随机信号处理实验报告讲诉
随机信号分析实验报告

随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。
随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。
实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。
实验原理:随机信号可以分为离散随机信号和连续随机信号。
离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。
常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。
实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。
实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。
2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。
3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。
4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。
5.计算统计特性:计算随机信号的均值、方差等统计特性。
6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。
实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。
通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。
通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。
通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。
结论:本实验通过对随机信号的分析,加深了对随机信号的理解。
通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。
2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。
随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。
-随机信号分析实验报告

-随机信号分析实验报告H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:随机信号分析院系:电⼦与信息⼯程学院班级:姓名:学号:指导教师:实验时间:实验⼀、各种分布随机数的产⽣(⼀)实验原理1.均匀分布随机数的产⽣原理产⽣伪随机数的⼀种实⽤⽅法是同余法,它利⽤同余运算递推产⽣伪随机数序列。
最简单的⽅法是加同余法)(mod 1M c y y n n +=+My x n n 11++= 为了保证产⽣的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。
加同余法虽然简单,但产⽣的伪随机数效果不好。
另⼀种同余法为乘同余法,它需要两次乘法才能产⽣⼀个[0,1]上均匀分布的随机数)(mod 1M ay y n n =+ My x n n 11++= 式中,a 为正整数。
⽤加法和乘法完成递推运算的称为混合同余法,即 )(mod 1M c ay y n n +=+ M y x n n 11++=⽤混合同余法产⽣的伪随机数具有较好的特性,⼀些程序库中都有成熟的程序供选择。
常⽤的计算语⾔如Basic 、C 和Matlab 都有产⽣均匀分布随机数的函数可以调⽤,只是⽤各种编程语⾔对应的函数产⽣的均匀分布随机数的范围不同,有的函数可能还需要提供种⼦或初始化。
Matlab 提供的函数rand()可以产⽣⼀个在[0,1]区间分布的随机数,rand(2,4)则可以产⽣⼀个在[0,1]区间分布的随机数矩阵,矩阵为2⾏4列。
Matlab 提供的另⼀个产⽣随机数的函数是random('unif',a,b,N,M),unif 表⽰均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的⾏和列。
2.随机变量的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系⽤显式表达,那么就可以利⽤⼀种分布的随机变量通过变换得到另⼀种分布的随机变量。
随机信号分析实验报告

实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。
二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。
随机信号实验报告(模板)(1)

随机信号实验报告学院通信工程学院专业信息工程班级 1401051班制作人文杰制作人晓鹏一、 摘要根据实验的要求与具体容,我们组做了一下分工,XXX 完成了本次的第一组实验即基于MATLAB 的信号通过线性系统与非线性系统的特性分析,具体容有(高斯白噪声n ,输入信号x ,通过线性与非线性系统的信号a,b,y1,y2的均值,均方值,方差,自相关函数,概率密度,功率谱密度以及频谱并把它们用波形表示出来),XXX 和XXX 两人合力完成了基于QUARTUS II 的2ASK 信号的产生及测试实验具体容有(XXX 负责M 序列发生器以及分频器,XXX 负责载波的产生以及开关函数和管脚配置),最后的示波器调试以及观察2ASK 信号的FFT 变换波形由我们组所有人一起完成的。
二、实验原理及要求实验一、信号通过线性系统与非线性系统的特性分析1、实验原理① 随机过程的均值(数学期望):均值表示集合平均值或数学期望值。
基于随机过程的各态历经性,可用时间间隔T 的幅值平均值表示,即:均值表达了信号变化的中心趋势,或称之为直流分量。
② 随机过程的均方值:信号x(t)的均方值,或称为平均功率,其表达式为:均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。
③ 随机信号的方差: 信号x(t)的方差定义为:描述了信号的静态量,方差反映了信号绕均值的波动程度。
在已知均值和均方值的前提下,方差就很容易求得了。
④随机信号的自相关函数信号的相关性是指客观事物变化量之间的相依关系。
对于平稳随机过程X(t)和Y(t)在两个不同时刻t和t+τ的起伏值的关联程度,可以用相关函数表示。
在离散情况下,信号x(n)和y(n)的相关函数定义为:τ,t=0,1,2,……N-1。
⑤随机过程的频谱:信号频谱分析是采用傅立叶变换将时域信号x(t)从另一个角度来了解信号的特征。
时域信号x(t)的傅氏变换为:⑥随机过程的功率谱密度:随机信号的功率普密度是随机信号的各个样本在单位频带的频谱分量消耗在一欧姆电阻上的平均功率的统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。
2011秋随机信号实验报告模板

实验一一、实验目的熟悉并练习使用Matlab 的函数,明确各个函数的功能说明和内部参数的意义二、实验内容和步骤实验代码:A = [1 2 3; 3 3 6; 4 6 8; 4 7 7];rand(3)randn(3)n3 = normrnd([1 2 3;4 5 6],0.1,2,3)mean(A)mean(A,2)var(A)%%%xcorr%%%%%ww = randn(1000,1);[c_ww,lags] = xcorr(ww,10,'coeff');figure(7);stem(lags,c_ww) %%%%%%%%%%%%%%%%%%%%%%%%% %常用的傅立叶变换是找到在嘈杂的域%信号下掩埋了信号的频率成分。
%考虑数据采样在1000赫兹。
现有一信号%由以下部分组成,50赫兹振幅%为0.7的正弦和120赫兹振幅为1的正弦%并且受到一些零均值的随机噪声的污染%%%%%%%%%%%%%%%%%%%%%%%%% Fs = 1000; % 采样频率T = 1/Fs; % 采样时间L = 1000; % 信号长度t = (0:L-1)*T; % 时间矢量% 50赫兹正弦波与120赫兹正弦波的和x = 0.7*sin(2*pi*50*t) + sin(2*pi*120*t); y = x + 2*randn(size(t)); % 正弦波加噪声figure(6);plot(Fs*t(1:50),y(1:50)) %画此信号的时域图title('Signal Corrupted with Zero-Mean Random Noise')xlabel('time (milliseconds)')%这在寻找原始信号的频率成分上是很难%确定的。
转换到频域,噪音信号Y%的傅立叶变换采取快速傅立叶变换%(FFT):NFFT = 2^nextpow2(L); %y长度L附近%的幂级数Y = fft(y,NFFT)/L;f = Fs/2*linspace(0,1,NFFT/2+1); % 单边拉普拉斯变换plot(f,2*abs(Y(1:NFFT/2+1))) %画单边频谱图title('Single-Sided Amplitude Spectrum of y(t)')xlabel('Frequency (Hz)')ylabel('|Y(f)|') %%%%%%%%%%%%%%%%%%%%%%%%% mu = [0:0.1:2];[y i] = max(normpdf(1.5,mu,1));MLE = mu(i) %%%%%%%%%%%%%%%%%%%%%%%%% p = normcdf([-1 1]);p(2) - p(1) %%%%%%%%%%%%%%%%%%%%%%%%% x = 0.1:0.1:0.6;y = unifpdf(x) %%%%%%%%%%%%%%%%%%%%%%%%% probability = unifcdf(0.75) %%%%%%%%%%%%%%%%%%%%%%%%% x = 0:0.1:3;p = raylpdf(x,1);figure(5);plot(x,p) %%%%%%%%%%%%%%%%%%%%%%%%% x = 0:0.1:3;p = raylcdf(x,1);figure(4);plot(x,p) %%%%%%%%%%%%%%%%%%%%%%%%% y = exppdf(5,1:5) %%%%%%%%%%%%%%%%%%%%%%%%% mu = 10:10:60;p = expcdf(log(2)*mu,mu) %%%%%%%%%%%%%%%%%%%%%%%%% n = 5;X = pascal(n)R = chol(X)X(n,n) = X(n,n)-1 %%%%%%%%%%%%%%%%%%%%%%%%% x = [randn(30,1); 5+randn(30,1)];[f,xi] = ksdensity(x);figure(3);plot(xi,f); %%%%%%%%%%%%%%%%%%%%%%%%% x = -2.9:0.1:2.9;y = randn(10000,1);hist(y,x) %%%%%%%%%%%%%%%%%%%%%%%%% %求y=x*log(1+x)在[0 1]上的定积分,积分%变量为系统默认syms x;S=x.*log(1+x) Y=int(S,x,0,1) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 2 %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %(1)产生数学期望为0,方差为1 的高斯随机变量SIGMA=sqrt(1);n2 = normrnd(0,SIGMA,[2 5]) %两行五列数学期望为0,方差为1 的高斯随机变量%产生数学期望为5,方差为10 的高斯随机变量SIGMA=sqrt(10);n2 = normrnd(5,SIGMA,[2 5])%利用计算机求上述随机变量的100个样本的数学期望和方差n1 = normrnd(0,1,[1 100]);SIGMA=sqrt(10);n2 = normrnd(5,SIGMA,[1 100]);M1 = mean(n1)M2 = mean(n2)V1 = var(n1)V2 = var(n2) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 3 %%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %产生自由度为2,数学期望为2,方差为 4 的具有中心2χ分布的随机变量SIGMA=sqrt(2);n1 = normrnd(2,SIGMA);n2 = normrnd(2,SIGMA);y=(n1).^2+(n2).^2%产生自由度为2,数学期望为4,方差为12 的具有中心2χ分布的随机变量SIGMA=sqrt(12);n1 = normrnd(4,SIGMA);n2 = normrnd(4,SIGMA);y=(n1).^2+(n2).^2%利用计算机求上述随机变量的100个样本的数学期望和方差,并与理论值比较SIGMA=sqrt(2);n1 = normrnd(2,SIGMA,[1 100]);n2 = normrnd(2,SIGMA,[1 100]);y=(n1).^2+(n2).^2M1 = mean(y)V1 = var(y)SIGMA=sqrt(12);n1 = normrnd(2,SIGMA,[1 100]);n2 = normrnd(2,SIGMA,[1 100]);y=(n1).^2+(n2).^2M1 = mean(y)V1 = var(y) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 4 %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %利用Matlab 现有pdf 和cdf 函数,画出均值为零、方差为4 的%高斯随机变量的概率密度曲线和概率分布曲线x=-10:0.1:10;Y1 = normpdf(x,0,2);Y2=normcdf(x,0,2);figure(1);plot(x,Y1)figure(2);plot(x,Y2) %%%%%%%%%%%%%%%%%%%%%%%%% %%%%%% 5 %%%%%% %%%%%%%%%%%%%%%%%%%%%%%%% %产生长度为1000 数学期望为5,方差为10 的高斯随机序列,%并根据该序列值画出其概率密度曲线。
实验报告随机信号

实验报告通信信号分析与处理专业通信工程学号j130510401姓名王溪岩日期2016.1.10通信信号分析与处理实验指导书11、实验过程与仿真该实验主要包括函数确定、参数选择、仿真和分析几个部分,具体仿真程序和结果分析如下:1.1二项分布随机过程1.1.1信号产生1)高斯分布随机过程:n=input('n=');x=0.25;o=1;m=1;R=normrnd(x,o,m,n);subplot(3,1,1);plot(R)R_a=xcorr(R);subplot(3,1,2);plot(R_a)Pf=abs(fft(R_a,2048));subplot(3,1,3);plot(Pf)(n输入1000,5000,10000)运行结果:2结果分析:由图可看出,高斯随机分布的均值几乎在一条直线上,可看作为恒定值,与时间无关;自相关函数是仅与时间间隔T有关的函数,高斯随机分布为平稳过程;当n=1000时,值返回到0时的值,此时的自相关系数最大,表明自己与本身的自相关程度最高。
2)均匀分布:m=1;n=input('n=');a=0;b=0.5;R=unifrnd(a,b,m,n);R_a=xcorr(R);subplot(3,1,1);plot(R);title('均匀随机分布');Pf=abs(fft(R_a,10000));3subplot(3,1,2);plot(R_a);title('自相关');subplot(3,1,3);plot(Pf);title('功率');结果分析:自相关系数在时间间隔为1的时候最高。
3)二项分布n=input('n=');m=1;p=0.02;N=1;R=binornd(N,p,m,n);subplot(3,1,1)plot(R);R_a=xcorr(R);subplot(3,1,2)4plot(R_a)Pf=abs(fft(R_a,10000));subplot(3,1,3);plot(Pf)运行结果:结果分析:二项随机分布的值在0.5左右震荡,均值为0.5,与时间无关;自相关函数为仅与时间间隔t有关的函数,该过程为平稳过程。
南京理工大学随机信号处理实验报告

题目:雷达线性调频信号的脉冲压缩处理线性调频脉冲信号,时宽10us,带宽40MHz,对该信号进行匹配滤波后,即脉压处理,处理增益为多少,脉压后的脉冲宽度为多少?用图说明脉压后的脉冲宽度,内差点看4dB带宽,以该带宽说明距离分辨率与带宽的对应关系。
1.程序为:T=10e-6;B=112e6;Rmin=8500;Rmax=11500;R=[9000,10000,10020];RCS=[1 1 1 ];C=3e8;K=B/T;Rwid=Rmax-Rmin;Twid=2*Rwid/C;Fs=10*B;Ts=1/Fs;Nwid=ceil(Twid/Ts);t=linspace(2*Rmin/C,2*Rmax/C,Nwid); M=length(R);td=ones(M,1)*t-2*R'/C*ones(1,Nwid);Srt1=RCS*(exp(1i*pi*K*td.^2).*(abs(td)<T/2));Srt=Srt1;Nchirp=ceil(T/Ts);Nfft=2^nextpow2(Nwid+Nwid-1); Srw=fft(Srt,Nfft);Srw1=fft(Srt1,Nfft);t0=linspace(-T/2,T/2,Nchirp);St=exp(1i*pi*K*t0.^2);Sw=fft(St,Nfft);Sot=fftshift(ifft(Srw.*conj(Sw)));Sot1=fftshift(ifft(Srw1.*conj(Sw)));N0=Nfft/2-Nchirp/2;Z=abs(Sot(N0:N0+Nwid-1));Z=Z/max(Z);Z=20*log10(Z+1e-6);figuresubplot(211)plot(t*1e6,real(Srt));axis tight;xlabel('us');ylabel('幅度')title(['线性信号压缩前']);subplot(212)plot(t*C/2,Z)xlabel('Range in meters');ylabel('幅度 ')title(['线性信号压缩后']);选取0.9*10^4HZ 的一个脉冲进行放大分析(调整Y 轴与X 轴的范围)58606264666870727476us幅度线性调频信号压缩前0.850.90.9511.05 1.1 1.15x 104-150-100-5050Range in meters 幅度 线性调频信号压缩后选取主瓣调整:大致可以看出压缩后的带宽为0.1hz理论上分析处理增益为:D=10*10e -6*112*10e6=1120D=112/B1=1120.B1=0.1HZ2.分辩率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
随机信号处理实验报告目录一、实验要求: (3)二、实验原理: (3)2.1 随机信号的分析方法 (3)2.2 随机过程的频谱 (3)2.3 随机过程的相关函数和功率谱 (4)(1)随机信号的相关函数: (4)(2)随机信号的功率谱 (4)三、实验步骤与分析 (5)3.1实验方案 (5)3.2实验步骤与分析 (5)任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (5)任务二:(s1 变量)求噪声下正弦信号的相位 (8)任务三:(s1 变量)求信号自相关函数和功率谱 (11)任务四:(s变量)求噪声下信号的振幅和频率 (14)任务五:(s变量)求信号的自相关函数和功率谱 (17)3.3实验结果与误差分析 (19)(1)实验结果 (19)(2)结果验证 (19)(3)误差分析 (21)四、实验总结和感悟 (22)1、实验总结 (22)2、实验感悟 (23)五、附低通滤波器的Matlab程序 (23)一、实验要求:(学号末尾3,7)两个数据文件,第一个文件数据中只包含一个正弦波,通过MA TLAB 仿真计算信号频谱和功率谱来估计该信号的幅度,功率,频率和相位?对第二个文件数据估计其中正弦波的幅度,功率和频率?写出报告,包含理论分析,仿真程序及说明,误差精度分析等。
第一文件调用格式load FileDat01_1 s1,数据在变量s1中;第二文件调用格式load FileDat01_2 s ,数据在变量s 中。
二、实验原理:2.1 随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。
其中随机信号无确定的变化规律,需要用统计特新进行分析。
这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。
随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。
但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。
2.2 随机过程的频谱信号频谱分析是采用傅立叶变换将时域信号x(t)变换为频域信号X(f),从而帮助人们从另一个角度来了解信号的特征。
时域信号x(t)的傅氏变换为:()()2j ft X f x t e dt π+∞--∞=⎰信号的时域描述只能反映信号的幅值随时间的变化情况,除只有一个频率分量的简谐波外,一般很难明确揭示信号的频率组成和各频率分量的大小。
信号的频谱X(f)代表了信号在不同频率分量处信号成分的大小,它能够提供比时域信号波形更直观,丰富的信息。
在实际的控制系统中能够得到的是连续信号x(t)的离散采样值x(nT),因此需要利用离散信号x(nT)来计算信号x(t)的频谱。
有限长离散信号x(n),n=0,1,…,N-1的DFT 定义为:()()10N knN n X k x n W -==∑其中0,1,2.......1,kN =- 2jNN W eπ-=2.3 随机过程的相关函数和功率谱(1)随机信号的相关函数:信号的相关性是指客观事物变化量之间的相依关系。
对于平稳随机过程X(t)和Y(t)在两个不同时刻t 和t+τ的起伏值的关联程度,可以用相关函数表示。
在离散情况下,信号x(n)和y(n)的相关函数定义为:∑∑-=-+=101N txy N /)t (y )t (x ),t (N R τττ τ,t=0,1,2,……N-1随机信号的自相关函数表示波形自身不同时刻的相似程度。
与波形分析、频谱分析相比,它具有能够在强噪声干扰情况下准确地识别信号周期的特点。
一般来说,信号与噪声在时域内有明显不同,信号前后是有关联的,存在相关性;而噪声在不同时刻基本上不存在关联,即不存在相关性.利用这种相关性原理,已成为从强噪声中提取弱信号的重要手段。
这种技术的理论基础是信息论和随机过程理论,这种检测方法被称为相关检测。
(2)随机信号的功率谱随机信号的功率谱密度是随机信号的各个样本在单位频带内的频谱分量消耗在一欧姆电阻上的平均功率之统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。
它只反映随机信号的振幅信息,而没有反映相位信息。
随机过程的功率谱密度为:]2|)(|lim [)(2TX E x G Ti T ω∞→= -∞<ω<+∞随机信号的平均功率就是随机信号的均方值,功率谱密度曲线下的总面积(即随机信号的全部功率)等于随机信号的均方值。
随机信号的功率谱与它的自相关函数构成一对傅里叶变换对。
三、 实验步骤与分析本实验利用Matlab 软件编程来实现数据文件中波形的仿真与分析,最后通过滤波器还原正弦信号,与结果进行比较。
3.1 实验方案3.2 实验步骤与分析任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (1)原理:采用傅立叶变换将时域信号x(t)变换为频域信号X(f),并作出幅频曲线进行分析,离散信号x(n),n=0,1,…,N-1的DFT 公式如下:()()10N knNn X k x n W -==∑其中0,1,2.......1,kN =- 2j NN W eπ-=在Matlab 的编程实现时,运用的是快速算法傅里叶算法FFT ,它是DFT 的快速算法。
因为给定的数据文件中采样点数N=4096,所以取采样频率fs=4096Hz 。
(2)Matlab仿真结果及分析图1 随机信号的时域图形图2 随机信号的频域图形由时域图形可知,正弦信号被噪声“淹没”了,所以时域上看不出任何信号的特征,进行傅里叶变换,频域特征如图2所示。
已知采样频率fs=4096Hz,所以Nyquist频率为fs/2=2048Hz,傅里叶变换的数据具有对称性,整个频谱以Nyquist频率为对称轴,所以频谱分析的时候只要截取0~2048Hz范围内的频谱进行分析。
由频谱曲线可知,信号在82Hz处有一个峰值,大小为4021,所以可以得出:信号频率:=82f Hz信号绝对幅度:2=⨯=A4021 1.96N(3)附Matlab程序及说明clc; %清空clear all; %清除所有变量close all; %关闭所有窗口load('C:\Users\caolili\Desktop\FileDat01_1.mat')fs=4096; %设定采样频率N=4096; %采样点数n=0:N-1;t=n/fs; %采样时间间隔subplot(211); %两行一列第一幅图plot (n,s1); %画出时域波形xlabel('时间t(1/4096s)');ylabel('信号s1');title('原信号时域波形');grid;%进行FFT变换并做频谱图y=fft(s1,N); %进行fft变换mag=abs(y); %求幅值f=(0:length(y)-1)'*fs/length(y); %进行对应的频率转换subplot(212); %两行一列第二幅图plot(f,mag); %作频谱图xlabel('频率(Hz)');ylabel('幅值');title('信号的幅频谱图N=4096');grid;任务二:(s1 变量)求噪声下正弦信号的相位 (1)原理设观测数据为:1,,...2,1,0),()2cos()(0-=++=N n n w n f A n x φπ式中,w (n )为已知方差2σ的高斯白噪声,正弦信号的幅度A 和频率f 0为已知。
一种估计φ的估计量为⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡+-=∑∑-=-=∧101000)2sin()()2cos()(ln Im N n N n n f n x j n f n x ππφ定义信噪比为222σA SNR =。
由上面已经求的信号幅度A=1.96,f=82Hz ,N=4096。
○1产生服从特定概率分布的观测数据x (n ); ○2利用估计算法计算估计量∧φ; ○3上述过程重复M 次,产生M 个∧φ的实现 ○4利用∑=∧∧=∧M ii M11θμθ确定估计量的均值。
○5利用∧=∧∧∑∧∧-=MiM122)(1θθμθσ确定估计量的方差。
○6利用直方图来确定PDF :首先计算落入某指定区间的次数,然后再除以总的实现次数得到概率,再除以区间长度得到PDF 估计。
(2)Matlab仿真结果及分析根据利用matlab仿真得到的PDF估计如图3所示。
图3 随机信号的相位的统计特性由上面的仿真结果可知初相位约在0时具有最大概率,所以:θ=(3)附Matlab程序及说明clc; %清空clear all; %清除所有变量close all; %关闭所有窗口load('C:\Users\caolili\Desktop\FileDat01_1.mat')N=4096;A=1.96; %A为正弦信号幅值,f为其频率f=82;n=0:N-1;s0=300; %设置循环次数for m=1:s0y1=0;任务三:(s1 变量)求信号自相关函数和功率谱 (1)原理:对于噪声中信号的功率谱分析,有传统方法和现代建模方式。
本次实验中主要采用传统谱估计的自相关法,又称为间接法或BT 法。
具体步骤是先由)(n x N 估计出自相关函数)(ˆm r ,然后对)(ˆm r 求傅里叶变换得到)(n x N 的功率谱,记之为)(ˆw P BT,并以此作为对)(w P 的估计,即1,)(ˆ)(ˆ-≤=--=∑N M e m r w P jwmMMm BT。
(2)Matlab 仿真结果及分析在Matlab 中主要用C (Xn) = xcorr(xn,'unbiased')函数来计算Xn 的自相关函数,然后对其进行傅里叶变换,便得到它的功率谱。
图4 随机信号的自相关函数图4 随机信号的功率谱原信号在时域上时被噪声淹没,经过自相关后可以看出信号为正弦信号,并且由自相关函数图象可知:混合信号的平均功率:2[()](0) 2.934E X n R ==正弦信号的平均功率:()2220lim cos 1.922TT T AP A w t dt θ-→∞=+==⎰在功率谱图像上,极值点坐标为(82,27.72),正好对应正弦信号的频率为82Hz ,与上面的频谱分析一致。
对功率谱密度曲线积分也可求出信号的平均功率。
(3)附Matlab程序及说明%自相关函数clc; %清空clear all; %清除所有变量close all; %关闭所有窗口load('C:\Users\caolili\Desktop\FileDat01_1.mat')fs=4096; %设定采样频率N=4096; %采样点数n=0:N-1;t=n/fs;Lag=300; %延迟样点数[c,lags]=xcorr(s1,Lag,'unbiased'); %对原始信号进行无偏自相关估计subplot(1,2,1);plot(n,s1); %绘制原信号的时域波形xlabel('时间t(1/4096s)');ylabel('信号s1');title('带噪声的信号波形');grid on;subplot(1,2,2);plot(lags/fs,c); %绘制自相关函数图象xlabel('时间t');ylabel('Rx(t)');title('带噪声的信号自相关函数');grid on;%功率谱clc; %清空clear all; %清除所有变量close all; %关闭所有窗口load('C:\Users\caolili\Desktop\FileDat01_1.mat')fs=4096; %设定采样频率N=4096; %采样点数n=0:N-1;t=n/fs;Lag=300; %延迟样点数[c,lags]=xcorr(s1,Lag,'unbiased'); %求信号的自相关函数fy=fft(c,N); %对自相关函数做FFT变换t1=0:round(N/2-1);a=t1*fs/N;P=10*log10(fy(t1+1)); %纵坐标为相对功率谱密度,单位dB/Hz figure(gcf);plot(a,P);ylabel('功率谱密度dBw/Hz');title('信号的功率谱');grid;任务四:(s变量)求噪声下信号的振幅和频率(1)原理:同“任务一”的原理相同(2)Matlab仿真结果及分析图5 随机信号的时域波形(s变量)图6 随机信号的频谱(s变量)对于频谱图的局部放大如下图所示:图7 随机信号的局部放大的频谱(s变量)由频域分析可以发现,信号的频谱图上有两个峰值,由Matlab 计算得两个极点分别为:(82,4053) (86,8150)所以信号由两个频率相近的正弦信号组成,根据图形分析,有用信号应该是两个正弦信号相加,形如:()1122sin 2cos 2s s n n S n A f A f f f ππ⎛⎫⎛⎫=⨯+⨯ ⎪ ⎪⎝⎭⎝⎭根据“任务一”的计算方式,可以得出: 有用信号的频率:182f Hz =286f Hz =有用信号的绝对振幅:124053 1.98A N=⨯=228153 3.98A N=⨯= 对于此处采样点数N 和采样频率fs 的确定要满足频率分辨率的要求,即:max min12f f f f f N-∆=-=所以,要能有效的区分频率轴上的两个频率点f1和f2,有效数据长度必须满足以下关系式:122sf f f N<-所以此处取采样频率4096s f Hz =,采样点数4096N =,满足要求。