工业机器人技术及关键基础部件分析

合集下载

工业机器人的核心技术有哪些

工业机器人的核心技术有哪些

工业机器人的核心技术有哪些机械设计技术:机械设计技术是的核心基础技术之一、机械设计技术的关键是设计出机械臂、手爪、关节、传动系统等各个部件的结构,以及各个部件之间的协调运动方式。

机械设计技术不仅影响到机器人的载重能力、工作半径和精度等性能参数,还会直接影响到机器人的使用寿命、可靠性和安全性等方面。

控制算法技术:控制算法技术是工业机器人的另一个核心技术。

控制算法技术的关键是设计出适用于不同应用场景的控制算法,通过对机器人进行控制,实现机器人的精确运动和高效作业。

控制算法技术不仅涉及到运动控制算法,还包括传感器信号处理算法、路径规划算法、力控算法等多个方面。

控制算法技术的优化和创新可以大大提高机器人的精度和效率。

传感器技术:传感器技术是工业机器人的重要组成部分。

传感器技术的关键是使用不同类型的传感器来获取机器人操作过程中的各种信息,比如位置、速度、力量、压力等。

传感器技术可以帮助机器人感知周围环境,从而更加智能地进行操作。

常见的传感器包括视觉传感器、力传感器、温度传感器等。

人机交互技术:工业机器人的操作需要通过人机交互来完成,因此人机交互技术也是工业机器人的重要技术之一、人机交互技术的关键是设计出简单易用、操作便捷的控制界面和交互方式,以便操作人员可以方便地控制机器人的运动和作业。

同时,人机交互技术也包括机器人故障提示和维修指南等功能,以帮助操作人员更好地使用和维护机器人。

综上所述,机械设计技术、控制算法技术、传感器技术和人机交互技术是工业机器人的核心技术。

这些技术的不断创新和优化可以大大提高机器人的性能和智能化程度。

工业机器人常见五大应用领域及关键技术

工业机器人常见五大应用领域及关键技术

工业机器人常见五大应用领域及关键技术去年全球工业机器人销量达到24万台,同比增长8%。

其中,我国工业机器人市场销量超过6.6万台,继续保持全球第一大工业机器人市场的地位。

但是,按机器人密度来看,即每万名员工对应的机器人保有量,我国不足30台,远低于全球约为50多台的平均水平。

前瞻产业研究院《2016-2021年中国工业机器人行业产销需求预测与转型升级分析报告》数据显示:2015年我国工业机器人产量为32996台,同比增长21.7%。

2016年机器人产业将继续保持快速增长,今年一季度我国工业机器人产量为11497台,同比增长19.9%。

此外,数据显示,2015年我国自主品牌工业机器人生产销售达22257台,同比增长31.3%。

国产自主品牌得到了一定程度的发展,但与发达国家相比,仍有一定差距。

2016年未来全球工业机器人市场趋势包括:大国政策主导,促使工业与服务机器人市场增长;汽车工业仍为工业机器人主要用户;双臂协力型机器人为工业机器人市场新亮点。

一、什么是工业机器人工业机器人是一种通过重复编程和自动控制,能够完成制造过程中某些操作任务的多功能、多自由度的机电一体化自动机械装备和系统,它结合制造主机或生产线,可以组成单机或多机自动化系统,在无人参与下,实现搬运、焊接、装配和喷涂等多种生产作业。

当前,工业机器人技术和产业迅速发展,在生产中应用日益广泛,已成为现代制造生产中重要的高度自动化装备。

二、工业机器人的特点自20世纪60年代初第一代机器人在美国问世以来,工业机器人的研制和应用有了飞速的发展,但工业机器人最显著的特点归纳有以下几个。

1.可编程。

生产自动化的进一步发展是柔性自动化。

工业机器人可随其工作环境变化的需要而再编程,因此它在小批量多品种具有均衡高效率的柔性制造过程中能发挥很好的功用,是柔性制造系统(FMS)中的一个重要组成部分。

2.拟人化。

工业机器人在机械结构上有类似人的行走、腰转、大臂、小臂、手腕、手爪等部分,在控制上有电脑。

工业机器人基础知识

工业机器人基础知识

1.工业机器人技术及关键基础部件(1)机器人关键基础部件定义、分类及市场占有率;机器人关键基础部件是指构成机器人传动系统,控制系统和人机交互系统,对机器人性能起到关键影响作用,并具有通用性和模块化的部件单元。

机器人关键基础部件主要分成以下三部分:高精度机器人减速机,高性能交直流伺服电机和驱动器,高性能机器人控制器等。

目前在高精度机器人减速机方面,市场份额的75%均两家日本减速机公司垄断,分别为提供RV摆线针轮减速机的日本Nabtesco和提供高性能谐波减速机的日本Harmonic Drive.包括 ABB, FANUC, KUKA,MOTOMAN在内国际主流机器人厂商的减速机均由以上两家公司提供,与国内机器人公司选择的通用机型有所不同的是,国际主流机器人厂商均与上述两家公司签订了战略合作关系,提供的产品大部分为在通用机型基础上根据各厂商的特殊要求进行改进后的专用型号。

国内在高精度摆线针轮减速机方面研究起步较晚,仅在部分院校,研究所有过相关研究。

目前尚无成熟产品应用于工业机器人。

近年来国内部分厂商和院校开始致力高精度摆线针轮减速机的国产化和产业化研究,如浙江恒丰泰,重庆大学机械传动国家重点实验室,天津减速机厂,秦川机床厂,大连铁道学院等。

在谐波减速机方面,国内已有可替代产品,如北京中技克美,北京谐波传动所,但是相应产品在输入转速,扭转高度,传动精度和效率方面与日本产品还存在不小的差距,在工业机器人上的成熟应用还刚刚起步。

在伺服电机和驱动方面,目前欧系机器人的驱动部分主要由伦茨,Lust,博世力士乐等公司提供,这些欧系电机及驱动部件过载能力,动态响应好,驱动器开放性强,且具有总线接口,但是价格昂贵。

而日系品牌工业机器人关键部件主要由安川,松下,三菱等公司提供,其价格相对降低,但是动态响应能力较差,开放性较差,且大部分只具备模拟量和脉冲控制方式。

国内近年来也开展了大功率交流永磁同步电机及驱动部分基础研究和产业化,如哈尔滨工业大学,北京和利时,广州数控等单位,并且具备了一点的生产能力,但是其动态性能,开放性和可靠性还需要更多的实际机器人项目应用进行验证。

工业机器人技术基础课件(最全)

工业机器人技术基础课件(最全)
设置编程语言、通信接口 、坐标系等参数
程序结构设计与实现过程
程序结构设计
注意事项
模块化设计、流程图设计、状态机设 计等
避免死锁、确保实时性、优化代码结 构等
实现过程
编写程序框架、定义变量和函数、实 现控制逻辑等
调试技巧及优化方法
01
02
03
调试技巧
单步执行、断点调试、变 量监视等
优化方法
减少计算量、优化算法、 使用高效数据结构等
03 电动驱动
精度高,响应速度快,维护方便,适用于各种负 载和行程的作业。
传感器配置与选型
01 内部传感器
检测机器人自身状态,如关节角度、电机电流等 。
02 外部传感器
检测机器人外部环境,如距离、温度、光照等。
03 选型原则
根据作业需求和机器人性能要求选择合适的传感 器类型和精度等级。
控制系统硬件架构
工业机器人技术基础 课件(最全)
目录
• 工业机器人概述 • 工业机器人核心技术 • 工业机器人硬件组成 • 工业机器人软件编程 • 工业机器人系统集成与应用案例 • 工业机器人维护与保养知识普及
01
工业机器人概述
定义与发展历程
定义
工业机器人是一种能自动执行工作的机器装置,靠自身 动力和控制能力来实现各种功能,可以接受人类指挥, 也可以按照预先编排的程序运行。
控制算法
详细讲解工业机器人控制 中常用的算法,如PID控 制、模糊控制、神经网络 控制等。
控制器设计
阐述工业机器人控制器的 设计原则和方法,包括硬 件设计和软件设计。
控制技术应用
探讨控制技术在工业机器 人中的应用,如焊接机器 人、装配机器人、喷涂机 器人等。

浅谈工业机器人技术的发展与现状

浅谈工业机器人技术的发展与现状

浅谈工业机器人技术的发展与现状曾棋俊安鹏芳陶泉兆(四川科技职业学院四川成都610000)摘要:工业机器人是集各种技术于一身的先进产物,相比以往,在工业、医疗、生活、教育等诸多方面工业机器人带来的改变无疑是颠覆性的。

在第一台工业机器人诞生时,就足以看出这是具有划时代性的。

全球主要机器人品牌竞争激烈,工业机器人的功能、性能不断更新,市场规模的年均增长率持续提升。

本文以国内外的工业机器人的发展,以及工业机器人的技术革新与各项技术融合作为研究对象,将国内外机器人应用技术进行了对比,研究了我国机器人使用总占比率、国内行业分布近况,并对下一代机器人的发展作了推测。

关键词:工业机器人技术融合技术运用未来发展前景分析中图分类号:TP242.2文献标识码:A文章编号:1674-098X(2022)02(a)-0068-05我国是制造大国,同时也是人口大国,在工业方面,不仅种类众多,岗位也是数不胜数。

自我国拥有工业机器人后,制造面貌逐年发生变化,尤其在近年,工业机器人在我国得到飞速发展,代替人工的优势被逐渐扩大,同时,也带来了一大批新兴岗位。

而许多院校设有工业机器人专业,这为我国培养了一大批新型技术人才,更为我国实现制造强国的目标奠定了一定基础。

高新技术的大步迈进,全球逐步踏入智能化、数字化、信息化时代,近年来,各项前沿技术在工业机器人领域正逐渐呈现出蓬勃的景象。

工业机器人应用面较广,不仅可减少人口劳动力,还能有效地控制成本,尤其在工业方面已然具有不可或缺的作用。

同时,智能时代的到来标志着工业机器人的功能将更加人性化,其应用将给人们的生活和工作带来更大的价值。

我国工业机器人在2015—2019年期间总体取得了很好的销售情况,市场销售额度超过363亿人民币,发展上升态势逐年增高,其带来的技术改革深远影响具有核心优势。

本文以我国工业机器人技术的成长态势、发展空间与机会为主要研究出发点,对未来的市场趋势和机遇提出了新看法。

2024年版中国工业机器人关键部件市场研究报告

2024年版中国工业机器人关键部件市场研究报告

一、市场概况近年来,随着中国制造业的转型升级和智能制造的推进,工业机器人市场逐渐兴起。

作为工业机器人的核心部件,工业机器人关键部件市场也逐渐壮大。

关键部件包括驱动器、控制系统、传感器等,它们直接影响着机器人的性能和稳定性。

2024年,中国工业机器人关键部件市场规模已经超过1000亿元,成为制造业的重要组成部分。

二、市场分析1.驱动器市场驱动器是工业机器人的核心部件之一,广泛应用于工业机器人的关节和执行部件,起着传递力和运动控制的作用。

2024年,中国驱动器市场规模达到200亿元,主要集中在伺服驱动器和步进驱动器两类产品。

随着机器人应用领域的拓展和技术的进步,驱动器市场将持续增长。

2.控制系统市场控制系统是工业机器人的智能核心,用于控制机器人的运动和操作。

2024年,中国控制系统市场规模达到150亿元,主要包括PLC控制系统和PC控制系统两类产品。

随着工业机器人智能化水平的提升,控制系统将成为机器人的关键竞争力。

3.传感器市场传感器是工业机器人的感知器官,用于感知外部环境和反馈机器人状态。

2024年,中国传感器市场规模达到100亿元,主要包括光电传感器、压力传感器和力传感器等产品。

随着工业机器人的应用场景不断扩大,传感器市场将迎来更广阔的发展空间。

三、市场趋势1.智能化发展随着人工智能、大数据和物联网等新兴技术的蓬勃发展,工业机器人关键部件市场也将朝着智能化方向发展。

驱动器、控制系统和传感器将不断融合,实现机器人的自主学习和智能决策。

2.自主化技术自主化技术是工业机器人的发展趋势之一,主要体现在机器人具备自主导航、自主操作和自主维护等能力。

驱动器、控制系统和传感器将成为实现自主化的核心部件。

3.安全性和可靠性安全性和可靠性是工业机器人的重要指标,关键部件的安全性和可靠性显得尤为重要。

驱动器、控制系统和传感器将不断进行技术升级和优化,保障机器人在工作过程中的安全性和稳定性。

四、市场前景随着中国制造业的进一步升级和智能化水平的提升,工业机器人关键部件市场前景将继续向好。

工业机器人的应用分析

工业机器人的应用分析

工业机器人的应用分析工业机器人是一种专门用于在工业生产中代替人工完成某些重复性、简单、危险或高精度工作任务的机器人。

工业机器人应用广泛,能够满足各种应用场景的需求。

通过对工业机器人的应用进行分析,我们可以更好地理解它的优势和潜能。

1. 组件制造:工业机器人主要用于组件制造领域,例如汽车、航空航天和电子产品等。

它们可以使用工业机器人来制造座椅、车门、仪表盘、引擎和其他零部件。

2. 焊接:工业机器人在各种类型的焊接工作中表现出色,例如氩弧焊、电弧焊、激光焊等等。

它们能够执行精确的运动,并能确保一致的焊接质量。

3. 包装和装配:工业机器人在各个领域应用广泛,无论是汽车制造或药品包装,都能够灵活地进行包装和装配工作。

4. 激光切割:工业机器人可以执行高精度的激光切割,这项技术的应用比较广泛,主要涵盖汽车、航空航天和锅炉制造等领域。

5. 喷漆:喷漆往往需要极高的精度和一致性,因此使用工业机器人会比手工喷漆更具有优势。

在汽车、电子产品和家具生产中,喷漆是很常见的一个工序。

6. 拆解:在处理废旧设备时,工业机器人可以非常有效地拆解其部件。

通过拆解,可以更好地回收、再利用和处理各种材料。

二、工业机器人的优势1. 生产效率更高:与手工或半自动装置相比,工业机器人能够稳定地执行相同的任务,从而提高生产效率。

2. 节省成本:使用工业机器人生产,可以降低制造成本,提高生产效率,避免繁琐的劳动力和相关成本的发生。

3. 改善品质控制:使用工业机器人可以获得一致的产品质量,避免了制造中的人为错误。

4. 安全性更高:工业机器人能够完成一些人工容易受到伤害的任务,避免工作场所的安全事故的发生。

5. 适应不同的制造环境:工业机器人可以用于各种适应各种制造环境,适应生产工艺的复杂性和多样性。

随着人工智能和机器学习的发展,机器人可以自主学习和对环境进行自我调整和修正。

未来,工业机器人将越来越具有灵活性和自适应性,更好地适应复杂的制造环境和应用需求。

工业机器人技术-工业机器人机械结构ppt课件

工业机器人技术-工业机器人机械结构ppt课件
上臂
☞ 见P61、图3.3-10
电机
减速器 上臂
下臂
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
❖ 大型机器人结构1
☞ S轴采用同步皮带传动、手腕电机后置(后驱)
目的:
✓ 减小S轴电机; ✓ 平衡上臂重力; ✓ 提高结构稳定性。
☞ 见P43、图3.1-11, P45、图3.1-13
B/T电机位置 上臂回转
B/T电机位置
腕部回转
前驱
后驱
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
前驱特点 ✓ 结构简单、外形紧凑; ✓ 传动链短、传动精度高; ✓ 电机规格受限,承载能力低,适合小型机器人; ✓ 电机安装空间小、散热差,维修困难; ✓ 上臂前端重量大、重心远,结构稳定性差。
减速器
手腕电机
S轴电机 同步皮带
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
❖ 大型机器人结构2
☞ S轴采用同步皮带传动、上臂连杆驱动
目的:
✓ 减小S、U轴电机; ✓ 降低机器人重心; ✓ 提高结构稳定性。
❖ 典型结构剖析1(前驱)
R轴
☞ 见P64、图3.3-14
连接轴
减速器
电机
上臂回转段 上臂固定段
为了规范事业单位聘用关系,建立和 完善适 应社会 主义市 场经济 体制的 事业单 位工作 人员聘 用制度 ,保障 用人单 位和职 工的合 法权益
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等驱动器信号实时采
总线
持 Synqnet
集)
总线
振动抑 速度回路含有陷波 含有各种常 含有各种常规 含有各种常规 含有各种常规滤波器 含有各种常规滤波器

滤波器,低通滤波 规滤波器,速 滤波器
滤波器及速度
器,指令平滑滤波,度波动较小。
观测器
编码器信号噪声滤 动态响应能

力强
位置回路含有半主 动抑振滤波器(输 入整形滤波器)
(2)机器人关键基础部件国内外发展趋势(技术、产业);
在机器人高精度谐波减速机方面, 在其齿轮传动中采用双圆弧齿廓,可以有效改善柔轮齿根的应力状 况和传动啮合质量,提高承载能力、扭转刚度和柔轮疲劳寿命,并可降低最小传动比。日本的 IH 齿 形是基于余弦凸轮波发生器开发的双圆弧齿形,由于采用近似方法设计,应用初期出现了齿廓干涉等 问题,但是到 1990 年代初期已经基本完善。目前,日本谐波传动系统有限公司的谐波产品有十几个 类型,二十多个系列,最小传动比为 30,型号中带有字母“S”的,其齿形为双圆弧齿形,产品垄断了 主要国际市场。其中超短杯型号 CSD 和 SHD,其柔轮长度仅有常规谐波传动柔轮的 1/3,既增加传 动刚度,又大幅度减轻了谐波减速器重量。此外,在谐波传动轻量化技术方面,采用铝等轻合金材料 制造波发生器与减速器壳体等方式,减薄刚轮外缘以及改进连接结构等形式,使整机重量大幅度减 轻。 相比于谐波减速机,RV 减速机具有更高的高度和回转精度,目前其发展方向是如何通过对内 部轴承的配置,材料和热处理工艺的改进,增加减速机的扭转刚度,最大抗弯弯矩,以及提高在频繁 加减速等恶劣工况下的使用寿命。
0.25~15KW
力矩特 低速(<100rpm) 低速
低速
低速
低速(<100rpm)保 低速(<100rpm)保持转
性曲线 保持转矩等于额定 (<100rpm) (<100rpm) (<100rpm) 持转矩大等于额定转 矩大等于额定转矩
转矩,低速恒扭矩 保持转矩等 保持转矩大于 保持转矩大等 矩
于额定转矩, 额定转矩 于额定转矩
在机器人控制器方面,目前国外主流机器人厂商的控制器均为在通用的多轴运动控制器平台基础上进 行自主研发。目前通用的多轴控制器平台主要分为以嵌入式处理器(DSP,POWER PC)为核心的运 动控制卡和以工控机加实时系统为核心的软 PLC 系统,其代表分别是 Delta Tau 的 PMAC 卡和 Beckhoff 的 TwinCAT 系统。国内的在运动控制卡方面,固高公司已经开发出相应成熟产品,但是在 机器人上的应用还相对较少。
在机器人伺服电机和驱动器方面,机器人专用化的伺服电机和驱动器将成为发展趋势,即在普通通用 伺服电机和驱动器的基础上,根据机器人的高速,重载,高精度等应用要求,增加驱动器和电机的瞬
时过载能力,增加驱动器的动态响应能力,驱动增加相应的自定义算法接口单元,并且采用通用的高 速通讯总线作为通讯接口,摒弃原先的模拟量和脉冲方式,进一步提高控制品质(如安川,松下,伦 茨等主流伺服厂商以将 EtherCAt 总线作为下一代产品的总线标准)。同时,对于通用型的伺服驱动 器删除冗余的通讯接口和功能模块,简化系统,提高系统可靠性,并进一步降低成本。
品牌
松下 (日系)
安川 (日系)
倍福
倍福
伦茨(9400)
(AX2000, (AX5000 贝 (欧美系) Danaher 代 福自主研发)
Danaher、Kollmorgan (欧美系)
工) (欧美系)(欧美系)
功率范 0.05~7.5 KW 围
0.05~15 KW
0.08~10KW 0.08~20KW 0.25~20KW
因此机器人控制器的发展趋势便现在两个方面:
① 开放性的体系结构:
最早关于开放式控制器的研究源于美国。早在 1981 年,美国国防部为了减少军备制造对日本控制系 统的依赖性,开始了名为“下一代控制器(NGC,Next Generation Controller)”的计划,并成立了美国国 家制造科学中心(NCMS,National Center of Manufacturing Sciences),其主要目的是拟订并推进开放式 体系结构的标准规范 SOSAS(Specification for an Open System Architecture Standard)。其后有许多相关 的研究计划在世界各国相继启动,其中比较重要,影响较大的三项研究工作分别是美国的 OMAC(Open Modular Architecture Controller),欧洲的 OSACA(Open System Architecture for Controls within Automation Systems),以及日本的 OSEC(Open System Environment Controller)。这些工程的目 标是开发可以控制各种基于标准的自动化硬件平台和操作环境的机器人和工业自动化系统。开发适用 于机器人控制的通用软件包,其应用范围从最底层的实时伺服控制、到智能传感器处理,到高层人机 交互,涉及机器人控制的各个方面。
② 总线控制方式:
在现场总线分布式结构中,各种开关量、模拟量就近转变成数字信号,所有总线设备间均采用数字信 号进行通信,减小了传输误差,提高了测量和控制精度。现场总 线的应用使导线和连接附件大量减 少,安装、调试及维护的开销大幅度下降,并且使系统具有优异的远程监控功能和故障诊断功能,提 高了系统的可靠性。现场总线还使系统硬件扩展更加方便,当控制轴数和 IO 点数增加时,对系统的 硬件结构没有影响,便于系统的扩充和裁减。由于现场总线的协议是公开的,不同厂商的设备只要符 合相应的标准,就可以实现互联、互换。目前国际上有 60 多种现场总线形式,常用的有 Profibus、 DeviceNet、CAN、CANOpen、 SyqNet、SERCOS 和 EtherCAT 等。这点同时也是进行多机器人网络 化控制的基础。
2 缺乏总线接口, 且不在中国 驱动器信号无法 大陆出售
实时采集和处理 3 进行动力学补偿 算法和电流前馈时 需要模拟量输出, 信号干扰较大 4 无法进行力矩控 制模式 5 低速保持力矩较 小
工,价格成本 2 存在一定的 更新频率较低
2 可选择的控制器单一,
较高,且冗余 冗余功能
(1kHz)
国内售后和
工业机器人技术及关键基础部件
1. 工业机器人技术及关键基础部件
(1)机器人关键基础部件定义、分类及市场占有率;
机器人关键基础部件是指构成机器人传动系统,控制系统和人机交互系统,对机器人性能起到关键影 响作用,并具有通用性和模块化的部件单元。机器人关键基础部件主要分成以下三部分:高精度机器 人减速机,高性能交直流伺服电机和驱动器,高性能机器人控制器等。
其他功 位置回路的低频振

动主动抑制功能
可以进行简单的位置 回路 PLC 编程,脱离 控制器工作
优点
1 在低刚度情况下 1`动态响应 1 动态响应能 1 动态响应能 1 动态响应能力领先 1 动态响应能力领先
位置回路振动主动 能力在日系 力较强, 力强,
2 功能强大,可以编 2 支持专用运动控制总
抑制效果较好
目前在高精度机器人减速机方面,市场份额的 75%均两家日本减速机公司垄断,分别为提供 RV 摆线 针轮减速机的日本 Nabtesco 和提供高性能谐波减速机的日本 Harmonic Drive.包括 ABB, FANUC, KUKA,MOTOMAN 在内国际主流机器人厂商的减速机均由以上两家公司提供,与国内机器人公司选 择的通用机型有所不同的是,国际主流机器人厂商均与上述两家公司签订了战略合作关系,提供的产 品大部分为在通用机型基础上根据各厂商的特殊要求进行改进后的专用型号。国内在高精度摆线针轮 减速机方面研究起步较晚,仅在部分院校,研究所有过相关研究。目前尚无成熟产品应用于工业机器 人。近年来国内部分厂商和院校开始致力高精度摆线针轮减速机的国产化和产业化研究,如浙江恒丰 泰,重庆大学机械传动国家重点实验室,天津减速机厂,秦川机床厂,大连铁道学院等。在谐波减速 机方面,国内已有可替代产品,如北京中技克美,北京谐波传动所,但是相应产品在输入转速,扭转 高度,传动精度和效率方面与日本产品还存在不小的差距,在工业机器人上的成熟应用还刚刚起步。
支持 Syqnet 线接口
线接口,驱动 动器信号实时获取
总线接口。 4 附属功能强 器信号实时获
缺点


4与 TwinCAT 系 统兼容性好, 开发较为灵活
1 驱动器动态性能 1 高性能产 1 由于是委托 1 相对于日系 1 进行动力学补偿算 1 支持的总线协议不公
较差
品价格较高, Danaher 代 产品价格较高 法和电流前馈时信号 开
功能较多
3 位置模式, 2 无法进行力矩控制 服务支持较弱
2 进行动力学 速度模式滤波 模式 补偿算法和电 器配置方式和 3 驱动器功能较复
3 驱动器价格较高
流前馈时信号 滤波性能有待 杂,冗余功能较多
更新频率较低 提高
成本较高
(1kHz
4 驱动器峰值 4 与现有的具有
电流过载能力 EtherCAT 接口(贝
产品中最强, 2 低速保持力 2 低速保持力 程,脱离控制器完成 线方式,驱动器信号实时
2 价格成本在进口 可与欧美系 矩较高
矩较高
控制(适合单轴或多 获取可以进行纯力矩模
电机中最低
产品媲美 3 支持
3 支持
轴非耦合控制场合) 式控制
2 高端产品 EtherCAT 总 EtherCAT 总 3 支持总线接口,驱
③ 智能化和网络化
控制器的智能化和网络化同样是发展趋势,未来的工业机器人应该具有视觉,触觉,具有很强的人机 交互能力和学习能力,因此需要控制器具有多传感器信息融合能力。同时,机器人之间可以任意组成 网络,完成多机器人协调控制,进一步提高自动化和智能化程度。
相关文档
最新文档