 的坐标。

4
点,与y 轴交于点C,且OA =OC 。

(1)求抛物线的解析式;
(2)点D 是抛物线顶点,求△ACD 的面积;
(3)如图2,射线AE 交抛物线于点E,交y 轴的负半轴于点F(点F 在线段AE 上),点P 是直
线AE 下方抛物线上的一点,当S
∆ABE =
22
时,求△APE 面积的最大值和此时点P 的坐标。

9
C (0, -3) 三点,直线l 是抛物线的对称轴。

(1)求抛物线的函数解析式;
(2)设点 M 是直线上的一个动点,当点 M 到点 A ,点 C 的距离之和最短时,求点 M 的坐标;
(3)在抛物线上是否存在点 N ,使 S
理由。

∆ABN
= 4
S 3
∆ABC
,若存在,求出点 N 的坐标;若不存在,说明
6、(西附初2020 九上期末)如图,对称轴为直线x = 1 的抛物线y =x2 +bx +c 与x 轴交于A、B 两点,与y 轴交于点C,连接AC、AD,其中A 点坐标(-1, 0)。

(1)求抛物线的解析式;
(2)直线y =3
x - 3 与抛物线交于点C,D,与x 轴交于点E,求△CD 的面积;2
(3)在直线CD 下方抛物线上有一点Q,过Q 作QP⊥y 轴交直线CD 于点P,四边形PQBE 为平行四边形,求点Q 的坐标。

7、(一中初2020 九上期末)如图所示,在平面直角坐标系中,抛物线y =ax2 +bx + 4 与x 轴交于点A(-2, 0), B (8, 0),与y 轴交于点C。

(1)求抛物线的解析式和点 C 的坐标;
(2)连接AC,BC,点P 是直线BC 上方抛物线上的动点,连接PC、PB,若有S 求出点P 的横坐标;∆PBC
=
1
S
2∆ABC

(3)若将抛物线沿直线AC 方向移一定距离得到新抛物线L,且抛物线L 满足当1 ≤x ≤ 3 时,有最大值为0,直接写出抛物线L 的对称轴。

类型二:角度问题
1、(融侨南开初2020 九上期末)如图1,抛物线y =-x2 +bx +c 与x 轴交于点A、点B,与y 轴交于点C (0,3),对称轴为直线x = 1 ,交x 轴于点D,顶点为点E。

(1)求该抛物线的解析式;
(2)连接AC,CE,AE,求△ACE 的面积;
(3)如图2,点F 在y 轴上,且OF = 2 ,点N 是抛物线在第一象限内一动点,且在抛物线对称轴右侧,连接ON 交对称轴于点G,连接GF,若GF 平分∠OGE,求点N 的坐标。

2、(一外初2020 九上期末)矩形OABC 在平面直角坐标系中的位置如图所示,A,C 两点的坐标分
别为A(6, 0),C (3, 0),直线y =-3
x +
9
与BC 边相交于点D。

4 2
(1)求点D 的坐标;
(2)若抛物线y =ax2 +bx (a ≠ 0)经过A,D 两点(如图1),且点N (1, n)在该抛物线上,求四边形ADCN 的面积;
(3)设(2)中的抛物线的对称轴与直线AD 交点M(如图2),点P 为对称轴上一动点,若∠ADP =∠ADB ,求符合条件的所有点P 的坐标。

3、(巴蜀初2020 九上期末复习四)如图,在平面直角坐标系xOy 中,抛物线y =-x2 +bx +c 与x 轴相交于原点O 和点B (4, 0),点A(3, m)在抛物线上。

(1)求抛物线的表达式,并写出它的对称轴;
(2)求tan ∠OAB 的值;
(3)点D 在抛物线的对称轴上,如果∠BAD = 45︒,求点D 的坐标。

4、(巴蜀初2020 九上周考七)若二次函数y =ax2 +bx +c 的图象与x 轴、y 轴分别交于点A(3, 0)、
B (0, 2),且过点
C (2, -2)。

(1)求二次函数表达式;
= 4 ,求点P 的坐标;
(2)若点P 为抛物线上第一象限内的点,且S
∆PBA
(3)在AB 下方的抛物线上是否存在点M,使∠ABO =∠ABM ,若存在,求出点M 的横坐标;若不存在,请说明理由。

5、8、(八中初2020 九下定时练习三)如图1,抛物线y =ax2 +bx + 3 与x 轴交于点A(-1, 0)、点B 与y 轴交于点C,顶点为点D,且D 的横坐标为1,对称轴交x 轴于点E,交BC 于F。

(1)求顶点D 的坐标;
(2)如图2,过点C 的直线交直线BD 于点M,交抛物线于点N。

①若直线CM 将△BCD 分成的两部分面积分成2 :1 的两部分,求点M 的坐标;
②若∠NCB =∠DBC ,求点N 的坐标。

6、(巴蜀初2020 九上期末)如图1,若二次函数y =ax2 +bx +c 的图像与x 轴交于点A(1, 0), B ,与y 轴交于点C (0, 4),连接AC、BC,且抛物线的对称轴为直线x =3 。

2
(1)求二次函数的解析式;
(2)若点P 是抛物线在一象限内BC 上方一动点,且点P 在对称轴的右侧,连接PB、PC,是否
存在点P,使S
∆PBC =
3
S
5∆ABC
?若存在,求出点P 的坐标;若不存在,说明理由;
(3)如图2,若点Q 是抛物线上一动点,且满足∠QBC = 45︒-∠ACO ,请直接写出点Q 坐标。

7、(巴蜀初2020 九上期末复习三)如图,抛物线y =ax2 +bx +c 经过点B (4, 0), C (0, -2),对称轴为直线x = 1 ,与x 轴的另一个交点为点A。

(1)求抛物线的解析式;
(2)点M 从点A 出发,沿AC 向点C 运动,速度为1 个单位长度/秒,同时点N 从点B 出发,沿BA 向点A 运动,速度为2 个单位长度/秒,当点M、N 有一点到达终点时,运动停止,连接MN,设运动时间为t 秒,当t 为何值时,AMN 的面积S 最大,并求出S 的最大值;
(3)在y 轴上是否存在点P,使得∠BPC =1
∠BCO ,若存在,求出点P 的坐标;若不存在,请2
说明理由。

8、(巴蜀初 2020 九下自主测试三)如图,抛物线 y = ax 2 + 2x + c (a < 0) 与 x 轴交于点 A 和点 B (点
A 在原点的左侧,点
B 在原点的右侧),与 y 轴交于点
C , OB = OC = 3 。

(1)求该抛物线的函数解析式;
(2)如图 1,连接 BC ,点 D 是直线 BC 上方抛物线上的点,连接 OD ,CD ,OD 交 BC 于点 F , 当 S ∆COF : S ∆CDF = 3 : 2 时,求点 D 的坐标;
(3)如图 2,点 E 的坐标为⎛ 0, - 3 ⎫ ,在抛物线上是否存在点 P ,使∠OBP = 2∠OBE ?若存在,
2 ⎪
⎝ ⎭
请直接写出符合条件的点 P 的坐标;若不存在,请说明理由。

相关文档
最新文档