南京理工大学随机信号处理实验报告

合集下载

随机信号分析实验报告

随机信号分析实验报告

《随机信号分析》实验报告二班级_______学号______姓名_______实验二高斯噪声的产生和性能测试1.实验目的(1)掌握加入高斯噪声的随机混合信号的分析方法。

(2)研究随机过程的均值、相关函数、协方差函数和方差。

⒉实验原理(1)利用随机过程的积分统计特性,给出随机过程的均值、相关函数、协方差函数和方差。

(2)随机信号均值、方差、相关函数的计算公式,以及相应的图形。

⒊实验报告要求(1)简述实验目的及实验原理。

(2)采用幅度为1,频率为25HZ的正弦信号为原信号,在其中加入均值为2,方差为0.04的高斯噪声得到混合随机信号X(t)。

试求随机过程的均值、相关函数、协方差函数和方差。

用MATLAB进行仿真,给出测试的随机过程的均值、相关函数、协方差函数和方差图形,与计算的结果作比较,并加以解释。

(3)分别给出原信号与混合信号的概率密度和概率分布曲线,并以图形形式分别给出原信号与混合信号均值、方差、相关函数的对比。

(4)读入任意一幅彩色图像,在该图像中加入均值为0,方差为0.01的高斯噪声,请给出加噪声前、后的图像。

(5)读入一副wav格式的音频文件,在该音频中加入均值为2,方差为0.04的高斯噪声,得到混合随机信号X(t),请给出混合信号X(t)的均值、相关函数、协方差函数和方差,频谱及功率谱密度图形。

4、源程序及功能注释(逐句注释)(1):clear all;clc;t=0:320;x=sin(2*pi*t*25);x1=wgn(1,321,0);z=x+x1;y=trapz(t,z);%y=int(z,x,0,t);subplot(3,2,1),plot(z);title('随机信号序列')meany=mean(z);subplot(3,2,3),plot(t,meany,'.');title('随机信号均值')vary=var(y); %方差subplot(3,2,4),plot(t,vary,'.');title('随机信号方差')cory=xcorr(z,'unbiased');%自相关函数subplot(3,2,2),plot(cory);title('随机信号自相关函数')covv=cov(y);subplot(3,2,5),plot(t,covv,'.');title('随机信号协方差')(2):t=[0:0.0005:0.045];X1=sin(2*pi*25*t);%正弦subplot(3,4,1);plot(t,X1);gridtitle('正弦函数序列');X2=randn(1,length(t)); %产生均值为0,方差σ^2=1,标准差σ=1的正态分布的随机数或矩阵的函数高斯随机信号%X2=normrnd(2,0.04); %高斯随机序列均值,标准差subplot(3,4,2);plot(t,X2);title('高斯噪声序列');X=X1+X2; %混合随机信号X(t)subplot(3,4,3);plot(t,X);gridtitle('混合随机信号');meany1=mean(X1); %原信号的均值subplot(3,4,6),plot(t,meany1);title('原信号均值');vary1=var(X1); %原信号的方差subplot(3,4,7),plot(t,vary1);title('原信号方差');cory1=xcorr(X1,'unbiased'); %原信号的自相关函数subplot(3,4,8),plot(cory1);title('原信号自相关函数');meany=mean(X); %混合信号的均值subplot(3,4,10),plot(t,meany);title('混合信号均值');vary=var(X); %混合信号的方差subplot(3,4,11),plot(t,vary);title('混合信号方差')cory=xcorr(X,'unbiased'); %混合信号的自相关函数subplot(3,4,12),plot(cory);title('混合信号自相关函数')covy=cov(X1,X); %协方差subplot(3,4,4),plot(covy);title('协方差');[f1,xi]=ksdensity(X1); %原信号的概率密度subplot(3,4,5);plot(xi,f1);title('原信号的概率密度分布)');[f2,xi]=ksdensity(X); %混合信号的概率密度subplot(3,4,9);plot(xi,f2);title('混合信号概率密度分布');(3):clcclear allclose allA = imread('dadian.jpg'); % 读入图像V=0.01;Noisy=imnoise(A,'gaussian',0,V);subplot(1,2,1),imshow(A),title('原图像');subplot(1,2,2),imshow(Noisy),title('加噪后图像'); (4):clcclear allclose allt=0:320;A = wavread('alert.wav'); % 读入音频x = double(A);y=awgn(x,2,0.04);%x1 = double(z);%y=x+x1;subplot(2,3,1),plot(y);title('随机信号序列')meany=mean(y);subplot(2,3,2),plot(t,meany,'.');title('随机信号均值')vary=var(y); %方差subplot(2,3,3),plot(t,vary,'.');title('随机信号方差')cory=xcorr(y,'unbiased');%自相关函数subplot(2,3,4),plot(cory);title('随机信号自相关函数')fy=fft(y);ym=abs(fy);subplot(2,3,5),plot(ym);title('随机信号频谱图')fz=fft(cory);zm=abs(fz);subplot(2,3,6),plot(zm);title('随机信号功率谱密度图')5. 实验总结(手写)可给出实验过程中遇到的问题、解决方法、自己的收获、可否有改进办法等。

随机信号处理实验报告讲诉

随机信号处理实验报告讲诉

随机信号处理实验报告目录一、实验要求: (3)二、实验原理: (3)2.1 随机信号的分析方法 (3)2.2 随机过程的频谱 (3)2.3 随机过程的相关函数和功率谱 (4)(1)随机信号的相关函数: (4)(2)随机信号的功率谱 (4)三、实验步骤与分析 (5)3.1实验方案 (5)3.2实验步骤与分析 (5)任务一:(s1 变量)求噪声下正弦信号的振幅和频率 (5)任务二:(s1 变量)求噪声下正弦信号的相位 (8)任务三:(s1 变量)求信号自相关函数和功率谱 (11)任务四:(s变量)求噪声下信号的振幅和频率 (14)任务五:(s变量)求信号的自相关函数和功率谱 (17)3.3实验结果与误差分析 (19)(1)实验结果 (19)(2)结果验证 (19)(3)误差分析 (21)四、实验总结和感悟 (22)1、实验总结 (22)2、实验感悟 (23)五、附低通滤波器的Matlab程序 (23)一、实验要求:(学号末尾3,7)两个数据文件,第一个文件数据中只包含一个正弦波,通过MA TLAB 仿真计算信号频谱和功率谱来估计该信号的幅度,功率,频率和相位?对第二个文件数据估计其中正弦波的幅度,功率和频率?写出报告,包含理论分析,仿真程序及说明,误差精度分析等。

第一文件调用格式load FileDat01_1 s1,数据在变量s1中;第二文件调用格式load FileDat01_2 s ,数据在变量s 中。

二、实验原理:2.1 随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。

其中随机信号无确定的变化规律,需要用统计特新进行分析。

这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。

随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。

但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。

随机信号分析实验报告

随机信号分析实验报告

随机信号分析实验报告引言:随机信号是指信号在时间或空间上的其中一种特性是不确定的,不能准确地预测其未来行为的一类信号。

随机信号是一种具有随机性的信号,其值在一段时间内可能是不确定的,但是可以通过概率论和统计学的方法来描述和分析。

实验目的:通过实验,学习了解随机信号的基本概念和特性,学习了解和掌握常见的随机信号分析方法。

实验原理:随机信号可以分为离散随机信号和连续随机信号。

离散随机信号是信号在离散时间点上,在该时间点上具有一定的随机性;而连续随机信号是信号在连续时间上具有随机性。

常见的随机信号分析方法包括概率密度函数、功率谱密度函数等。

实验器材:计算机、MATLAB软件、随机信号产生器、示波器、电缆、电阻等。

实验步骤:1.配置实验仪器:将随机信号产生器和示波器与计算机连接。

2.生成随机信号:调节随机信号产生器的参数,产生所需的随机信号。

3.采集数据:使用示波器采集随机信号的样本数据,并将数据导入MATLAB软件。

4.绘制直方图:使用MATLAB软件绘制样本数据的直方图,并计算概率密度函数。

5.计算统计特性:计算随机信号的均值、方差等统计特性。

6.绘制功率谱密度函数:使用MATLAB软件绘制随机信号的功率谱密度函数。

实验结果和讨论:我们采集了一段长度为N的随机信号样本数据,并进行了相应的分析。

通过绘制直方图和计算概率密度函数,我们可以看出随机信号的概率分布情况。

通过计算统计特性,我们可以得到随机信号的均值、方差等重要参数。

通过绘制功率谱密度函数,我们可以分析随机信号的频谱特性。

结论:本实验通过对随机信号的分析,加深了对随机信号的理解。

通过绘制直方图、计算概率密度函数、计算统计特性和绘制功率谱密度函数等方法,我们可以对随机信号进行全面的分析和描述,从而更好地理解随机信号的特性和行为。

2.王五,赵六.随机信号分析方法.物理学报,2024,30(2):120-130.。

-随机信号分析实验报告

-随机信号分析实验报告

-随机信号分析实验报告H a r b i n I n s t i t u t e o f T e c h n o l o g y实验报告课程名称:随机信号分析院系:电⼦与信息⼯程学院班级:姓名:学号:指导教师:实验时间:实验⼀、各种分布随机数的产⽣(⼀)实验原理1.均匀分布随机数的产⽣原理产⽣伪随机数的⼀种实⽤⽅法是同余法,它利⽤同余运算递推产⽣伪随机数序列。

最简单的⽅法是加同余法)(mod 1M c y y n n +=+My x n n 11++= 为了保证产⽣的伪随机数能在[0,1]内均匀分布,需要M 为正整数,此外常数c 和初值y0亦为正整数。

加同余法虽然简单,但产⽣的伪随机数效果不好。

另⼀种同余法为乘同余法,它需要两次乘法才能产⽣⼀个[0,1]上均匀分布的随机数)(mod 1M ay y n n =+ My x n n 11++= 式中,a 为正整数。

⽤加法和乘法完成递推运算的称为混合同余法,即 )(mod 1M c ay y n n +=+ M y x n n 11++=⽤混合同余法产⽣的伪随机数具有较好的特性,⼀些程序库中都有成熟的程序供选择。

常⽤的计算语⾔如Basic 、C 和Matlab 都有产⽣均匀分布随机数的函数可以调⽤,只是⽤各种编程语⾔对应的函数产⽣的均匀分布随机数的范围不同,有的函数可能还需要提供种⼦或初始化。

Matlab 提供的函数rand()可以产⽣⼀个在[0,1]区间分布的随机数,rand(2,4)则可以产⽣⼀个在[0,1]区间分布的随机数矩阵,矩阵为2⾏4列。

Matlab 提供的另⼀个产⽣随机数的函数是random('unif',a,b,N,M),unif 表⽰均匀分布,a 和b 是均匀分布区间的上下界,N 和M 分别是矩阵的⾏和列。

2.随机变量的仿真根据随机变量函数变换的原理,如果能将两个分布之间的函数关系⽤显式表达,那么就可以利⽤⼀种分布的随机变量通过变换得到另⼀种分布的随机变量。

信号实验报告南理工

信号实验报告南理工

本次实验旨在通过实际操作加深对信号处理基本理论的理解,掌握信号频谱分析的方法,学习不同窗函数对信号频谱的影响,以及采样定理在信号处理中的应用。

通过实验,培养学生动手能力、分析问题和解决问题的能力。

二、实验原理1. 信号频谱分析:利用傅里叶变换将信号从时域转换为频域,分析信号的频率成分和能量分布。

2. 窗函数:在信号截取过程中,窗函数用于减少截取信号边缘的泄漏效应,提高频谱分析的准确性。

3. 采样定理:奈奎斯特采样定理指出,为了无失真地恢复原信号,采样频率应大于信号最高频率的两倍。

三、实验设备与软件1. 实验设备:示波器、信号发生器、计算机等。

2. 实验软件:MATLAB、Simulink等。

四、实验内容1. 信号频谱分析:(1)定义一个离散信号x[n],计算其频谱X[k]。

(2)分别采用矩形窗、汉宁窗、汉明窗对信号进行截取,计算截取信号的频谱。

(3)比较不同窗函数对信号频谱的影响。

2. 采样定理验证:(1)根据奈奎斯特采样定理,确定信号的最大采样间隔和最小采样点数。

(2)通过改变采样点数,观察频谱变化,验证采样定理。

3. 周期性信号的DFT分析:(1)计算信号x[n]的周期T。

(2)通过补零和截取信号,分析周期性信号的DFT。

1. 在MATLAB中定义离散信号x[n],并计算其频谱X[k]。

2. 分别采用矩形窗、汉宁窗、汉明窗对信号进行截取,计算截取信号的频谱。

3. 比较不同窗函数对信号频谱的影响。

4. 根据奈奎斯特采样定理,确定信号的最大采样间隔和最小采样点数。

5. 改变采样点数,观察频谱变化,验证采样定理。

6. 计算信号x[n]的周期T,通过补零和截取信号,分析周期性信号的DFT。

六、实验结果与分析1. 信号频谱分析:通过实验,发现不同窗函数对信号频谱的影响不同。

矩形窗频谱泄漏严重,汉宁窗和汉明窗能较好地抑制泄漏。

2. 采样定理验证:实验结果表明,当采样点数小于最小采样点数时,频谱发生严重混叠;当采样点数等于最小采样点数时,频谱能够无失真地恢复原信号。

随机信号实验报告(模板)(1)

随机信号实验报告(模板)(1)

随机信号实验报告学院通信工程学院专业信息工程班级 1401051班制作人文杰制作人晓鹏一、 摘要根据实验的要求与具体容,我们组做了一下分工,XXX 完成了本次的第一组实验即基于MATLAB 的信号通过线性系统与非线性系统的特性分析,具体容有(高斯白噪声n ,输入信号x ,通过线性与非线性系统的信号a,b,y1,y2的均值,均方值,方差,自相关函数,概率密度,功率谱密度以及频谱并把它们用波形表示出来),XXX 和XXX 两人合力完成了基于QUARTUS II 的2ASK 信号的产生及测试实验具体容有(XXX 负责M 序列发生器以及分频器,XXX 负责载波的产生以及开关函数和管脚配置),最后的示波器调试以及观察2ASK 信号的FFT 变换波形由我们组所有人一起完成的。

二、实验原理及要求实验一、信号通过线性系统与非线性系统的特性分析1、实验原理① 随机过程的均值(数学期望):均值表示集合平均值或数学期望值。

基于随机过程的各态历经性,可用时间间隔T 的幅值平均值表示,即:均值表达了信号变化的中心趋势,或称之为直流分量。

② 随机过程的均方值:信号x(t)的均方值,或称为平均功率,其表达式为:均方值表达了信号的强度,其正平方根值,又称为有效值,也是信号的平均能量的一种表达。

③ 随机信号的方差: 信号x(t)的方差定义为:描述了信号的静态量,方差反映了信号绕均值的波动程度。

在已知均值和均方值的前提下,方差就很容易求得了。

④随机信号的自相关函数信号的相关性是指客观事物变化量之间的相依关系。

对于平稳随机过程X(t)和Y(t)在两个不同时刻t和t+τ的起伏值的关联程度,可以用相关函数表示。

在离散情况下,信号x(n)和y(n)的相关函数定义为:τ,t=0,1,2,……N-1。

⑤随机过程的频谱:信号频谱分析是采用傅立叶变换将时域信号x(t)从另一个角度来了解信号的特征。

时域信号x(t)的傅氏变换为:⑥随机过程的功率谱密度:随机信号的功率普密度是随机信号的各个样本在单位频带的频谱分量消耗在一欧姆电阻上的平均功率的统计均值,是从频域描述随机信号的平均统计参量,表示X(t)的平均功率在频域上的分布。

随机信号分析报告实验

随机信号分析报告实验

实验一 随机序列的产生及数字特征估计一、实验目的1、学习和掌握随机数的产生方法;2、实现随机序列的数字特征估计。

二、实验原理1. 随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。

进行随机信号仿真分析时,需要模拟产生各种分布的随机数。

在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。

伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。

伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。

(0,1)均匀分布随机数是最最基本、最简单的随机数。

(0,1)均匀分布指的是在[0,1]区间上的均匀分布,即U(0,1)。

实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:Ny x N ky Mod y y n n n n /))((110===-, (1.1)序列{}n x 为产生的(0,1)均匀分布随机数。

下面给出了上式的3组常用参数: (1) 7101057k 10⨯≈==,周期,N ;(2) (IBM 随机数发生器)8163110532k 2⨯≈+==,周期,N ; (3) (ran0)95311027k 12⨯≈=-=,周期,N ;由均匀分布随机数,可以利用反函数构造出任意分布的随机数。

定理1.1 若随机变量X 具有连续分布函数F X (x),而R 为(0,1)均匀分布随机变量,则有)(1R F X x -= (1.2)由这一定理可知,分布函数为F X (x)的随机数可以由(0,1)均匀分布随机数按上式进行变换得到。

2. MATLAB 中产生随机序列的函数(1) (0,1)均匀分布的随机序列 函数:rand用法:x = rand(m,n)功能:产生m ×n 的均匀分布随机数矩阵。

(2) 正态分布的随机序列 函数:randn用法:x = randn(m,n)功能:产生m ×n 的标准正态分布随机数矩阵。

随机信号处理实验报告一

随机信号处理实验报告一

《随机信号分析与处理》实验报告指导教师:廖红华班级:0309411学号:030941103姓名:钱进红2011-12-7实验一 熟悉MA TLAB 的随机信号处理相关命令一、实验目的1、熟悉GUI 格式的编程及使用。

2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程 二、实验原理 1、语音的录入与打开在MATLAB 中,[y,fs,bits]=wavread('Blip',[N1 N2]);用于读取语音,采样值放在向量y 中,fs 表示采样频率(Hz),bits 表示采样位数。

[N1 N2]表示读取从N1点到N2点的值。

2、时域信号的FFT 分析FFT 即为快速傅里叶变换,是离散傅里叶变换的快速算法,它是根据离散傅里叶变换的奇、偶、虚、实等特性,对离散傅里叶变换的算法进行改进获得的。

在MATLAB 的信号处理工具箱中函数FFT 的一种调用格式为其中X 是序列,Y 是序列的FFT 。

3、均值随机变量X 的均值也称为数学期望,它定义为对于离散型随机变量,假定随机变量X 有N 个可能取值,各个取值的概率为则均值定义为上式表明,离散型随机变量的均值等于随机变量的取值乘以取值的概率之和,如果取值是等概率的,那么均值就是取值的算术平均值,如果取值不是等概率的,那么均值就是概率加权和,所以,均值也称为统计平均值。

4、方差定义为随机过程的方差。

方差通常也记为D 【X (t )】 ,随机过程的方差也是时间 t 的函数, 由方差的定义可以看出,方差是非负函数。

5、希尔伯特变换及性质x (t ) 的希尔伯特变换为x (t ) 与1/πt 的卷积,即因此,对x (t ) 的希尔伯特变换可以看作为x (t ) 通过一个冲击响应为1/πt 的线性滤波器。

希尔伯特变换器在整个频域上具有恒为1 的幅频特性,为全通网络,在相位上则引入−π/2 和π/2的相移 6、自相关函数设任意两个时刻1t ,2t ,定义121212121212(,)[()()](,,,)X R t t E X t X t x x f x x t t dx dx +∞+∞-∞-∞==⎰⎰为随机过程X (t )的自相关函数,简称为相关函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:雷达线性调频信号的脉冲压缩处理
线性调频脉冲信号,时宽10us,带宽40MHz,对该信号进行匹配滤波后,即脉压处
理,处理增益为多少,脉压后的脉冲宽度为多少?用图说明脉压后的脉冲宽度,内
差点看4dB带宽,以该带宽说明距离分辨率与带宽的对应关系。

1.程序为:
T=10e-6;
B=112e6;
Rmin=8500;Rmax=11500;
R=[9000,10000,10020];
RCS=[1 1 1 ];
C=3e8;
K=B/T;
Rwid=Rmax-Rmin;
Twid=2*Rwid/C;
Fs=10*B;Ts=1/Fs;
Nwid=ceil(Twid/Ts);
t=linspace(2*Rmin/C,2*Rmax/C,Nwid); M=length(R);
td=ones(M,1)*t-2*R'/C*ones(1,Nwid);
Srt1=RCS*(exp(1i*pi*K*td.^2).*(abs(td)<T/2));
Srt=Srt1;
Nchirp=ceil(T/Ts);
Nfft=2^nextpow2(Nwid+Nwid-1); Srw=fft(Srt,Nfft);
Srw1=fft(Srt1,Nfft);
t0=linspace(-T/2,T/2,Nchirp);
St=exp(1i*pi*K*t0.^2);
Sw=fft(St,Nfft);
Sot=fftshift(ifft(Srw.*conj(Sw)));
Sot1=fftshift(ifft(Srw1.*conj(Sw)));
N0=Nfft/2-Nchirp/2;
Z=abs(Sot(N0:N0+Nwid-1));
Z=Z/max(Z);
Z=20*log10(Z+1e-6);
figure
subplot(211)
plot(t*1e6,real(Srt));
axis tight;
xlabel('us');ylabel('幅度')
title(['线性信号压缩前']);
subplot(212)
plot(t*C/2,Z)
xlabel('Range in meters');ylabel('幅度 ')
title(['线性信号压缩后']);
选取0.9*10^4HZ 的一个脉冲进行放大分析(调整Y 轴与X 轴的范围)
58606264666870
727476
us
幅度线性调频信号压缩前
0.850.90.951
1.05 1.1 1.15x 104
-150
-100
-50
50
Range in meters 幅度 线性调频信号压缩后
选取主瓣调整:
大致可以看出压缩后的带宽为0.1hz
理论上分析处理增益为:D=10*10e -6*112*10e6=1120
D=112/B1=1120.
B1=0.1HZ
2.分辩率。

改变两目标的相对位置,可以分析线性调频脉冲压缩雷达的分辨率。

仿真程序默认参数的距离分辨率为:
6
81011221032⨯⨯⨯==B C R σ=1.33 下图为分辨率仿真结果,可做如下解释:(图形为两个目标点的距离逐渐变大) 图为单点目标压缩候的波形;
(a)图中,两目标相距1m 小于R σ,因而不能分辨;
(b)图中,两目标相距2m 略大于
R σ,能够分辩出一点点; (d)图中,两目标距离大于雷达的距离分辨率很多为5m ,主瓣变宽,直至能明显分
辨出两目标。

相关文档
最新文档