中山大学文科数学期考题A
广东高考数学文科试卷含答案(WORD版)

普通高等学校招生全国统一考试(广东卷)数学 (文科)一、选择题{}{}{}{}{}{}1.2,3,4,0,2,3,5,()..0,2.2,3.3,4.3,5M N M N A B C D ===已知集合则答案:B2.(34)25,()..34.34.34.34z i z z A i B iC iD i-==---+-+已知复数满足则答案:D 2525(34)25(34):=34,.34(34)(34)25i i z i D i i i ++===+--+提示故选 3.(1,2),(3,1),()..(2,1).(2,1).(2,0).(4,3)a b b a A B C D =-=--已知向量则答案:B284.,04,2().03.7.8.10.11x y x y x z x y y A B C D +≤⎧⎪≤≤=+⎨⎪≤≤⎩若变量满足约束条件则的最大值等于 答案:C提示:作出可行域(为一个五边形及其内部区域),易知在点(4,2)处目标函数取到最大值10. 选C. 5.下列函数为奇函数的是( ).A.xx212-B.x x sin 3C.1cos 2+xD.xx 22+ 答案:A111:()2,(),()22(),222(), A.x x xx x x f x f x R f x f x f x --=--=-=-=-∴提示设则的定义域为且为奇函数故选6.1000,,40,()..50.40.25.20:1000:25.40A B C D C=为了解名学生的学习情况采用系统抽样的方法从中抽取容量为的样本则分段的间隔为答案提示分段的间隔为7.,,,,,,sin sin ().....::,,,sin ,sin ,sin sin .sin sin ABC A B C a b c a b A B A B C D Aa ba b A B a b A B A B∆≤≤=∴≤⇔≤在中角所对应的边分别为则“”是“”的充分必要条件充分非必要条件必要非充分条件非充分非必要条件答案提示由正弦定理知都为正数22228.05,11().165165....05,50,160,16(5)21(16)5,x y x y k k k k A B C D k k k k k k <<-=-=--<<∴->->+-=-=-+若实数满足则曲线与曲线的实半轴长相等虚半轴长相等离心率相等焦距相等答案:D提示:从而两曲线均为双曲线,又故两双曲线的焦距相等,选D.1234122334141414149.,,,,,//,,()...//..l l l l l l l l l l A l l B l l C l l D l l ⊥⊥⊥若空间中四条两两不同的直线满足则下列结论一定正确的是与既不垂直也不平行与的位置关系不确定答案:D1212122212310.,,=,,,,z z z ωωωωωωωω*对任意复数定义其中是的共轭复数对任意复数有如下四个命题:①1231323()()();z z z z z z z +*=*+*②1231213()()()z z z z z z z *+=*+*;③123123()();z z z z z z **=**④1221z z z z *=*;则真命题的个数是( )A.1B.2C.3D.412312313231323123123123121312131231231231231231:()()()()()();()()()()()()();(),()()(),,;Bz z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z ++++=+=+=+====≠答案提示:①*===*+*,故①是真命题②**+*,②对③左边=*=右边*左边右边③错 ④左边=2122121,,,z z z z z z z ==≠*右边=*左边右边故④不是真命题.综上,只有①②是真命题,故选B.二、填空题(一)必做题(11-13)''142511.53(0,2)_______.:520:5,5,25,520.12.,,,d,e ________.2:542:105x x x y e x y y e y y x x y a b c a C P C ==-+-++==-∴=-∴+=-++====曲线在点处的切线方程为答案提示所求切线方程为即从字母中任取两个不同字母,则取到字母的概率为答案提示13.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log +log +log +log +log =a a a a a ________.212223242525242322212152:5:log log log log log ,log log log log log ,25log ()5log 410,5.S a a a a a S a a a a a S a a S =++++=++++∴===∴=答案提示设则2121214.()2cos sin cos =1.,,_____________.C C x C C ρθθρθ=坐标系与参数方程选做题在极坐标系中,曲线与的方程分别为与以极点为平面直角坐标系的原点,极轴为轴的正半轴建立平面直角坐标系则曲线与交点的直角坐标为2221212:(1,2):2cos sin 2cos =sin ,2,1,,(1,2).C y x C x C C ρθθρθρθ===∴答案提示由得()故的直角坐标方程为:的直角坐标方程为:交点的直角坐标为15.()1,,2,,___________.:3:, 3.ABCD E AB EB AE AC DE F CDF AEF CDF CD EB AECDFAEF AEF AE AE=∆=∆∆+∆∆∴===∆几何证明选讲选做题如图在平行四边形中点在上且与交于点的周长则的周长答案的周长提示显然的周长三、解答题16.(本小题满分12分)已知函数()sin(),3f x A x x R π=+∈,且532()122f π=(1) 求A 的值;(2) 若()()3,(0,)2f f πθθθ--=∈,求()6f πθ-5533232:(1)()sin()sin ,2 3.12123422(2)(1):()3sin(),3()()3sin()3sin()333(sin cos cos sin )3(sin()cos cos()sin )33336cos sin 333cos 31cos ,()336f A A A f x x f f f πππππππθθθθππππθθθθπθθπθθ=+==∴=⋅==+∴+-=++-+=++-+-===∴=∴-=解由得1sin()3sin()3cos 3 1.6323πππθθθ-+=-==⨯=17. 某车间20名工人年龄数据如下表:(1)求这20名工人年龄的众数与极差;(2)以十位数为茎,个位数为叶,作出这20名工人年龄的茎叶图; (3)求这20名工人年龄的方差.:(1)2030,401921.-=解这名工人年龄的众数为极差为 (2)茎叶图如下:()2222222(1928329330531432340)3:30,20120:(11)3(2)3(1)50413210201(121123412100)2012522012.6+⨯+⨯+⨯+⨯+⨯+=⎡⎤-+⨯-+⨯-+⨯+⨯+⨯+⎣⎦=+++++=⨯=年龄的平均数为故这名工人年龄的方差为18.2,,,1, 2.3://,,,,,.(1):;(2).ABCD PD ABCD AB BC PC EF DC E F PD PC EF P AD M MF CF CF MDF M CDE ⊥===⊥⊥-如图四边形为矩形平面作如图折叠折痕其中点分别在线段上沿折叠后点叠在线段上的点记为并且证明平面求三棱锥的体积00:(1):,,,,,,,,,,,,,.11(2),,60,30,==,22,PD ABCD PD PCD PCD ABCD PCD ABCD CD MD ABCD MD CD MD PCD CF PCD CF MD CF MF MD MF MDF MD MF M CF MDF CF MDF CF DF PCD CDF CF CD DE EF DC D ⊥⊂∴⊥=⊂⊥∴⊥⊂∴⊥⊥⊂=∴⊥⊥∴⊥∠=∴∠=∴解证明平面平面平面平面平面平面平面平面又平面平面平面又易知从而∥2222221333132,=,,,,2442833336()(),44211362.338216CDE M CDE CDE CF DE DE PE S CD DE P CP MD ME DE PE DE V S MD ∆-∆=∴=∴==⋅==-=-=-=∴=⋅=⋅⋅=即{}{}222119.,(3)3()0,.(1);(2);n n n n n n a n S S S n n S n n n N a a *-+--+=∈设各项均为正数的数列的前项和为且满足求的值求数列的通项公式1 92 8 8 8 9 9 93 0 0 0 0 0 1 1 1 1 2 2 24 0(3)证明:对一切正整数n ,有()()().311111112211<+++++n n a a a a a a221111*********2221:(1)1:(1)320,60,(3)(2)0,0,2, 2.(2)(3)3()0,:(3)()0,0(),0,30,,2,(1)(1)n n n n n n n n n n n n S S S S S S S S a S n n S n n S S n n a n N S S S n n n a S S n n n n *-=---⨯=+-=∴+-=>∴==⎡⎤-+--+=+-+=⎣⎦>∈∴>+>∴=+⎡∴≥=-=+--+-⎣解令得即即由得从而当时12211222,221,2().313(3),()(),221644111111113(1)2(21)44()()()24411111111144(1)()(1)4444111(1)(1)(n k k n n a a n n N k k k N k k k k a a k k k k k k k k k k a a a a a a **⎤=⎦==⨯∴=∈∈+>+-=-+∴==⋅<⋅+++-+⎡⎤⎢⎥=⋅=⋅-⎢⎥⎡⎤⎢⎥-+--⋅+-⎢⎥⎣⎦⎣⎦∴+++++又当时1)1111111()()11111141223(1)444444111111().11434331(1)44n n n n n +⎡⎤⎢⎥<-+-++-⎢⎥⎢⎥-----+-⎣⎦=-=-<+-+-22220022222520.:1(0)(5,0),.3(1);(2)(,),,.55:(1)5,,3,954,31.94(2),,4x y C a b a b C P x y C P C P c c e a b a c a a x y C x y +=>>====∴==-=-=∴+=已知椭圆的一个焦点为离心率为求椭圆的标准方程若动点为椭圆外一点且点到椭圆的两条切线相互垂直求点的轨迹方程解椭圆的标准方程为:若一切线垂直轴则另一切线垂直于轴则这样的点P 共个002200222000022222000000(3,2),(3,2).(),(),194(94)18()9()40,,0,(18)()36()4(94)0,4()4y y k x x x y y k x x y k x k y kx x y kx k y kx y kx k y kx -±±-=-=-++=⎡⎤++-+--=∆=⎣⎦⎡⎤----+=--⎣⎦,它们的坐标分别为若两切线不垂直于坐标轴,设切线方程为即将之代入椭圆方程中并整理得:依题意即:即22222000001220220022(94)0,4(9)240,,1,:1,913,(3,2),(3,2),13.k y x k x y k y k k x x y P x y +=-∴--+-=∴=-=--∴+=-±±∴+=两切线相互垂直即显然这四点也满足以上方程点的轨迹方程为3200121.()1().3(1)();111(2)0,(0,)(,1),()=().222f x x x ax a R f x a x f x f =+++∈<∈已知函数求函数的单调区间当时试讨论是否存在使得'22'2'':(1)()2,20:44,1,0,()0,()(,).1,2011,(,11),()0,(),(11,11),()0,(),(11,)f x x x a x x a a a f x f x a x x a a x a f x f x x a a f x f x x a =++++=∆=-∴≥∆≤∴≥-∞+∞<++=-±-∈-∞--->∴∈----+-<∈-+-+∞解方程的判别式当时此时在上为增函数当时方程的两根为当时此时为增函数当时此时为减函数当时',()0,(),,1,()(,),1,()(,11),(11,),()(11,11).f x f x a f x a f x a a f x a a >≥-∞+∞<-∞----+-+∞----+-此时为增函数综上时在上为增函数当时的单调递增区间为的单调递减区间为323200003322000200000020000200111111(2)()()1()()()12332221111()()()3222111111()()()()()3224222111()()23612211()(4122f x f x x ax a x x a x x x x x x a x x x x x a x x ⎡⎤-=+++-+++⎢⎥⎣⎦⎡⎤⎡⎤=-+-+-⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤=-+++-++-⎢⎥⎣⎦=-+++++=-+00020020014712)111(0,)(,1),()(),222114147120(0,)(,1).220,1416(712)4(2148)0,14221487214872148:,0,,8447+2148,01,721484x a x f x f x x a a a a a a ax x a a ++∴∈=+++=<∴∆=-+=->-±--±--+-=>∴--<<<-<若存在使得必须在上有解方程的两根为只能是依题意即0000025711,492148121,,12127+2148155=,,,,424425557111(,)(,),(0,)(,1)()().124412222257511(,][,0),(0,)(,1)()(1212422a a a a x a a x f x f a x f x f ∴<-<-<<---=-≠-∴∈----∈=⎧⎫∈-∞---∈=⎨⎬⎩⎭即又由得故欲使满足题意的存在则当时存在唯一的满足当时不存在使1).2。
中山大学历年考试试题总结

4.(20分)设 的线性变换在标准基下的矩阵A= .
(1).ቤተ መጻሕፍቲ ባይዱA的特征值和特征向量.(2).求 的一组标准正交基,使在此基下的矩阵为对角矩阵.
5.(20分)设 为n维欧氏空间V中一个单位向量,定义V的线性变换如下:
证明:
(1).为第二类的正交变换(称为镜面反射).
3.(16分)设 在[0,1]连续, 求 。
4.(16分)求极限 。
5.(16分)(1)证明级数 在 一致收敛;
(2)令 , ,证明 在 一致连续。
2009.1.11数据库(871)
2008.1.20数据库(879)
(2).V的正交变换是镜面反射的充要条件为1是的特征值,且对应的特征子空间的维数为n-1.
2009.1.15数学分析(650)
2008.1.20数学分析(636)
2007.1.21数学分析(752)
2006.1.15数学分析
2003年数学分析试题
1.(16分)求 在 上的极值;求方程 有两个正实根的条件。2.(16分)计算 ,S为V: 的表面外侧。
中山大学历年考研真题
2009.11.1线性代数(651)
2009.1.11 高等代数(870)
2008.1.20线性代数(651)
2008.1.20高等代数(851)
2007.1.21高等代数(441)
2006.1.25高等代数
2004年高等代数试题(70分)
1.(10分)计算下列n阶行列式:
2.(10分)设 是数域P上线性空间V中一线性无关向量组,讨论向量组 的线性相关性。
普通高等学校招生国统一考试数学文试题广东卷,含答案

卜人入州八九几市潮王学校2021年普通高等招生全国统一考试数学文试题〔卷,含答案〕本试题一共4页,21小题,总分值是150分,考试用时120分钟。
本卷须知:1.答卷前,所有考生必须用黑色字迹“条形码粘贴处〞。
2.选择题每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目选项之答案信息点涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或者签字笔答题,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来之答案,然后再写上新之答案;不准使用铅笔和涂改液。
不按以上要求答题之答案无效。
4.答题选做题时,请先需要用2B 铅笔填涂选做题的题号对应的信息点,再答题。
漏涂、错涂、多涂的,答案无效。
5.考生必须保持答题卡的整洁。
在在考试完毕之后以后,将试卷和答题卡一起交回。
参考公式:锥体体积公式13V Sh=,其中S 为锥体的底面积,h 为锥体的高. 线性回归方程y bx a =+中系数计算公式121()()()niii nii x x y y b x x ==--=-∑∑,a y bx =-, 样本数据12,,,n x x x 的HY 差,(n s x x =++-,其中x ,y 表示样本均值.n 是正整数,那么1221()()n n n n n n a b a b a a b ab b -----=-++++.一、选择题:本大题一一共10小题,每一小题5分,总分值是50分,在每一小题给出的四个选项里面,只有一项为哪一项哪一项符合题目要求的. 1.设复数z 满足1iz=,其中i 为虚数单位,那么z =A.i-B.i C.1-D.1 1.〔A〕.2.集合{(,)|,A x y x y=为实数,且221}x y+=,{(,)|,B x y x y=为实数,且1}x y+=,那么A B⋂的元素个数为A.4B.3 C.2D.1 2.〔C〕3.向量(1,2),(1,0),(3,4)===a b c.假设λ为实数,()λ+a b∥c,那么λ=A.14B.12C.1D.23.〔B〕4.函数1()lg(1)1f x xx=++-的定义域是A.(,1)-∞-B.(1,)+∞C.(1,1)(1,)-⋃+∞D.(,)-∞+∞4.〔C〕.5.不等式2210x x-->的解集是A.1(,1)2-B.(1,)+∞C.(,1)(2,)-∞⋃+∞D.1(,)(1,)2-∞-⋃+∞5.〔D〕6.平面直角坐标系xOy上的区域D由不等式组2xyx⎧⎪⎨⎪⎩≤≤≤给定.假设(,)M x y为D上的动点,点A的坐标为,那么z OM OA=⋅的最大值为A.3B.4 C..6.〔B〕正视图侧视图 图2俯视图图37.正五棱柱中,不同在任何侧面且不同在任何底面的两顶点的连线称为它的对角线,那么一个正五棱柱对角线的条数一共有A .20B .15C .12D .10 7.〔D 〕8.设圆C 与圆22(3)1x y +-=外切,与直线0y =相切,那么C 的圆心轨迹为 A.抛物线B .双曲线C .椭圆D .圆 8.〔A〕.9.如图1~3,某几何体的正视图〔主视图〕,侧视图〔左视图〕和俯视图分别是等边三角形,等腰三角形和菱形,那么该几何体的体积为 A ..4 C ..29.〔C 〕10.设(),(),()f x g x h x 是R ()f g ()x 和()f g ()x :对任意x ∈R ,()f g ()x =(())f g x ;()f g ()x =()()f x g x ,那么以下等式恒成立的是 A .(()f g h )()x =(()f h ()g h )()x B .(()f g h )()x=(()f h ()g h )()x C .(()f g h )()x =(()f g ()g h )()x D .(()f g h )()x =(()f g ()g h )()x 10.〔B 〕二、填空题:本大题一一共5小题,考生答题4小题,每一小题5分,总分值是20分. 〔一〕必做题〔9~13题〕11.{}n a 是递增的等比数列,假设22a =,434a a -=,那么此数列的公比q =.11.2.2243224422402(2)(1)0a a a q a q q q q q -=⇒-=⇒--=⇒-+=2q ⇒=或者1q =-∵{}n a 是递增的等比数列,∴2q =12.设函数3()cos 1f x x x =+.假设()11f a =,那么()f a -=.12.9-3()cos 111f a a a =+=,即3()cos 10f a a a ==,那么33()()cos()1cos 11019f a a a a a -=--+=-+=-+=-13.为理解篮球爱好者小李的投篮命中率与打篮球时间是之间的关系,下表记录了小李某月1号到5号每天打篮球时间是x 〔单位:小时〕与当天投篮命中率y 之间的关系:小李这5天的平均投篮命中率为;用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率为. 13.0.5;0.53小李这5天的平均投篮命中率1(0.40.50.60.60.4)0.55y =++++=3x =,1222221()()0.2000.1(0.2)0.01(2)(1)012()niii nii x x y y b x x ==--++++-===-+-+++-∑∑,0.47a y bx =-=∴线性回归方程0.010.47y x =+,那么当6x =时,0.53y =∴预测小李该月6号打6小时篮球的投篮命中率为0.53 〔二〕选做题〔14~15题,考生只能从中选做一题〕14.〔坐标系与参数方程选做题〕两曲线参数方程分别为sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和图4BAC D E F254x ty t ⎧=⎪⎨⎪=⎩(t ∈)R ,它们的交点坐标为___________.14.25(1,)5.5cos sin x y θθ⎧=⎪⎨=⎪⎩表示椭圆2215x y +=(5501)x y -<≤≤≤且,254x ty t⎧=⎪⎨⎪=⎩表示抛物线245y x =22221(5501)5450145x y x y x x x y x ⎧+=-<≤≤≤⎪⎪⇒+-=⇒=⎨⎪=⎪⎩且或者5x =-〔舍去〕,又因为01y ≤≤,所以它们的交点坐标为25(1,)515.〔几何证明选讲选做题〕如图4,在梯形ABCD 中,AB ∥CD ,4AB =,2CD =,,E F 分别为,AD BC 上的点,且3EF =,EF ∥AB ,那么梯形ABFE 与梯形EFCD 的面积比为________.15.75如图,延长,AD BC ,AD BC P =∵23CD EF=,∴49PCD PEF S S ∆∆= ∵24CD AB=,∴416PCD PEF S S ∆∆= ∴75ABEFEFCDS S =梯形梯形三、解答题:本大题一一共6小题,总分值是80分.解答须写出文字说明、证明过程和演算步骤.PBAC D E F16.〔本小题总分值是12分〕函数1()2sin()36f x x π=-,x ∈R . 〔1〕求(0)f 的值;〔2〕设,0,2παβ⎡⎤∈⎢⎥⎣⎦,10(3)213f πα+=,6(32)5f βπ+=,求sin()αβ+的值.16.解:〔1〕(0)2sin()16f π=-=-〔2〕110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α=16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3cos 5β=∵,0,2παβ⎡⎤∈⎢⎥⎣⎦,∴12cos 13α==,4sin 5β==∴5312463sin()sin cos cos sin 13513565αβαβαβ+=+=⨯+⨯=17.〔本小题总分值是13分〕在某次测验中,有6位同学的平均成绩为75分.用n x 表示编号为n (1,2,,6)n =的同学所得成绩,且前5位同学的成绩如下:〔1〕求第6位同学的成绩6x ,及这6位同学成绩的HY 差s ;〔2〕从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间〔68,75〕中的概率.17.解:〔1〕61(7076727072)756x +++++=,解得690x =C C E'图5HY差6(7s x x =++-==〔2〕前5位同学中随机选出的2位同学记为(,)a b ,,{1,2,3,4,5}a b ∈且a b ≠那么根本领件有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)一共10种这5位同学中,编号为1、3、4、5号的同学成绩在区间〔68,75〕中设A 表示随机事件“从前5位同学中随机选出2位同学,恰有1位同学成绩在区间〔68,75〕中〞那么A 中的根本领件有(1,2)、(2,3)、(2,4)、(2,5)一共4种,那么42()105P A ==18.〔本小题总分值是13分〕图5所示的几何体是将高为2,底面半径为1的直圆柱沿过轴的平面切开后,将其中一半沿切面向右程度平移后得到的.,,,A A B B ''分别为CD ,C D '',DE ,D E ''的中点,1122,,,O O O O ''分别为CD ,C D '',DE ,D E ''的中点.〔1〕证明:12,,,O A O B ''四点一共面;〔2〕设G 为AA '中点,延长1A O ''到H ',使得11O H A O ''''=.证明:2BO '⊥平面H B G ''.18.证明:〔1〕连接2,BO 22,O O '依题意得1122,,,O O O O ''是圆柱底面圆的圆心∴,,,CD C D DE D E ''''是圆柱底面圆的直径 ∵,,A B B ''分别为C D '',DE ,D E ''的中点∴1290A O D B O D ''''''∠=∠=∴1A O ''∥2BO '∵BB '//22O O ',四边形22O O B B''是平行四边形∴2BO ∥2BO '∴1A O ''∥2BO∴12,,,O A O B ''四点一共面〔2〕延长1A O '到H ,使得11O H AO ''=,连接1,,HH HO HB ''∵11O H A O ''''=∴1O H ''//2O B '',四边形12O O B H ''''是平行四边形∴12O O ''∥H B ''∵1222O O O O '''⊥,122O O B O ''''⊥,2222O O B O O ''''=∴12O O ''⊥面22O O B B '' ∴H B ''⊥面22O O B B '',2BO '⊂面22O O B B ''∴2BO H B '''⊥易知四边形AA H H ''是正方形,且边长2AA '=∵11tan 2HH HO H O H '''∠=='',1tan 2A G A H G A H '''∠=='' ∴1tan tan 1HO H A H G ''''∠⋅∠=∴190HO H A H G ''''∠+∠=∴1HO H G ''⊥易知12O O ''//HB ,四边形12O O BH ''是平行四边形∴2BO '∥1HO '∴2BO H G ''⊥,H GH B H ''''=∴2BO '⊥平面H B G ''. 19.〔本小题总分值是14分〕设0a >,讨论函数2()ln (1)2(1)f x x a a x a x =+---的单调性.19.解:函数()f x的定义域为(0,)+∞令2()2(1)2(1)1 g x a a x a x=---+①当13a<<时,∆>,令()0f x'=,解得x=那么当0x<<或者x>时,()0f x'>x<<时,()0 f x'<那么()f x在,)+∞上单调递增,在上单调递减②当113a≤≤时,∆≤,()0f x'≥,那么()f x在(0,)+∞上单调递增③当1a>时,0∆>,令()0f x'=,解得x=∵x>,∴x=那么当0x<<时,()0f x'>当x>()0f x'<那么()f x在上单调递增,在)+∞上单调递减20.〔本小题总分值是14分〕设b>,数列{}n a满足1a b=,111nnnnbaaa n--=+-(n≥2).〔1〕求数列{}na的通项公式;〔2〕证明:对于一切正整数n ,2n a ≤11n b ++.20.〔1〕解:∵111n n n nba a a n --=+-∴111n n n a ba n a n --=+- ∴1111nn n n a b a b --=⋅+ ①当1b =时,111n n n n a a ---=,那么{}n n a 是以1为首项,1为公差的等差数列 ∴1(1)1n nn na =+-⨯=,即1na = ②当0b >且1b ≠时,11111()11nn n n a b b a b --+=+--当1n =时,111(1)n n a b b b +=--∴1{}1n n a b +-是以1(1)b b -为首项,1b 为公比的等比数列∴111()11n nn a b b b +=⋅-- ∴111(1)1(1)nn n n n b a b b b b b -=-=---∴(1)1n n n n b b a b -=- 综上所述(1),01111nnn n b b b b a b b ⎧->≠⎪=-⎨⎪=⎩ 且, 〔2〕证明:①当1b =时,1212n n a b +=+=;②当0b >且1b ≠时,211(1)(1)nn n b b b b b ---=-++++要证121nna b+≤+,只需证12(1)11nnnn b bbb+-≤+-,即证2(1)1 1n n n bbb b-≤+-即证2121 1n n nnbb b b b--≤+ ++++即证211()(1)2n nnb b b b nb--+++++≥即证21121111()()2n nn nb b b b nb b b b--+++++++++≥∵21121111()()n nnnb b b bb b b b--+++++++++122nb n-≥+=,∴原不等式成立∴对于一切正整数n,2n a≤11nb++.21.〔本小题总分值是14分〕在平面直角坐标系xOy上,直线l:2x=-交x轴于点A.设P是l上一点,M是线段OP的垂直平分线上一点,且满足MPO AOP ∠=∠.〔1〕当点P在l上运动时,求点M的轨迹E的方程;〔2〕(1,1)T-,设H是E上动点,求HO HT+的最小值,并给出此时点H的坐标;〔3〕过点(1,1)T-且不平行于y轴的直线1l与轨迹E有且只有两个不同的交点,求直线1l的斜率k的取值范围.21.解:〔1〕如下列图,连接OM,那么PM OM=∵MPO AOP ∠=∠,∴动点M满足MP l⊥或者M在x的负半轴上,设(,)M x yxTxT①当MP l⊥时,2MP x =+,OM =2x +=,化简得244y x =+(1)x ≥- ②当M 在x 的负半轴上时,0y =(1)x <-综上所述,点M 的轨迹E 的方程为244y x =+(1)x ≥-或者0y =(1)x <- 〔2〕由〔1〕知M 的轨迹是顶点为(1,0)-,焦点为原点的抛物线和x 的负半轴0y =(1)x <-①假设H 是抛物线上的动点,过H 作HNl ⊥于N由于l 是抛物线的准线,根据抛物线的定义有HO HN=那么HO HT HN HT+=+当,,N H T 三点一共线时,HN HT+有最小值3TN =求得此时H 的坐标为3(,1)4--②假设H 是x 的负半轴0y =(1)x <-上的动点显然有3HO HT +>综上所述,HO HT +的最小值为3,此时点H 的坐标为3(,1)4--〔3〕如图,设抛物线顶点(1,0)A -,那么直线AT 的斜率12AT k =-∵点(1,1)T -在抛物线内部,∴过点T 且不平行于,x y 轴的直线1l 必与抛物线有两个交点那么直线1l 与轨迹E 的交点个数分以下四种情况讨论:①当12k ≤-时,直线1l 与轨迹E 有且只有两个不同的交点②当102k -<<时,直线1l 与轨迹E 有且只有三个不同的交点③当0k=时,直线1l 与轨迹E 有且只有一个交点④当0k>时,直线1l 与轨迹E 有且只有两个不同的交点综上所述,直线1l 的斜率k 的取值范围是1(,](0,)2-∞-+∞。
普通高等学校招生国统一考试数学文试题广东卷,含答案 试题

2021年普通高等招生全国统一考试数学文试题〔卷,含答案〕本套试卷一共4页,21小题,满分是150分。
考试用时120分钟。
考前须知:1.答卷前,所有考生必须用黑色字迹的钢笔或者签字笔将本人的姓名和考生号、试室号、座位号填写上在答题卡上。
需要用2B 铅笔将试卷类型〔B 〕填涂在答题卡相应位置上。
将条形码横贴在答题卡右上角“条形码粘贴处〞。
2.选择题每一小题在选出答案以后,需要用2B 铅笔把答题卡上对应题目选项之答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
3.非选择题必须用黑色字迹钢笔或者签字笔答题,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来之答案,然后再写上新之答案;不准使用铅笔和涂改液。
不按以上要求答题之答案无效。
4.答题选做题时.请先需要用2B 铅笔填涂选做题的题号对应的信息点,再答题。
漏涂、错涂、多涂的.答案无效。
5.考生必须保持答题卡的整洁。
在在考试完毕之后以后,将试卷和答题卡一起交回。
参考公式:锥体的体积公式V =13sh ,其中S 是锥体的底面积,h 是锥体的高. 一、选择题:本大题一一共10小题,每一小题5分,满分是50分.在每一小题给出的四个选项里面,只有一项是哪一项符合题目要求的.1.假设集合A ={0,1,2,3},B ={1,2,4},那么集合A B =A .{0,1,2,3,4}B .{1,2,3,4}C .{1,2}D .{0}2.函数,f (x )=lg (x -1)的定义域是A .(2,+∞) B.(1,+∞) C.[1,+∞) D .[2,+∞)3.假设函数f(x)=3x +3x -与g(x)=33x x--的定义域均为R ,那么A .f(x)与g(x)均为偶函数B .f(x)为奇函数,g(x)为偶函数C .f(x)与g(x)均为奇函数D .f(x)为偶函数.g(x)为奇函数4.数列{n a }为等比数列,n S 是它的前n 项和.假设2a *3a =2a 1,且4a 与27a 的等差中项为54,那么5s = A .35 B .33 C .31 D .295.假设向量a =(1,1),b =(2,5),c =(3,x)满足条件(8a —b )·c =30,那么x=A .6B .5C .4D .36.假设圆心在x 轴上、半径为5的圆O 位于y 轴左侧,且与直线x+2y=0相切,那么圆O 的方程是A .22(5)5x y -+=B .22(5)5x y ++=C .22(5)5x y -+=D .22(5)5x y ++=7.假设一个椭圆长轴的长度、短轴的长度和焦距成等差数列,那么该椭圆的离心率是A . 45B .35C .25D .158.“x >0”是“32x >0”成立的A .充分非必要条件B .必要非充分条件C .非充分非必要条件D .充要条件9.如图1,ABC 为正三角形,'''////AA BB CC ,''''32CC BB CC AB ⊥===平面ABC 且3AA ,那么多面体'''ABC A B C -的正视图(也称主视图)是10.在集合{a ,b ,c ,d}上定义两种运算⊕和⊗如下:那么d ⊗ ()a c ⊕=A .aB .bC .cD .d二、填空题:本大题一一共5小题.考生答题4小题.每一小题5分,满分是20分. 〔一〕必做题(11~13题)11.某城缺水问题比拟突出,为了制定节水管理方法,对全居民某年的月均用水量进展了抽样调查,其中4位居民的月均用水量分别为1x ,…,4x (单位:吨).根据图2所示的程序框图,假设1x ,2x ,3x 4x ,分别为1,1.5,1.5,2,那么输出的结果s 为 . 12.某居民2021~2021年家庭年平均收入x 〔单位:万元〕与年平均支出Y 〔单位:万元〕的统计资料如下表所示:根据统计资料,居民家庭年平均收入的中位数是 ,家庭年平均收入与年平均支出有 线性相关关系.13.a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,假设a =1,b =3,A +C =2B ,那么sin A = .〔二〕选做题〔14、15题,考生只能从中选做一题〕14.〔几何证明选讲选做题〕如图3,在直角梯形ABCD 中,DC ∥AB ,CB ⊥AB ,AB =AD =a ,CD =2a ,点E ,F 分别为线段AB ,CD 的中点,那么EF = .15.〔坐标系与参数方程选做题〕在极坐标系〔ρ,θ〕〔02θπ≤<〕中,曲线()cos sin 1ρθθ+=与()sin cos 1ρθθ-=的交点的极坐标为三、解答题:本大题一一共6小题,满分是80分.解答须写出文字说明、证明过程和演算步骤.16.〔本小题满分是l4分〕设函数()3sin 6f x x πω⎛⎫=+⎪⎝⎭,0ω>,(),x ∈-∞+∞,且以2π为最小正周期. 〔1〕求()0f ;〔2〕求()f x 的解析式;〔3〕94125f απ⎛⎫+= ⎪⎝⎭,求sin α的值. 17.〔本小韪满分是12分〕某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:〔1〕由表中数据直观分析,收看新闻节目的观众是否与年龄有关?〔2〕用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?〔3〕在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.18.(本小题满分是14分)如图4,AEC 是半径为a 的半圆,AC 为直径,点E 为AC 的中点,点B 和点C 为线段AD 的三等分点,平面AEC 外一点F 满足FC ⊥平面BED ,FB =5a .〔1〕证明:EB FD ⊥;〔2〕求点B 到平面FED 的间隔 .19.〔本小题满分是12分〕某营养师要为某个儿童预定午餐和晚餐.一个单位的午餐含12个单位的碳水化合物,6个单位的蛋白质和6个单位的维生素C ;一个单位的晚餐含8个单位的碳水化合物,6个单位的蛋白质和10个单位的维生素C .另外,该儿童这两餐需要的营养中至少含64个单位的碳水化合物,42个单位的蛋白质和54个单位的维生素C .假如一个单位的午餐、晚餐的费用分别是2.5元和4元,那么要满足上述的营养要求,并且花费最少,应当为该儿童分别预订多少个单位的午餐和晚餐?20.〔本小题满分是14分〕函数()f x 对任意实数x 均有()(2)f x kf x =+,其中常数k 为负数,且()f x 在区间[]0,2上有表达式()(2)f x x x =-.〔1〕求(1)f -,(2.5)f 的值;〔2〕写出()f x 在[]3,3-上的表达式,并讨论函数()f x 在[]3,3-上的单调性; 〔3〕求出()f x 在[]3,3-上的最小值与最大值,并求出相应的自变量的取值.21.〔本小题满分是14分〕曲线2n C y nx =:,点(,)(0,0)n n n n n P x y x y >>是曲线n C 上的点(1,2n =…). 〔1〕试写出曲线n C 在点n P 处的切线n l 的方程,并求出n l 与y 轴的交点n Q 的坐标 〔2〕假设原点(0,0)O 到n l 的间隔 与线段n n P Q 的长度之比获得最大值,试求试点n P 的坐标(,n n x y );〔3〕设m 与k 为两个给定的不同的正整数,n x 与n y 是满足〔2〕中条件的点n P 的坐标,证明:n 1,2,)=…参考答案一、选择题:本大题一一共10小题,每一小题5分,满分是50分.1. A 2. B 3. D 4. C 5. C6. D 7. B 8. A 9. D 10. A二、填空题:本大题一一共5小题,考生答题4小题,每一小题5分,满分是20分。
最新普通高等学校招生文科数学全国统一考试试题(广东卷A)(含解析)

普通高等学校招生全国统一考试(广东卷)数学(文科A 卷)解析本试卷共4页,21小题,满分150分.考试用时120分钟.锥体地 体积公式:13V Sh =.其中S 表示锥体地 底面积,h 表示锥体地 高.一、选择题:本大题共10小题,每小题5分,满分50分,在每小题给出地 四个选项中,只有一项是符合题目要求地 . 1.设集合2{|20,}S x x x x R =+=∈,2{|20,}T x x x x R =-=∈,则S T =IA .{0}B .{0,2}C .{2,0}-图 1D .{2,0,2}-【解析】:先解两个一元二次方程,再取交集,选A ,5分到手,妙!2.函数lg(1)()1x f x x +=-地 定义域是A .(1,)-+∞B .[1,)-+∞C .(1,1)(1,)-+∞UD .[1,1)(1,)-+∞U 【解析】:对数真数大于零,分母不等于零,目测C ! 3.若()34i x yi i +=+,,x y R ∈,则复数x yi +地 模是 A .2 B .3 C .4 D .5 【解析】:复数地 运算、复数相等,目测4,3x y ==-,模为5,选D .4.已知51sin()25πα+=,那么cos α= A .25- B .15- C .15 D .25【解析】:考查三角函数诱导公式,图 2俯视图侧视图正视图51sin()sin(2+)sin cos 2225πππαπααα⎛⎫+=+=+== ⎪⎝⎭,选C.5.执行如图1所示地 程序框图,3,则输出s 地 值是A .1B .2C .4D .7【解析】选C.本题只需细心按程序框图运行一下即可.6.某三棱锥地 三视图如图2所示,则该三棱锥地 体积是A .16B .13C .23D .1【解析】由三视图判断底面为等腰直角三角形,三棱锥地 高为2,则111=112=323V ⋅⋅⋅⋅,选B.7.垂直于直线1y x =+且与圆221x y +=相切于第一象限地直线方程是 A .x y +-= B .10x y ++=C .10x y +-= D .0x y ++=【解析】本题考查直线与圆地 位置关系,直接由选项判断很快,圆心到直线地 距离等于1r =,排除B 、C ;相切于第一象限排除D ,选A.直接法可设所求地 直线方程为:()0y x k k =-+>,再利用圆心到直线地 距离等于1r =,求得k =8.设l 为直线,,αβ是两个不同地 平面,下列命题中正确地 是A .若//l α,//l β,则//αβB .若l α⊥,l β⊥,则//αβC .若l α⊥,//l β,则//αβD .若αβ⊥,//l α,则l β⊥【解析】基础题,在脑海里把线面可能性一想,就知道选B 了.9.已知中心在原点地 椭圆C 地 右焦点为(1,0)F ,离心率等于21,则C 地 方程是 A .14322=+y x B .13422=+y x C .12422=+y xD .13422=+y x【解析】基础题,1,2,c a b === D. 10.设r a 是已知地 平面向量且≠0r r a ,关于向量r a地 分解,有如下四个命题:①给定向量r b,总存在向量r c,使=+r r r a b c;②给定向量rb和r c ,总存在实数λ和μ,使λμ=+r r r a b c;③给定单位向量r b 和正数μ,总存在单位向量r c和实数λ,使λμ=+r r r a b c;④给定正数λ和μ,总存在单位向量r b和单位向量r c,使λμ=+r r r a b c;上述命题中地 向量r b,r c和r a在同一平面内且两两不共线,则真命题地 个数是A .1B .2C .3D .4【解析】本题是选择题中地 压轴题,主要考查平面向量地 基本定理和向量加法地 三角形法则. 利用向量加法地 三角形法则,易地 ①是对地 ;利用平面向量地 基本定理,易地 ②是对地 ;以a 地 终点作长度为μ地 圆,这个圆必须和向量λb 有交点,这个不一定能满足,③是错地 ;利用向量加法地 三角形法则,结合三角形两边地 和大于第三边,即必须=+λμλμ+≥b c a ,所以④是假命题.综上,本题选B.平面向量地 基本定理考前还强调过,不懂学生做得如何.【品味选择题】文科选择题答案:ACDCC BABDB.选择题3322再次出现!今年地 选择题很基础,希望以后高考年年出基础题!二、填空题:本大题共5小题.考生作答4小题.每小题5分,满分20分. (一)必做题(11~13题)11.设数列{}na 是首项为1,公比为2-地 等比数列,则1234||||a a a a +++=【解析】这题相当于直接给出答案了1512.若曲线2ln y axx=-在点(1,)a 处地 切线平行于x 轴,则a =.【解析】本题考查切线方程、方程地 思想.依题意''1112,210,2x y ax y a a x ==-=-=∴=13.已知变量,x y 满足约束条件⎪⎩⎪⎨⎧≥≤≤-≥+-11103y x y x ,则z x y =+地 最大值是.【解析】画出可行域如图,最优解为()1,4,故填 5 ; (二)选做题(14、15题,考生只能从中选做一题) 14.(坐标系与参数方程选做题)已知曲线C 地 极坐标方程为2cos ρθ=.以极点为原点,极轴为x 轴地 正半轴建立直角坐标系,则曲线C 地参数方程为 .【解析】本题考了备考弱点.讲参数方程地 时候,参数地 意义要理解清楚.先化成直角坐标方程()2211x y -+=,易地 则曲线C 地 参数方程为1cos sin x y θθ=+⎧⎨=⎩(θ为参数)15.(几何证明选讲选做题) 如图3,在矩形ABCD中,AB =3BC =,BE AC ⊥,垂足为E ,则ED = .【解析】本题对数值要敏感,由AB =3BC =,可知60BAC ∠=o从而30AE CAD =∠=o ,2DE ==.【品味填空题】选做题还是难了点,比理科还难些.图 3三、解答题:本大题共6小题,满分80分.解答须写出文字说明、证明过程和演算步骤. 16.(本小题满分12分) 已知函数(),12f x x x Rπ⎛⎫=-∈ ⎪⎝⎭.(1) 求3f π⎛⎫⎪⎝⎭地 值; (2) 若33cos ,,252πθθπ⎛⎫=∈ ⎪⎝⎭,求6f πθ⎛⎫- ⎪⎝⎭. 【解析】(1)133124f ππππ⎛⎫⎛⎫⎛⎫=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(2)33cos ,,252πθθπ⎛⎫=∈⎪⎝⎭Q ,4sin 5θ==-,1cos cos sin sin 64445f ππππθθθθ⎛⎫⎛⎫⎫∴--=+=-⎪ ⎪⎪⎝⎭⎝⎭⎭.【解析】这个题实在是太简单,两角差地 余弦公式不要记错了.17.(本小题满分13分)从一批苹果中,随机抽取50个,其重量(单位:克)地频数分布表如下:(1) 根据频数分布表计算苹果地重量在[90,95)地频率;(2) 用分层抽样地方法从重量在[80,85)和[95,100)地苹果中共抽取4个,其中重量在[80,85)地有几个?(3) 在(2)中抽出地 4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个地概率.【解析】(1)苹果地重量在[)95,90地频率为20=0.4;50(2)重量在[)85,80地有54=1⋅个;5+15(3)设这4个苹果中[)85,80分段地为1,[)95分段地,100为2、3、4,从中任取两个,可能地情况有:(1,2)(1,3)(1,4)(2,3)(2,4)(3,4)共6种;设任取2个,重量在[)85,80和[)95中各有1个地,100事件为A,则事件A包含有(1,2)(1,3)(1,4)共3种,所以31P==.(A)62【解析】这个基础题,注意格式!18.(本小题满分13分)如图4,在边长为1地等边三角形ABC中,,D E分别是AB AC边上地点,AD AE,=,F是BC地Array于点G,将ABF∆沿AF折起,得到如图5图 4A BCF-,其中2BC =.(1) 证明:DE //平面BCF (2) 证明:CF ⊥平面ABF ;(3) 当23AD =时,求三棱锥F DEG-.【解析】(1)在等边三角形ABC 中,AD AE =AD AEDB EC∴=,在折叠后地 三棱锥A BCF -中也成立,//DE BC ∴ ,DE ⊄Q 平面BCF ,BC ⊂平面BCF ,//DE ∴平面BCF ;(2)在等边三角形ABC 中,F 是BC 地 中点,所以AF BC⊥①,12BF CF ==.Q在三棱锥A BCF-中,BC =222BCBF CF CF BF∴=+∴⊥②BF CF F CF ABF⋂=∴⊥Q 平面;(3)由(1)可知//GE CF ,结合(2)可得GE DFG ⊥平面.11111113232333F DEG E DFG V V DG FG GF --⎛∴==⋅⋅⋅⋅=⋅⋅⋅⋅= ⎝⎭【解析】这个题是入门级地 题,除了立体几何地 内容,还考查了平行线分线段成比例这个平面几何地 内容.19.(本小题满分14分)设各项均为正数地 数列{}na 地 前n 项和为nS ,满足21441,,n n S a n n N *+=--∈且2514,,a a a 构成等比数列.(1)证明:2a=(2) 求数列{}na 地 通项公式;(3) 证明:对一切正整数n ,有1223111112n n a a a a a a ++++<L .【解析】(1)当1n =时,22122145,45a aa a =-=+,20naa >∴=Q(2)当2n ≥时,()214411n n Sa n -=---,22114444nn n n n aS S a a -+=-=--()2221442n n n n a a a a +=++=+,102nn n aa a +>∴=+Q∴当2n ≥时,{}na 是公差2d =地 等差数列.2514,,a a a Q 构成等比数列,25214aa a ∴=⋅,()()2222824aa a +=⋅+,解得23a=,由(1)可知,212145=4,1a aa =-∴=21312a a -=-=Q ∴{}na 是首项11a=,公差2d =地 等差数列.∴数列{}na 地 通项公式为21nan =-.(3)()()1223111111111335572121n n a aa a a a n n ++++=++++⋅⋅⋅-+L L11111111123355721211111.2212n n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫=⋅-+-+-+- ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎡⎤=⋅-<⎢⎥+⎣⎦【解析】本题考查很常规,第(1)(2)两问是已知nS 求na ,{}na 是等差数列,第(3)问只需裂项求和即可,估计不少学生猜出通项公式,跳过第(2)问,作出第(3)问.本题易错点在分成1n =,2n ≥来做后,不会求1a ,没有证明1a 也满足通项公式.20.(本小题满分14分)已知抛物线C 地 顶点为原点,其焦点()()0,0F c c >到直线:20l x y --=地 距离为2.设P 为直线l 上地 点,过点P 作抛物线C 地 两条切线,PA PB ,其中,A B 为切点. (1) 求抛物线C 地 方程;(2) 当点()0,P x y 为直线l 上地 定点时,求直线AB 地 方程;(3) 当点P 在直线l 上移动时,求AF BF ⋅地 最小值.【解析】(1)依题意2d ==,解得1c =(负根舍去)∴抛物线C 地 方程为24xy=;(2)设点11(,)A x y ,22(,)B x y ,),(0y x P ,由24xy=,即214yx ,=得y '=12x . ∴抛物线C 在点A 处地 切线PA 地 方程为)(2111x x x y y -=-,即2111212x y x x y -+=.∵21141x y=, ∴112y x x y -= .∵点),(00y x P 在切线1l 上, ∴10102y x x y -=.①同理, 2022y x x y-=. ②综合①、②得,点1122(,),(,)A x y B x y 地 坐标都满足方程y x xy -=002.∵经过1122(,),(,)A x y B x y 两点地 直线是唯一地 ,∴直线AB 地 方程为y x xy-=002,即0220x x y y--=;(3)由抛物线地 定义可知121,1AF y BF y =+=+,所以()()121212111AF BF y yy y y y ⋅=++=+++联立2004220x y x x y y ⎧=⎨--=⎩,消去x 得()22200020y yx y y +-+=,2212001202,y y x y y y y ∴+=-=0020x y --=Q()222200000021=221AF BF y y x y y y ∴⋅=-++-+++220019=22+5=2+22y y y ⎛⎫++ ⎪⎝⎭∴当012y=-时,AF BF ⋅取得最小值为92【解析】2013广州模直接命中了这一题,广一模20题解法2正是本科第(2)问地 解法,并且广一模大题结构和高考完全一致. 21.(本小题满分14分) 设函数xkx xx f +-=23)( ()R k ∈.(1) 当1=k 时,求函数)(x f 地 单调区间;(2) 当0<k 时,求函数)(x f 在[]k k -,上地 最小值m 和最大值M . 【解析】:()'2321f x x kx =-+(1)当1k =时()'2321,41280f x x x =-+∆=-=-<()'0f x ∴>,()f x 在R 上单调递增.(2)当0k <时,()'2321f x x kx =-+,其开口向上,对称轴3kx =,且过()01,(i)当(241240k k k ∆=-=≤,即0k ≤<时,()'0fx ≥,()f x 在[],k k -上单调递增,从而当x k =时,()f x 取得最小值()m f k k == , 当x k=-时,()f x 取得最大值()3332M f k k k k k k=-=---=--.(ii )当(241240k k k ∆=-=+>,即k <时,令()'23210f x x kx =-+=解得:12x x ==,注意到210k xx <<<, (注:可用韦达定理判断1213x x ⋅=,1223kx x k +=>,从而210k x x <<<;或者由对称结合图像判断)()(){}()(){}12min ,,max ,m f k f x M f k f x ∴==- ()()()()32211111110f x f k x kx x k x k x -=-+-=-+>Q()f x ∴地 最小值()m f k k ==,()()()()()232322222222=[1]0f x f k x kx x k k k k x k x k k --=-+---⋅-+-++<Q()f x ∴地 最大值()32M f k k k =-=--综上所述,当0k <时,()f x 地 最小值()m f k k ==,最大值()32M f k k k =-=--解法2(2)当0k <时,对[],x k k ∀∈-,都有32332()()(1)()0f x f k x kx x k k k x x k -=-+-+-=+-≥,故()()f x f k ≥32332222()()()(221)()[()1]0f x f k x kx x k k k x k x kx k x k x k k --=-++++=+-++=+-++≤故()()f x f k ≤-,而 ()0f k k =<,3()20f k kk -=--> 所以 3max ()()2f x f k k k =-=--,min ()()f x f k k ==【解析】:看着容易,做着难!常规解法完成后,发现不用分类讨论,奇思妙解也出现了:结合图像感知x k = 时最小,x k =-时最大,只需证()()()f k f x f k ≤≤-即可,避免分类讨论.本题第二问关键在求最大值,需要因式分解比较深地 功力.。
中山大学2019高数上期末考试A卷试题与答案

考试题(A 卷)一、计算下列数列或函数的极限(请从三道题目中任选二道题,多选的话则按照前两道题目给分。
每题5分,合计10分)1. n211lim 1x n n →∞⎛⎫+- ⎪⎝⎭.解 (方法一)22n n22n(1)12111lim 1lim 11li 1.m x x n n n n x n n n n n e n →∞→∞--→∞-⎛⎫⎛⎫+-=+ ⎪ ⎪⎝⎭⎝⎭⎡⎤-⎛⎫⎢⎥=+= ⎪⎢⎥⎝⎭⎢⎥⎣⎦(方法二)222n 1nln 1211limnln 1limn 111lim 1li .m x x n n x x n n n n e n n eee e →∞→∞-⎛⎫+ ⎪⎝⎭→∞→∞-⎛⎫-+⋅⎪⎝⎭⎛⎫+-= ⎪⎝⎭====2.2()()limxx x t f t dtx →-⎰,其中()f x 是一个连续函数.解220()()()()limlim()()()lim2()(0)lim 22.xx xx x x x x x t f t dtx f t dt tf t dtxxf t dt xf x xf x xf x f →→→→--=+-===⎰⎰⎰⎰3. 求二元函数()()()()44,0,0lim2ln x y x y x y →++的极限. 解(方法一) 平面极坐标为(),ρθ。
由于()(),0,0x y →,不妨设11,22x y ≤≤,于是()()44444444max ,,21,414ln lnln 2ln 24ln ,x y x y x y x y ρρρρ≥+≥+=≤=-+所以()()()4402ln 6ln 22ln 0x y x y ρρ≤++≤-→()()()()44,0,0lim2ln 0x y x y x y →++=解(方法二) 有界量与无穷小量之积是无穷小量,所以()()()()()()()()()()44,0,01444441,0,0444lim2ln 2lim ln 0x y x y x y x y x y x y x y x y →→++⎡⎤+⎢⎥=⋅++=⎢⎥⎢⎥+⎣⎦二、 (8分)过原点作抛物线()y f x ==D 是该切线与上述抛物线及x 轴围成的平面区域. 求区域D 绕x 轴旋转一周所得旋转体的体积.解 设切点为()00,x y ,则00y y x ⎧=⎪⎨=⎪⎩ 解方程组得()()00,2,1x y =。
最新中山大学高等代数试题

2004中山大学高等代
数试题
2004年 高等代数试题(70分)
1.(10分)计算下列n 阶行列式:
210 (00)
121 (00)
012...00000 (12)
n D =........
2.(10分)设12,,...,n ααα是数域P 上线性空间V 中一线性无关向量组,讨论向量组12231,,...,n αααααα+++的线性相关性。
3.(10分)设A =100101010⎛⎫
⎪
⎪ ⎪⎝⎭
.
(1).证明:22n n A A A I -=+-.
(2).求100A .
4.(20分)设3R 的线性变换 在标准基下的矩阵A =211121112⎛⎫ ⎪ ⎪ ⎪⎝⎭
.
(1).求A 的特征值和特征向量.
(2).求3R 的一组标准正交基,使 在此基下的矩阵为对角矩阵.
5.(20分)设β为n 维欧氏空间V 中一个单位向量,定义V 的线性变换 如下:
2(,),V ααβαβα=-∀∈
证明:
(1). 为第二类的正交变换(称为镜面反射).
(2).V 的正交变换是镜面反射 的充要条件为1是 的特征值,且对
应的特征子空间的维数为n -1.。
中山大学2019级高数期中考试试题

)13nM =⋅。
装订 密 封 线年级: 学号: 姓名: 课室名称:学院: 专业: 任课教师: 座位号:7、cos 0lim ln(1)x x e ex x →-+ .()()2cos 122200011cos 12lim lim lim2x x x x e x e e e x e x x x -→→→⎛⎫- ⎪--⎝⎭====-8、lim x →+∞⎛⎫.33limlim 3x x ===9、利用定积分的定义求极限:222111lim ...(1)(2)()n n n n n n →∞⎛⎫+++⎪+++⎝⎭. 解22222211200111lim ...(1)(2)()1111lim (121111111)1(1)122n n n n n n n n n n n n dx x x →∞→∞⎛⎫+++ ⎪+++⎝⎭⎛⎫ ⎪ ⎪=+++ ⎪⎛⎫⎛⎫⎛⎫+++ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭==-=-=++⎰10、 22212lim ...122n n n n n n n n →∞⎛⎫+++⎪+++++⎝⎭. 解2222211(1)(1)1222 (21221)n n n n n n n n n n n n n n n ++≤+++≤++++++++ 由于21(1)1212n n n n +→++、21(1)1222n n n n +→+,根据夹逼定理222121lim ...1222n n n n n n n n →∞⎛⎫+++= ⎪+++++⎝⎭二、下列函数的导函数(6分) 1、xx y e =.解 做复合函数分解:uy e =,ln x x x v u x e e ===,ln v x x =。
根据复合函数链式法则,()()1ln 1ln x u v x x dy dy du dve e x e x x dx du dv dx=⋅⋅=⋅⋅+=+。
2、()sin xy x =.解 做微分演算()()()()()()lnsin lnsin lnsin ln sin ln sin ln sin 1sin ln sin sin sin cos sin ln sin sin x xx x x x x x dy de e d x x e x dx xd x x x dx x d x x x x x dx x dx x ===⋅+⎛⎫=⋅+ ⎪⎝⎭⎛⎫=⋅+⋅ ⎪⎝⎭所以()()sin ln sin cot xdy x x x x dx=+三、设()f x 在x a =点可导,求极限0(2)()lim 2t f a t f a t t→+-+.(6分)解0000'''(2)()(2)()()()limlim22(2)()1()()lim lim2211()()()22t t t t f a t f a t f a t f a f a f a t t tf a t f a f a t f a t tf a f a f a →→→→+-++-+-+=+-+-=-=-=四、设22 x y x e =,求100100 d y dx.(6分)解()()()()100(100)(99)(98)221222100100100210021992298210010010022 222222*********x x x x x x xd y xe C x e C e dxx e C x e C e x x e =+⋅+⋅=+⋅+⋅⋅=++五、设 ()y y x =是由()y f x y =+确定的隐函数,求22 d y dx.(6分)解 两边求导数()'''()1y f x y y =++''''''()111,1()1()1()f x y y y f x y f x y f x y +==-+=-+-+-+,1+()()()"'"23''()1()"1()1()f x y y f x y y f x y f x y +⋅++==-+-+六、设1100()ln(1)10x ex x f x x x -⎧⎪>≠=⎨⎪+-<≤⎩且,求()f x 的间断点,并说明间断点的类型.(6分)解 函数的定义域为()1,+-∞,001x ∀≠、 ,在0x 的一个小邻域内,()f x 是一个初等函数,根据初等函数的连续性定理,()f x 在0x 连续。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七. (5 分)求曲线 y x 2 与直线 y x , y 2 x 所围成的图形(右图中 的阴影部分)的面积.
共 6 页第 5 页
八. (10 分)某地气象预报,在一年中有 1/5 的时间预报下雨,有 4/5 时间预报不下雨.若预报下雨王 先生必带雨伞,若预报不下雨王先生带雨伞的概率为 1/4. (1) 求王先生带雨伞的概率. (2) 某天发现王先生带雨伞,求这天预报下雨的条件概率. 要求在解本题时包括以下步骤: 1) 用符号表示与本题计算有关的各个事件. 2) 用概率论的记号写出与本题计算有关的各个事件的概率和条件概率. 3) 在进行 9 4 x2 .
dx
共 6 页第 2 页
3)
x 2 dx 1 x2
dx .
4)
x ln(1 x)dx .
四. 求下列定积分或广义积分(每小题 5 分,共 20 分). 1)
1
e2
dx . x 1 ln x
共 6 页第 3 页
2)
2 2
dx x x2 1
.
3)
3) lim xsin x .
x 0
二. 求下列函数的导数(每小题 5 分,共 15 分). 1) y ln tan
x . 2
共 6 页第 1 页
2) y esin
2
( x2 1)
.
3) y (cos x)sin x .
三. 求下列不定积分(每小题 5 分,共 20 分). cos 2 x dx . 1) cos2 x sin 2 x
0 xe
1
x
dx .
4)
1
dx . x(1 x)
共 6 页第 4 页
五. (5 分)设变量 s 和 t 的对应关系由方程 sin(st ) ln(s t ) t 确定. 1) 若 t 0 ,求 s 的值. 2) 求导数
ds 的值. dt t 0
六. (5 分)要做一个带盖的长方体箱子,这个箱子的体积是 72cm3 ,两条底边的长度的比是 1: 2 .为 了箱子的表面积最小,应该如何设定这个箱子的各条边的长度.
九. (5 分)求定积分 f ( x)dx ,其中 f ( x) et dt .
0 1
1
x
2
提示: 不可能用初等函数来表示不定积分 et dt ,但是可以通过分部积分求得上面的定积分.
2
共 6 页第 6 页
珠海校区 2006 学年度第二学期《文科数学》期末考试题 A 年级
专业 警 示 学号 姓名 评分
《中山大学授予学士学位工作细则》第六条: “考试作弊不授 予学士学位。 ”
4
一. 求下列极限(每小题 5 分,共 15 分). 1) lim
x 16
x 2 . x 4
1 1 2) lim . x 1 1 x ln x