随机信号处理实验报告一

合集下载

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。

随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。

实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。

实验原理:随机信号可以分为离散随机信号和连续随机信号。

离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。

常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。

实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。

实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。

2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。

3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。

4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。

5.计算统计特性:计算随机信号的均值、方差等统计特性。

6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。

实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。

通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。

通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。

通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。

结论:本实验通过对随机信号的分析,加深了对随机信号的理解。

通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。

2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告实验一:平稳随机过程的数字特征实验二:平稳随机过程的谱分析实验三:随机信号通过线性系统的分析实验四:平稳时间序列模型预测班级:姓名:学号:一、实验目的1、加深理解平稳随机过程数字特征的概念2、掌握平稳随机序列期望、自相关序列的求解3、分析平稳随机过程数字特征的特点二、实验原理平稳随机过程数字特征求解的相关原理三、实验过程function y = experiment number = 49; %学号49 I = 8; %幅值为8 u = 1/number;Ex = I*0.5 + (-I)*0.5; N = 64; C0 = 1; %计数 p(1) = exp(-u);for m = 2:N k = 1:m/2;p(m) = exp(-u*m) + sum((u*m).^(2*k)./factorial(2*k)*exp(-u*m));2222()[()()]{()()}{()()}X R m E X n X n m I P X n X n m I I P X n X n m I =+=+=-+=-E[X(n)]= I P{X(n)=+I}+(-I)P{X(n)=-I}=0⨯⨯0m >当时,/222(){()()}(2)!m k mk m P X n X n m I e P k λλ⎢⎥⎣⎦-=+===∑222()(1)(21)X R m I P I P I P =--=-2()()X X XC m R m m =-me I m n X n X E m R λ22)]()([)(-=+=end;pp = [fliplr(p) C0 p];Rx = (2*pp - 1)*I^2;m = -N:N;Kx = Rx - Ex*Ex;rx = Kx/25;subplot(211), plot(m,Rx); axis([-N N 0 I*I]); title('自相关序列');subplot(212), plot(m,rx); axis([-N N 0 1]); title('自相关序数');四、实验结果及分析自相关序列的特点分析:m>0时Rx(m)随着m的增大而减小,m<0时Rx(m)随着m的增大而增大。

随机信号分析实验报告

随机信号分析实验报告

实验一 随机噪声的产生与性能测试一、实验内容1.产生满足均匀分布、高斯分布、指数分布、瑞利分布的随机数,长度为N=1024,并计算这些数的均值、方差、自相关函数、概率密度函数、概率分布函数、功率谱密度,画出时域、频域特性曲线; 2.编程分别确定当五个均匀分布过程和5个指数分布分别叠加时,结果是否是高斯分布; 3.采用幅度为2, 频率为25Hz 的正弦信号为原信号,在其中加入均值为2 , 方差为0.04 的高斯噪声得到混合随机信号()X t ,编程求 0()()tY t X d ττ=⎰的均值、相关函数、协方差函数和方差,并与计算结果进行比较分析。

二、实验步骤 1.程序N=1024; fs=1000; n=0:N —1;signal=chi2rnd (2,1,N); %rand(1,N)均匀分布 ,randn(1,N )高斯分布,exprnd(2,1,N )指数分布,raylrnd (2,1,N)瑞利分布,chi2rnd(2,1,N )卡方分布 signal_mean=mean(signal ); signal_var=var (signal );signal_corr=xcorr(signal,signal ,'unbiased ’); signal_density=unifpdf(signal ,0,1); signal_power=fft(signal_corr); %[s,w]=periodogram (signal); [k1,n1]=ksdensity(signal);[k2,n2]=ksdensity (signal,’function ’,'cdf ’); figure ;hist(signal);title (’频数直方图’); figure ;plot (signal);title(’均匀分布随机信号曲线’); f=n *fs/N ; %频率序列 figure;plot(abs (signal_power)); title('功率幅频’); figure;plot(angle (signal_power)); title ('功率相频'); figure;plot (1:2047,signal_corr); title ('自相关函数’); figure;plot(n1,k1);title('概率密度’);figure;plot(n2,k2);title('分布函数’);结果(1)均匀分布(2)高斯分布(3)指数分布(4)瑞利分布(5)卡方分布2.程序N=1024;signal_1=rand(1,N);signal_2=rand(1,N);signal_3=rand(1,N);signal_4=rand(1,N);signal_5=rand(1,N);signal=signal_1+signal_2+signal_3+signal_4+signal_5; [k1,n1]=ksdensity(signal);figure(1)subplot(1,2,1);hist(signal);title('叠加均匀分布随机数直方图');subplot(1,2,2);plot(n1,k1);title(’叠加均匀分布的概率密度');结果指数分布叠加均匀分布叠加结果:五个均匀分布过程和五个指数分布分别叠加时,结果是高斯分布。

随机信号分析 MATLAB实验1

随机信号分析 MATLAB实验1

随机信号分析与处理实验报告1实验一熟悉MATLAB的随机信号处理相关命令一、实验目的1、熟悉GUI格式的编程及使用。

2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程二、实验原理1、语音的录入与打开在MATLAB中,[y,fs,bits]=wavread('11',[N1 N2]);用于读取语音,采样值放在向量y中,fs表示采样频率(Hz),bits表示采样位数。

[N1 N2]表示读取从N1点到N2点的值。

2、幅值对于随机信号的频域描述,常使用功率谱,它是表征信号的能量随着频率的分布情况。

当然,功率谱也可用于周期信号和瞬变信号的频域描述。

周期函数的幅值谱:一般周期信号均由一个直流分量、一个基波(正弦波)和无限个谐波(正弦波)所组成,各次谐波的频率是基波频率的整数倍,基波、各次谐波的幅值Ao和初相角是各不相同的,将幅值与频率的函数关系成为幅值谱。

3、语音信号自相关性三、实验结果与分析1、信号原始波形2、FFT变换利用fft变换,对语音信号进行进行分析,可以看出所能发出的音调应该是稳定的或是在一定的范围内浮动3、语音信号相位通过相位处理,将语音信号的声门激励信息及声道响应分别离开来4、自相关函数2004006008001000120014001600180000.51自相关函数根据自相关函数可以看出语音信号的周期。

自相关函数检测出淹没在随机噪声干扰中的信号,随机信号的自功率谱等于它的自相关函数的傅里叶变换。

自相关函数是描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。

从图中可以看出,当t1=t2=900时,信号的自相关性最强。

5、语音自协方差函数从图中原始信号的自协方差函数与原始信号的自相关函数在波形上相差不大,原因是121212(,)(,)()()X X X X K t t R t t m t m t =-,此时12t t =,通过计算,可以得到1()X m t ,2()X m t 的值很小,所以得到的自协方差函数波形是正确的。

随机信号实验报告(模板)(1)

随机信号实验报告(模板)(1)

随机信号实验报告学院通信工程学院专业信息工程班级 1401051班制作人文杰制作人晓鹏一、 摘要根据实验的要求与具体容,我们组做了一下分工,XXX 完成了本次的第一组实验即基于MATLAB 的信号通过线性系统与非线性系统的特性分析,具体容有(高斯白噪声n ,输入信号x ,通过线性与非线性系统的信号a,b,y1,y2的均值,均方值,方差,自相关函数,概率密度,功率谱密度以及频谱并把它们用波形表示出来),XXX 和XXX 两人合力完成了基于QUARTUS II 的2ASK 信号的产生及测试实验具体容有(XXX 负责M 序列发生器以及分频器,XXX 负责载波的产生以及开关函数和管脚配置),最后的示波器调试以及观察2ASK 信号的FFT 变换波形由我们组所有人一起完成的。

二、实验原理及要求实验一、信号通过线性系统与非线性系统的特性分析1、实验原理① 随机过程的均值(数学期望):均值表示集合平均值或数学期望值。

基于随机过程的各态历经性,可用时间间隔T 的幅值平均值表示,即:均值表达了信号变化的中心趋势,或称之为直流分量。

② 随机过程的均方值:信号x(t)的均方值,或称为平均功率,其表达式为:均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。

③ 随机信号的方差: 信号x(t)的方差定义为:描述了信号的静态量,方差反映了信号绕均值的波动程度。

在已知均值和均方值的前提下,方差就很容易求得了。

④随机信号的自相关函数信号的相关性是指客观事物变化量之间的相依关系。

对于平稳随机过程X(t)和Y(t)在两个不同时刻t和t+τ的起伏值的关联程度,可以用相关函数表示。

在离散情况下,信号x(n)和y(n)的相关函数定义为:τ,t=0,1,2,……N-1。

⑤随机过程的频谱:信号频谱分析是采用傅立叶变换将时域信号x(t)从另一个角度来了解信号的特征。

时域信号x(t)的傅氏变换为:⑥随机过程的功率谱密度:随机信号的功率普密度是随机信号的各个样本在单位频带的频谱分量消耗在一欧姆电阻上的平均功率的统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告(基于MATLAB语言)

随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。

2.实现随机序列的数字特征估计。

实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。

即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。

定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。

北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告

北京理工大学随机信号分析实验报告本科实验报告实验名称:随机信号分析实验实验一随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法。

2、实现随机序列的数字特征估计。

二、实验原理1、随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即 U(0,1)。

实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:)(m od ,110N ky y y n n -=Ny x n n /=序列{}nx 为产生的(0,1)均匀分布随机数。

下面给出了上式的3组常用参数: 1、10N 10,k 7==,周期7510≈⨯;2、(IBM 随机数发生器)3116N 2,k 23,==+周期8510≈⨯;3、(ran0)315N 21,k 7,=-=周期9210≈⨯;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理 1.1 若随机变量 X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -=由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。

2、MATLAB 中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。

随机信号处理实验报告

随机信号处理实验报告

随机信号处理实验报告院系名称学生姓名学号指导教师目录一、实验要求: (3)二、实验原理: (3)2.1 随机信号的分析方法 (3)2.2 随机过程的频谱 (3)2.3 随机过程的相关函数和功率谱 (4)(1)随机信号的相关函数: (4)(2)随机信号的功率谱 (4)三、实验步骤与分析 (5)3.1实验方案 (5)3.2实验步骤与分析 (5)任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (5)任务二:(s1 变量)求噪声下正弦信号的相位 (8)任务三:(s1 变量)求信号自相关函数和功率谱 (11)任务四:(s变量)求噪声下信号的振幅和频率 (14)任务五:(s变量)求信号的自相关函数和功率谱 (17)3.3实验结果与误差分析 (19)(1)实验结果 (19)(2)结果验证 (19)(3)误差分析 (21)四、实验总结和感悟 (22)1、实验总结 (22)2、实验感悟 (23)五、附低通滤波器的Matlab程序 (23)一、实验要求:(学号末尾3,7)两个数据文件,第一个文件数据中只包含一个正弦波,通过MA TLAB 仿真计算信号频谱和功率谱来估计该信号的幅度,功率,频率和相位?对第二个文件数据估计其中正弦波的幅度,功率和频率?写出报告,包含理论分析,仿真程序及说明,误差精度分析等。

第一文件调用格式load FileDat01_1 s1,数据在变量s1中;第二文件调用格式load FileDat01_2 s ,数据在变量s 中。

二、实验原理:2.1 随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。

其中随机信号无确定的变化规律,需要用统计特新进行分析。

这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。

随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。

但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《随机信号分析与处理》
实验报告
指导教师:廖红华
班级:0309410
学号:030941017
姓名:李攀
2011.11
实验一熟悉MA TLAB的随机信号处理相关命令
一、实验目的
1、熟悉matlab,学会看help(帮助)信息。

2、学会声音的录制、导入、读取等过程。

3、语音信号的简单分析,如均值、方差、自相关等。

二、实验原理
1、语音的录入与打开
在MATLAB中,[x,fs,bits]=wavread('file',[N1 N2]);用于读取语音,采样值放在向量y中,fs表示采样频率(Hz),bits表示采样位数。

[N1 N2]表示读取从N1点到N2点的值。

2、时域信号的FFT分析
FFT即为快速傅氏变换,是离散傅氏变换的快速算法,它是根据离散傅氏变换的奇、偶、虚、实等特性,对离散傅立叶变换的算法进行改进获得的。

在MA TLAB信号处理工具箱中函数FFT的一种调用格式为
Y=fft(x)
其中X是序列,Y是序列的FFT。

平均值。

3、方差
定义
为随机过程X(t)的方差。

方差通常也记为DX(t),随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。

4、希尔伯特变换及性质
x(t) 的希尔伯特变换为x(t) 与1/πt 的卷积,即
因此,对x(t) 的希尔伯特变换可以看作为x(t) 通过一个冲击响应为1/πt 的线性滤波器。

希尔伯特变换器在整个频域上具有恒为1 的幅频特性,为全通网络,在相位上则引入−π/2和π/2的相移
5、自相关
设任意两个时刻 t1 ,t2,定义
为随机过程X(t)的自相关函数,通常简称为相关函数
6、互相关
互相关函数是两个随机过程联合统计特性中重要的数字特征,它的定义为
三、实验结果分析
1.原始信号波
上图为语音信号的时域波形,下图为语音信号的频谱。

从语音信号的频谱可以看出,该语音信号的频率集中在100Hz~200Hz,并且提取出该段语音信号的采样频率为8KHz,因此可以推知,该段语音信号的频率在0~4000Hz范围内。

由于时域信号有时是杂乱无章的,所以我们往往需要分析其频谱,这样才能更加准确全面把握信号的特征。

2.FFT变换
由上图可知,红线表示32点的FFT,蓝线表示128点的FFT,很明显点数越多的话,傅里叶变化越明显,但是点数过多的话,也会影响计算的速度。

重要的是,采样点数对信号的影响也很大,当点数逐渐增大是,谱图的失真度逐渐变小,幅值大小逐渐变大直到达到最大。

对数据作频谱分析时数据样本应有足够长。

但是,如果采样点数超过信号的点数,将会丢失相应的信息。

综合考虑,一般应取FFT的点数和数据样本相同,这样频谱图具有较高的质量,减小了因为补零或截断而产生的影响。

3.均值
由图上可知,通过加窗对原信号求均值,可以使信号变得平滑,因为均值实质上是一种平滑滤波,将幅度较高的部分和较低的部分平均掉。

况且取的点数不一样,平滑效果也不一样,当用汉明窗取窗函数的点分别为32和64时,每个点的均值不一样,所得到的均值函数图也不一样。

当每个窗函数所取的点数越大时,所得到的均值函数越平滑。

当窗函数取点数和信号长度一样时,所得到的均值函数谱是一条平行于横轴的直线,即均值为一个常数。

4.方差
如图,图中红色代表用汉明窗每次取32点求方差得到的曲线图,绿色代表汉明窗每次只取64点求方差。

从图中可以看出点数不同得到的方差曲线也不相同,去点数越大时,得到的方差曲线越平滑,越接近于一个常数。

而且无论每次取的点数为多少,得到的方差函数的曲线图都是在横轴上方,也证明了方差是非负函数。

我们还知道信号的方差等于信号平方的均值减去信号均值的平方,前者是信号总的平均功率,后者是信号直流功率,所以方差理解成交流成分的功率。

图中左图是产生的随机序列,右图是对应的概率密度估计,其中横轴表示样本中出现的数据。

纵轴表示样本中相应数据出现的概率密度f 。

从图中可以看出样本2.5(对称轴)出现的概率密度为0.11;样本主要集中在-15到15之间,同时可以看出,概率密度估计图形均在横轴上方,也证明了概率密度的非负性,因此,概率密度估计可以很清晰地反映样本中某些值出现的概率。

6.希尔伯特变换
左右图分别表示正弦信号和声音信号的希尔伯特变换,希尔伯特变换序列具有和原序列相同的幅值和频率成分,也包含了原序列的相位信息,图中对信号进行一次希尔伯特变换后序列相移了π/2,可见左图中最初的正弦信号进过一次希尔伯特变换成了余弦信号;对序列作希尔伯特变换相当于对原始序列进行每次正负π/2的平移。

因此希尔伯特变换器可以看做是一个π/2的理想移相器。

7.自相关
自相关函数是描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。

如上图可以看出,自相关函数两边小,中间最大。

因为自相关表明,其绝对值越大,表示相关性越强。

在图中则表现为:在两边21t t 、相隔较远,因此在21t t 、处的取值相关性较弱,在中间的时候,t t t ==21,所得到21t t 、处
的取值的相关性是最强的。

8.互相关
我们知道互相关指2个信号之间的相似程度,时间轴表示“挪”了多少的“距离”。

图中对声音信号和白噪声求了互相关。

由图知,在0到150之间两者的相关系数很小,表明此时这两个信号的相似度很小,在150到250之间两者相关系数较大,表明此时这两个信号的相似度较大,在250到400之间有波动,但是相关性还是较小,从中还可以看出在180处的值最大,说明在180附近声音信号和白噪声相关系数最大
左图为周期功率谱估计,右图为汉宁周期功率谱估计。

功率谱密度简称为功率谱,是自相关函数的傅里叶变换,对于周期法的功率谱估计,当数据长度N太大时,谱曲线起伏加剧,若N太小,谱的分辨率又不好,加窗的优点是可使谱估计非负。

另外,在分段时,可使各段之间有重叠,这样会使方差减小,更重要的是,加窗之后可以减少截断效应。

10、短时平均幅度
如图是加hamming窗信号的短时平均幅度,其中红色是窗宽N1=50,绿色是是窗宽N2=100.由图知:100点平滑性比50点的要好,因为点数越多的话,对信号的平均也就越多,通过进一步分析可知,如果取的点数这样可以进一步将信号平滑,通过进一步分析可知,当窗函数取点数和信号长度一样时,所得到的均值函数谱是一条平行于横轴的直线因此,可以尽量将点数取多一些。

四.实验心得
通过这次实验,让我接触了基于实践MATLAB GUI的软件平台,强化了编程知识,增强了做实际工程感性认识,让我学到了不少新的知识。

除此之外,这次实验也让我对随机信号处理这门课程有了更加深刻的了解。

对语音的分析与应用也有了更加深刻的认识。

语音的组成,语音的处理,语音之间的变换,这些东西对我而言,也不再是遥不可及的东西。

在此次的实验中,我也稍稍对这个软件的知识有了一定的巩固,对我来说,又有一种新的语言展现在我的面前了。

此外,这也让我了解到自己还存在的不足之处,以后要加强自己这方面的学习。

相关文档
最新文档