高中数学选修2-3第二章概率单元测试试题2

合集下载

高中数学人教A版选修(2-3)2.2.1《条件概率》word练习题 .doc

高中数学人教A版选修(2-3)2.2.1《条件概率》word练习题 .doc

选修2-3 第二章 2.2 2.2.1一、选择题11.已知P (B |A )=13,P (A )=25,则P (AB )等于( )A .56B .910C .215D .115[答案] C[解析] P (AB )=P (B |A )·P (A )=13×25=215,故答案选C.2.在10个形状大小均相同的球中有6个红球和4个白球,不放回地依次摸出2个球,在第1次摸出红球的条件下,第2次也摸到红球的概率为( )A .35B .25C .110D .59[答案] D[解析] 设第一次摸到的是红球为事件A ,则P (A )=610=35,设第二次摸得红球为事件B ,则P (AB )=6×510×9=13,故在第一次摸得红球的条件下第二次也摸得红球的概率为P (B |A )=P (AB )P (A )=59,选D. 3.抛掷红、黄两颗骰子,当红色骰子的点数为4或6时,两颗骰子的点数之积大于20的概率是( )A .14B .13C .12D .35[答案] B[解析] 抛掷红、黄两颗骰子共有6×6=36个基本事件,其中红色骰子的点数为4或6的有12个基本事件,两颗骰子点数之积包含4×6,6×4,6×5,6×6共4个基本事件.所以其概率为4361236=13.4.一个盒子里有20个大小形状相同的小球,其中5个红的,5个黄的,10个绿的,从盒子中任取一球,若它不是红球,则它是绿球的概率是( )A .56B .34C .23D .13[答案] C[解析] 在已知取出的小球不是红球的条件下,问题相当于从5黄10绿共15个小球中任取一个,求它是绿球的概率,∴P =1015=23.5.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830.则在吹东风的条件下下雨的概率为( )A .911B .811C .25D .89[答案] D[解析] 设事件A 表示“该地区四月份下雨”,B 表示“四月份吹东风”,则P (A )=1130,P (B )=930,P (AB )=830,从而吹东风的条件下下雨的概率为P (A |B )=P (AB )P (B )=830930=89.6.一个口袋中装有2个白球和3个黑球,则先摸出一个白球后放回,再摸出一个白球的概率是( )A .23B .14C .25D .15[答案] C[解析] 设A i 表示第i 次(i =1、2)取到白球的事件,因为P (A 1)=25,P (A 1A 2)=25×25=425,在放回取球的情况P (A 2|A 1)=42525=25.二、填空题7.甲、乙两地都处于长江下游,根据历史记载,知道甲、乙两地一年中雨天占的比例分别为20%与18%,两地同时下雨的比例为12%.(1)乙地为雨天时,甲地也为雨天的概率为________. (2)甲地为雨天时,乙地也为雨天的概率为________. [答案] (1)23(2)0.6[解析] 设A =“甲地为雨天”,B =“乙地为雨天”,则P (A )=20%=0.2,P (B )=18%=0.18,P (AB )=12%=0.12.(1)P (A |B )=P (AB )P (B )=0.120.18=23.(2)P (B |A )=P (AB )P (A )=0.120.2=0.6.8.100件产品中有5件次品,不放回地抽取两次,每次抽1件,已知第一次抽出的是次品,则第2次抽出正品的概率为________.[答案]9599[解析] 设“第一次抽到次品”为事件A ,“第二次抽到正品”为事件B ,则P (A )=5100=120,P (AB )=C 15C 195A 2100=19396,所以P (B |A )=P (AB )P (A )=9599. 9.一个家庭中有两个小孩.假定生男、生女是等可能的,已知这个家庭有一个是女孩,则这时另一个小孩是男孩的概率是________.[答案] 23[解析] 设A =“其中一个是女孩”,B =“其中一个是男孩”,则 P (A )=34,P (AB )=12,∴P (B |A )=P (AB )P (A )=23.三、解答题10.一个盒子中有6只好晶体管,4只坏晶体管,任取两次,每次取一只,每一次取后不放回.若已知第一只是好的,求第二只也是好的概率.[解析] 令A i ={第i 只是好的},i =1,2.解法1:n (A 1)=C 16C 19,n (A 1A 2)=C 16C 15, 故P (A 2|A 1)=n (A 1A 2)n (A 1)=C 16C 15C 16C 19=59.解法2:因事件A 1已发生(已知),故我们只研究事件A 2发生便可,在A 1发生的条件下,盒中仅剩9只晶体管,其中5只好的,所以P (A 2|A 1)=C 15C 19=59.一、选择题11.一个袋子中有5个大小相同的球,其中有3个黑球与2个红球,如果从中任取两个球,则恰好取到两个同色球的概率是( )A .15B .310C .25D .12[答案] C[解析] 从5个球中任取两个,有C 25=10种不同取法,其中两球同色的取法有C 23+1=4种,∴P =410=25.12.(2014·哈师大附中高二期中)一盒中装有5个产品,其中有3个一等品,2个二等品,从中不放回地取出产品,每次1个,取两次,已知第二次取得一等品的条件下,第一次取得的是二等品的概率是( )A .12B .13C .14D .23[答案] A[解析] 解法1:设A =“第一次取到二等品”,B =“第二次取得一等品”,则AB =“第一次取到二等品且第二次取到一等品”,∴P (A |B )=P (AB )P (B )=2×35×42×3+3×25×4=12.解法2:设一等品为a 、b 、c ,二等品为A 、B ,“第二次取到一等品”所含基本事件有(a ,b ),(a ,c ),(b ,a ),(b ,c ),(c ,a ),(c ,b ),(A ,a ),(A ,b ),(A ,c ),(B ,a ),(B ,b ),(B ,c )共12个,其中第一次取到一等品的基本事件共有6个,∴所求概率为P =612=12.13.从1、2、3、4、5中任取2个不同的数,事件A =“取到的2个数之和为偶数”,事件B =“取到的2个数均为偶数”,则P (B |A )=( )A .18B .14C .25D .12[答案] B[解析] ∵P (A )=C 22+C 23C 25=410,P (AB )=C 22C 25=110, ∴P (B |A )=P (AB )P (A )=14.二、填空题14.先后两次抛掷同一枚骰子,将得到的点数分别记为a 、b .将a ,b,5分别作为三条线段的长,则这三条线段能构成等腰三角形的概率是________.[答案]718[分析] 本题有两点要点:一是构成三角形,须满足较小的两个数的和大于第三个数;二是构成等腰三角形,须有两个数相等.[解析] 基本事件的总数为6×6=36. ∵三角形的一边长为5,∴当a =1时,b =5符合题意,有1种情况; 当a =2时,b =5符合题意,有1种情况; 当a =3时,b =3或5时符合题意,即有2种情况; 当a =4时,b =4或5时符合题意,有2种情况; 当a =5时,b ∈{1,2,3,4,5,6}时符合题意,即有6种情况; 当a =6时,b =5或6时符合题意,即有2种情况. 故满足条件的不同情况共有14种,所求概率为 P =1436=718.15.从1~100这100个整数中,任取一数,已知取出的一数是不大于50的数,则它是2或3的倍数的概率为________.[答案]3350[解析] 解法1:根据题意可知取出的一个数是不大于50的数,则这样的数共有50个,其中是2或3的倍数的数共有33个,故所求概率为3350.解法2:设A =“取出的球不大于50”,B =“取出的数是2或3的倍数”,则P (A )=50100=12,P (AB )=33100, ∴P (B |A )=P (AB )P (A )=3350.三、解答题16.某校高三(1)班有学生40人,其中共青团员15人.全班平均分成4个小组,其中第一组有共青团员4人.从该班任选一个作学生代表.(1)求选到的是第一组的学生的概率;(2)已知选到的是共青团员,求他是第一组学生的概率. [解析] 设事件A 表示“选到第一组学生”, 事件B 表示“选到共青团员”. (1)由题意,P (A )=1040=14.(2)解法1:要求的是在事件B 发生的条件下,事件A 发生的条件概率P (A |B ).不难理解,在事件B 发生的条件下(即以所选到的学生是共青团员为前提),有15种不同的选择,其中属于第一组的有4种选择.因此,P (A |B )=415. 解法2:P (B )=1540=38,P (AB )=440=110,∴P (A |B )=P (AB )P (B )=415.17.投掷两颗均匀骰子,已知点数不同,设两颗骰子点数之和为ξ,求ξ≤6的概率. [解析] 解法1:投掷两颗骰子,其点数不同的所有可能结果共30种,其中点数之和ξ≤6的有(1,2),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(3,1),(3,2),(4,1),(4,2),共11种,∴所求概率P =1130.解法2:设A =“投掷两颗骰子,其点数不同”,B =“ξ≤6”,则P (A )=3036=56,P (AB )=1136, ∴P (B |A )=P (AB )P (A )=1130.18.在某次考试中,要从20道题中随机地抽出6道题,若考生至少能答对其中的4道题即可通过;若至少能答对其中的5道题就获得优秀,已知某考生能答对其中的10道题,并且知道他在这次考试中已经通过,求他获得优秀成绩的概率.[解析] 设D 为“该考生在这次考试中通过”,则事件D 包含事件A ={该考生6道题全答对},事件B ={该考生6道题中恰答对5道},事件C ={该考生6道题中恰答对4道}.设E ={该考生获得优秀},由古典概型的概率公式及加法公式可知P (D )=P (A ∪B ∪C )=P (A )+P (B )+P (C )=C 610C 620+C 510C 110C 620+C 410C 210C 620,P (AD )=P (A ),P (BD )=P (B ),P (E |D )=P (A ∪B |D )=P (A |D )+P (B |D )=P (A )P (D )+P (B )P (D )=C 610C 620C 610+C 510C 110+C 410C 210C 620+C 510C 110C 620C 610+C 510C 110+C 410C 210C 620=1358.故所求的概率为1358.[点评] 解此类题时利用公式P (B ∪C |A )=P (B |A )+P (C |A )可使求有些条件概率时更为简捷,但应注意B 、C 互斥这一前提条件.。

人教b版选修2-3第2章 概 率 同步练测(人教实验B版选修2-3)2

人教b版选修2-3第2章 概 率 同步练测(人教实验B版选修2-3)2

高中数学学习材料(灿若寒星精心整理制作)第2章概率(人教实验B版选修2-3)一、选择题(本题包括10小题,每小题5分,共50分,每小题给出的四个选项中,只有一个选项正确)1.在所有两位数中,任取一个数,则这个数能被3 整除的概率是A. B.C. D.2.四边形ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为A. B.1-C. D.1-3.三人独立破译同一份密码,已知三人各自破译出密码的概率分别为 , , ,且他们是否破译出密码互不影响,设“密码被破译”的概率为,“密码未被破译”的概率为,则,的大小关系为A.>B.=C.<D.无法判断4.设随机变量XN(2,4),且P(X≤0)=P(X≥a-2),则实数a的值为A.4B.5C.6D.75.若X是离散型随机变量,P(X=)= ,P(X=)= ,且<,又已知E(X)= ,D(X)= ,则+的值为()A. B.C.3D.6.有一批书共100本,其中文科书40本,理科书60本,分为精装、平装两种,精装书70本,某人从这100本书中任取一书,恰是文科书,放回后再任取1本,恰是精装书,这一事件的概率是()A. B.C. D.7.将一枚骰子抛掷两次,若先后出现的点数分别为b,c,则方程+bx+c=0有实根的概率为建议用时实际用时满分实际得分120分钟150分A. B.C. D.8.下列四个游戏盘(各正方形边长和圆的直径都是单位1),如果撒一粒黄豆落在阴影部分,则可中奖.小明希望中奖,他应选择的游戏盘是9. 设随机变量X~B(n,0.5),且D(X)=2,则事件“X=1”的概率为()A. B.C. D.10.已知椭圆 +=1的焦点为、,在长轴上任取一点M,过点M作垂直于的直线交椭圆于点P,则使得·<0的点M的概率为A. B.C. D.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)11.将一骰子连续抛掷三次,它落地时向上的点数依次成等差数列的概率为 .12.罐中有6个红球,4个白球,从中任取1球,记下颜色后再放回,连续摸取4次,设为取得红球的次数,则ξ的数学期望E()= .13.在圆周上有10个等分点,以这些点为顶点,每3个点可以构成一个三角形,如果随机选择3个点,则刚好构成直角三角形的概率为 .14.设l为平面上过点(0,1)的直线,l的斜率等可能地取-2 ,- ,- ,0,,,2 ,用X表示坐标原点到l的距离,则随机变量X的数学期望E(X)= .三、解答题(本大题共5小题,共80分.解答应写出文字说明,证明过程或演算步骤)15.(14分)一袋中有6个黑球,4个白球.(1)依次取出3个球,不放回,已知第一次取出的是白球,求第三次取到黑球的概率;(2)有放回地依次取出3个球,已知第一次取出的是白球,求第三次取到黑球的概率.16.(14分)已知关于x的一元二次函数f(x)=-4bx+1.(1)设集合P={1,2,3}和Q={-1,1,2,3,4},分别从集合P和Q中随机取一个数作为a和b,求函数y=f(x)在区间[1,+∞)上是增函数的概率;(2)设点(a,b)是区域内的随机点,求函数y=f(x)在区间[1,+∞)上是增函数的概率.17.(16分)某城市有甲、乙、丙三个旅游景点,一位游客游览这三个景点的概率分别是0.4、0.5、0.6,且游客是否游览哪个景点互不影响,用ξ表示该游客离开该城市时游览的景点数与没有游览的景点数之差的绝对值.(1)求ξ的分布列及期望;(2)记“f(x)=2ξx+4在[-3,-1]上存在,使f()=0”为事件A,求事件A的概率.18.(18分)设关于x的一元二次方程+2ax+=0. (1)若a是从0,1,2,3四个数中任取的一个数,b是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a 是从区间[0,3]中任取的一个数,b 是从区间[0,2]中任取的一个数,求上述方程有实根的概率.19.(18分)如图所示,某学校要用鲜花布置花圃中A ,B ,C ,D ,E 五个不同区域,要求同一区域上用同一种颜色的鲜花,相邻区域使用不同颜色的鲜花.现有红、黄、蓝、白、紫五种不同颜色的鲜花可供任意选择. (1)当A ,D 区域同时用红色鲜花时,求布置花圃的不同方法的种数;(2)求恰有两个区域用红色鲜花的概率;(3)记ξ为花圃中用红色鲜花布置的区域的个数,求随机变量ξ的分布列及数学期望E (ξ).第2章 概 率 (人教实验B 版选修2-3)答题纸得分:一、选择题题号 1 2 3 4 5 6 7 8 9 10答案二、填空题11. 12. 13. 14.三、解答题15.16.17.18.19.第2章概率(人教实验B版选修2-3)参考答案一、选择题1.D解析:两位数从10到99共有99-10+1=90(个),其中能被3整除的数为12,15,18,…,99组成以12为首项,以3为公差的等差数列.由12+(n-1)×3=99得n=30,即能被3整除的两位数有30个,所以概率为P== .故选D.2.B 解析:如图,要使图中的点到O的距离大于1,则该点需取在图中阴影部分,故概率为P= =1- .故选B.3.A解析:记“第i个人破译出密码”为事件(i=1,2,3),依题意有P()=,P()=,P()=,且,,相互独立.设“密码被破译”为事件B,“密码未被破译”为事件C,则C=··,且,,相互独立,故=P(C)=P·P·P=×× = ,而=P(B)=1-P(C)= ,故.故选A.4.C解析:由正态曲线的对称性得 =2,∴a=6.故选C.5.C解析:分析已知条件,利用离散型随机变量的均值和方差的计算公式得解得或又∵ ,∴∴ =3.6.A解析:设“任取一书是文科书”的事件为A,“任取一书是精装书”的事件为B,则A、B是相互独立的事件,所求概率为P(AB).据题意可知P(A)= = ,P(B)= = ,∴P(AB)=P(A)P(B)= × = .7.A解析:若方程有实根,则Δ=-4c≥0,当有序实数对(b,c)的取值为(6,6),(6,5),…,(6,1),(5,6),(5,5),…,(5,1),(4,4),…,(4,1),(3,2),(3,1),(2,1)时方程有实根,共19 种情况,而(b,c)等可能的取值共有36种情况,所以方程有实根的概率为P= .故选A.8.A解析:P(A)= ,P(B)= ,P(C)= =1- ,P(D)= ,P(A)最大,故选A.9.C 解析:D(X)=n×0.5×(1-0.5)=2,∴n=8,则P(X=1)=×0.5×=故选C.10.C 解析:设点M的坐标为(,0),点P的坐标为(,),则有∈[-2,2],由题知两焦点为(- ,0),( ,0),∴·=-3+=-3+1- = -2<0,解得- << ,即点M的几何度量为 .又||=4,∴P= = .故选C.二、填空题11. 解析:基本事件有6×6×6=216(个),点数依次成等差数列的有:(1)当公差d=0时,1,1,1及2,2,2;…,共6个.(2)当公差d=±1时,1,2,3及2,3,4;3,4,5;4,5,6;…,共4×2个.(3)当公差d=±2时,1,3,5;2,4,6;…,共2×2个.∴P= = .12. 解析:因为是有放回地摸球,所以每次摸球(试验)摸得红球(成功)的概率均为,连续摸4次(做4次试验),ξ为取得红球(成功)的次数,则ξB (4, ) ,从而有E(ξ)=np=4× = .13. 解析:∵直角三角形的斜边是圆的直径,而圆周上的10个等分点能组成5条直径,∴直角三角形的个数为=40个.而每3个点能构成的三角形有=120(个),∴所求概率为P== .14. 解析:当k=±2 时,直线方程为±2 x-y+1=0= ;当k=±时,= ;当k=±时,= ;当k=0时,=1.由等可能性事件的概率可得分布列如下:X 1P∴E()=× + × + × +1×= .三、解答题15. 解:(1)设A=“第一次取到白球”,B=“第二次取到白球”,C=“第三次取到白球”,则在A发生的条件下,袋中只剩下6个黑球和3个白球,则P(C |A)= = = .(2)∵每次取之前袋中球的情况不变,∴n次取球的结果互不影响,∴P(C)= = .16.解:(1)∵函数f(x)=-4bx+1的图象的对称轴为x= ,要使f(x)=-4bx+1在区间[1,+∞)上为增函数,当且仅当a>0且≤1,即2b≤a.若a=1,则b=-1,若a=2,则b=-1,1,若a=3,则b=-1,1,∴所求事件包含基本事件的个数是1+2+2=5.而试验中包含的基本事件总数为3×5=15,∴所求事件的概率为 = .(2)由(1)知当且仅当2b≤a且a>0时函数f(x)=-4bx+1在区间[1,+∞)上为增函数,依条件可知试验的全部结果所构成的区域为{(a,b)|},则构成所求事件的区域为三角形阴影部分,如图所示,由得交点P ( , ) .∴所求事件的概率为P= = .17.解:(1)设游客游览甲、乙、丙三个景点分别记为事件、、,已知、、相互独立,且P()=0.4,P()=0.5,P()=0.6.游客游览的景点数可能取值为0、1、2、3,相应的游客没有游览的景点数可能取值为3、2、1、0,所以ξ的可能取值为1、3.则P(ξ=3)=P(··)+P(··)=P()·P()·P()+P·P·P=2×0.4×0.5×0.6=0.24.P(ξ=1)=1-0.24=0.76.所以ξ的分布列为ξ 1 3P0.76 0.24∴E(ξ)=1×0.76+3×0.24=1.48.(2)∵f(x)=2ξx+4在[-3,-1]上存在,使得f()=0,∴f(-3)·f(-1)≤0,即(-6ξ+4)(-2ξ+4)≤0,解得≤ξ≤2.∴P(A)=P ( ≤ξ≤2) =P(ξ=1)=0.76.18.解:设事件A为“方程+2ax+=0有实根”.当a≥0,b≥0时,方程+2ax+=0有实根的充要条件是a≥b.(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),其中第一个数表示a的取值,第二个数表示b的取值.事件A中包含9个基本条件,事件A发生的概率为P(A)== .(2)试验的全部结果所构成的区域为{(a,b)|0≤a≤3,0≤b≤2}.构成事件A的区域为{(a,b)|0≤a≤3,0≤b≤2,a≥b}.所以所求的概率为P(A)= = .19.解:(1)当A,D区域同时用红色鲜花时,其他区域不能用红色鲜花,因此,布置花圃的不同方法的种数为4×3×3=36(种).(2)设M表示事件“恰有两个区域用红色鲜花”,当区域A,D同色时,共有5×4×3×1×3=180(种);当区域A,D不同色时,共有5×4×3×2×2=240(种).因此,所有基本事件共有180+240=420(种)(是等可能的).又因为A,D为红色时,共有4×3×3=36(种);B,E为红色时,共有4×3×3=36(种).因此事件M包含的基本事件有36+36=72(种),所以P(M)== .(3)随机变量ξ的分布列为ξ0 1 2P所以E(ξ)=0× +1× +2× =1.。

日照实验高中选修2-3第二章概率综合测试卷及答案解析(原始打印版)

日照实验高中选修2-3第二章概率综合测试卷及答案解析(原始打印版)

日照实验高中选修2-3第二章概率综合测试卷一、选择题1、 袋中装有2个5分硬币 ,3个二分硬币,5个一分硬币,任意抓取3个,则总面值超过1角的概率是AA 0.4B 0.5C 0.6D 0.7 2、先后抛掷两枚均匀的骰子,骰子朝上的点数分别为X,Y,则满足1log 2=YX 的概率是CA61 B 365 C 121 D 21 3、从甲口袋摸出一个红球的概率是31,从乙口袋中摸出一个红球的概率是21,则32是CA 2个球不都是红球的概率B 2个球都是红球的概率C 至少有一个个红球的概率D 2个球中恰好有1个红球的概率 4、在4次独立试验中,事件A 出现的概率相同,若事件A 至少发生1次的概率是8165,则事件A 在一次试验中出现的概率是A A31 B 52 C 65 D 32 5、设随机变量X 等可能的取值1,2,3,…,n ,如果3.0)4(=<X P ,那么DA n=3B n=4C n=9D n=106、袋中有10个球,其中7个红球,3个白球,任意取出3个,则其中所含白球的个数是D A 0,1,2 B 1,2,3 C 2,3,4 D 0,1,2,37、将三颗骰子各掷一次,设事件A=“三个点数都不相同”,B=“至少出现一个6点”,则 概率)(B A P 等于A A9160 B 21 C 185 D 21691 8、甲、乙两人独立解同一个问题,甲解决这个问题的概率是1p ,乙解决这个问题的概率是2p , 那么恰好有一人解决这个问题的概率是BA 21p pB )1()1(1221p p p p -+-C 211p p -D )1)(1(121p p --- 9、袋中装有5只球,编号为1,2,3,4,5,从中任取3球,以X 表示取出球的最大号码,则EX 等于CA 4B 5C 4.5D 4.7510、设每门高射炮命中飞机的概率是0.6,今有一架飞机来犯,问需要多少门高射炮射击,才能以至少99%的概率命中它DA 3B 4C 5D 611、某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80,标准差为10,理论上说在80分到90分的人数是BA 32B 16C 8D 20 12、袋中装有黑球和白球共7个,从中任取2个球都是白球的概率是71,现在甲、乙两人从袋中轮流摸出1球,甲先取,乙后取,然后甲在取…,取后不放回,直到两人中有一人取到白球时即终止,每个球每一次被取到的机会是等可能的,那么甲取到白球的概率是D A73 B 356 C 351 D 3522 二、填空题13、设随机变量X 的概率分布是ka k X P 5)(==,a 为常数,3,2,1=k ,则a =31125_________. 14、在10个球中有6个红球,4个白球(各不相同),不放回的依次摸出2个球,在第一次摸出红球的条件下,第2次也摸出红球的概率是95_________. 15、一袋中装有5个白球,3个红球,现从袋中往外取球,每次取出一个,取出后记下球的颜色,然后放回,直到红球出现10次停止,则==)12(X P ______________________. 16、在一次试验中,事件A 发生的概率是31,在n 次独立重复试验中,事件A 至少发生一次的概率是不小于8166,则n 的最小值是5______________. 选择题答题卡三、解答题 必做题17、某人进行一个试验,若试验成功则停止,若实验失败,再重新试验一次,若试验三次均失败,则放弃试验,若此人每次试验成功的概率为32,求此人试验次数X 的分布列及期望和方差.813818、盒中有9个正品和3个次品零件,每次取出一个零件,如果取出的次品不再放回,求在取得正品前已取出的次品数X 得分布列. 略19、某地区气象台统计,该地区下雨的概率是154,刮三级以上风的概率是152,既刮风又下雨的概率是101,设A=“刮风”,B=“下雨”,求:)(),(B A P A B P 83,4320、已知甲、乙、丙三名射击运动员集中目标的概率分别是0.7,0.8,0.85,若他们分别向目标各发一枪,命中弹数记为X,求X 的分布列及期望.EX=2.3521、粒子A 位于数轴0=x 处,粒子B 位于2=x 处,这两棵粒子每隔一秒向左或向右移动一个单位,已知向右移动的概率是32,向左移动的概率是31. (1)求3秒后,粒子A 在点1=x 处的概率;(2)求2秒后,粒子A 、B 同时在2=x 处的概率. 8116,9422、有甲、乙两个箱子,甲箱中有6张卡片,其中有2张写有数字0,2张写有数字1,2张写有数字2;乙箱中有6张卡片,其中3张写有数字0,2张写有数字1,1张写有数字2. (1)如果从甲箱中取出1张卡片,乙箱中取出2张卡片,,那么取得的3张卡片都写有数字0的概率是多少?(2)如果从甲、乙两个箱子中各取一张卡片,设取出的2张卡片数字之积为X ,求X 的分布列和期望. (1)151 (2)3EX选做题(以下各题至少选做2题)23、某公司咨询热线电话共有10路外线,经长期统计发现,在8点至10点这段时间内,外线同时使若这段时间内,公司只安排2位接线员(一个接线员只能接一部电话). (1)求至少一路电话号不能一次接通的概率; (2)在一周五个工作日中,如果有三个工作日的这一时间至少一路电话不能一次接通,那么公司形象将受到损害,现在至少一路电话不能一次接通的概率表示公司的“损害度”,,求这种情况下公司形象的“损害度”;(3)求一周五个工作日的时间内,同时打入电话数X 的数学期望.解:(1)只安排2位接线员则至少一路电话号不能一次接通的概率是 1-0.13-0.35-0.27=0.25; (2)“损害度”51245)43()41(2335C ; (3)一个工作日内这一时间内同时打入电话数的期望是4.87,所以一周内5个工作日打入电话数的期望是24.35.24、一种赌博游戏:一个布袋内装有6个白球和6个红球,除颜色不同外,6个小球完全一样,每次从袋中取出6个球,输赢规则为:6个全红,赢得100元;5红1白,赢得50元;4红2白,赢得20元;3红3白,输掉100元;2红4白,赢得20元;1红5白,赢得50元;6全白,赢得100元. 而且游戏是免费的.很多人认为这种游戏非常令人心动,现在,请利用我们学过的概率知识解释我们是否该“心动”.25X 和Y ,其分布列如下:(2)比较两名射手的水平. 解:(1)a=0.3,b=0.4;(2)23.034.023.01,3.26.031.023.01=⨯+⨯+⨯==⨯+⨯+⨯=EY EX 6.0,855.0==DY DX所以说甲射手平均水平比乙好,但甲不如乙稳定.26、某校要组建明星篮球队,需要在各班选拔预备队员,规定投篮成绩A 级的可作为入围选手,选拔过程中每人最多投篮5次,若投中3次则确定为B 级,若投中4次及以上则可确定为A 级,已知某班同学阿明每次投篮投中的概率是0.5.(1)求阿明投篮4次才被确定为B 级的概率; (2)设阿明投篮投中次数为X ,求他入围的期望;(3)若连续两次投篮不中则停止投篮,求阿明不能入围的概率.解:(1)阿明投篮4次才被确定为B 级的概率1632121)21(223=⨯⨯=C P .(2)有已知X 的取值为4,5,且321)21()5(,32521)21()4(555245====⨯==C X P C X P 所以X 的数学期望322532153254=⨯+⨯=EX . (3)若连续两次投篮不中则停止投篮,阿明不能入围这一事件有如下几种情况:①5次投中3次,有24C 种投球方式,其概率为163)21()3(524==C P ; ②投中2次,分别是中中否否、中否中否否、否中中否否、否中否中否,概率是325)21(3)21()2(54=⨯+=P ; ③投中1次分别有中否否、否中否否,概率为163)21()21()1(43=+=P ; ④投中0次只有否否一种,概率为41)21()0(2==P ; 所以阿明不能入围这一事件的概率是3225)0()1()2()3(=+++=P P P P P 27、袋中装有35个球,每个球上都标有1到35的一个号码,设号码为n 的球重15522+-n n 克,这些球等可能的从袋中被取出.(1)如果任取1球,试求其重量大于号码数的概率; (2)如果任意取出2球,试求他们重量相等的概率.解:(1)由15522+-n n >n 可得6666,030122-<+>>+-n n n n 或所以, 由于35,,13,12,11,10,9,3,2,1,*⋅⋅⋅∈可取所以n N n 共30个数,故7635301==P , (2)由21212221222121),(52,15521552n n n n n n n n n n ≠-=-+-=+-因为得 所以64738291,1021,),(,),(,),(,从而满足条件的球有(=+n n ) 故概率为59542=P28、甲、乙两名射击运动员,甲射击一次命中10环的概率为0.5,乙射击一次命中10环的概率为s ,若他们独立的射击两次,设乙命中10环的次数为X ,则EX=34,Y 为甲与乙命中10环的差的绝对值. 求s 的值及Y 的分布列及期望.解:由已知可得),2(~s B X ,故32,342===s s EX 所以. 有Y 的取值可以是0,1,2.甲、乙两人命中10环的次数都是0次的概率是361)31()21(22=⨯,甲、乙两人命中10环的次数都是1次的概率是92)32313132)(21212121(=⨯+⨯⨯+⨯,甲、乙两人命中10环的次数都是2次的概率是91)3232)(2121(=⨯⨯所以36139192361)0(=++==Y P ; 甲命中10环的次数是2且乙命中10环的次数是0次的概率是361)31()21(22=⨯,甲命中10环的次数是0且乙命中10环的次数是2次的概率是91)3232)(2121(=⨯⨯所以36591361)2(=+==Y P ,故21)2()0(1)1(==-=-==Y P Y P Y P 所以Y 的分布列是所以 Y 的期望是EY=929、一软件开发商开发一种新的软件,投资50万元,开发成功的概率为0.9,若开发不成功,则只能收回10万元的资金,若开发成功,投放市场前,召开一次新闻发布会,召开一次新闻发布会不论是否成功都需要花费10万元,召开新闻发布会成功的概率为0.8,若发布成功则可以销售100万元,否则将起到负面作用只能销售60万元,而不召开新闻发布会则可新销售75万元. (1)求软件成功开发且成功在发布会上发布的概率. (2)求开发商盈利的最大期望值. 解:(1)设A=“软件开发成功”,B=“新闻发布会召开成功” 软件成功开发且成功在发布会上发布的概率是P(AB)=P(A)P(B)=0.72. (2)不召开新闻发布会盈利的期望值是5.189.0)5075()9.01(401=⨯-+-⨯-=E (万元); 召开新闻发布会盈利的期望值是8.249.010)5060()8.01(9.072.0)50100()9.01(402=⨯--⨯-⨯+⨯-+-⨯-=E (万元) 故开发商应该召开新闻发布会,且盈利的最大期望是24.8万元.30、现在,一些城市对小型汽车开始解禁,小型轿车慢慢进入百姓家庭,但是另一个问题相继暴露出来——堵车,某先生居住在城市的A 处,准备开车到B 处上班,若该地各路段发生堵车事件是相互独立的,且在同一路段发生堵车事件最多只有一次,发生堵车事件的概率为如图,(例如D C A →→ 算作两个路段:路段AC 发生堵车事件的概率是0.1,路段CD 发生堵车事件的概率是151) (1)请你为他选择一条由A 到B 的路段,使得途中发生堵车的概率最小;(2)若记路线B F C A →→→中遇到堵车的次数为随机变量X ,求X 的期望; 解:(1)路线B D C A →→→用遇到堵车的概率是 )()()(1)(11DB P CD P AC P DB CD AC P P -=⋅⋅-=1036515141091)](1)][(1)][(1[1=⨯⨯-=----=DB P CD P AC P 同理路线B F C A →→→遇到堵车的概率是800239;路线B F E A →→→遇到堵车的概率是30091. 因此应选择线路B F C A →→→可使途中发生堵车的概率最小.(2)路线B F C A →→→中遇到堵车的次数X 取值可能是0,1,2,3,31、现有甲、乙两个盒子,甲盒中装有4个白球和4个红球,乙盒中装有3个白球和若干个红球,若从乙盒中任取两个球,取到同色球的概率是2813. (1)求乙盒中红球的个数;(2)若从甲盒中任取两个球,放入乙盒中均匀后,再从乙盒中任意取出2个球放回到甲盒中,求甲盒中白球没有增加的概率;(3)从甲、乙两个盒子中各任取两个球进行交换,若交换后乙盒子中的白球数和红球数相等,就说这次交换是成功的,试求当进行150次交换(都从初始状态交换)时,大约有多少次是成功的.解:(1)设乙盒中有n 个红球,由已知可得281323223=++n n C C C ,解的n=5,即乙盒中含有5个红球. (2)若甲盒中白球增加了,则有以下两种情况:从甲盒中取出了两个红球,放入乙盒中均匀后从乙盒中取出两个白球或一个白球一个红球放入甲盒中,此时的概率是35421017132328241=+⨯=C C C C C C P ; 从甲盒中取出一个红球和一个白球,放入乙盒中均匀后从乙盒中取出2个白球放入甲盒中,此时概率是1058210242814142=⨯=C C C C C P ; 所以甲盒中白球增加了的概率是2141058354=+,所以甲盒中白球没有增加的概率是2117. (3)从甲乙两个盒中各取2个球交换后乙盒中白球数和红球数相等的情况有以下两种:一是从甲盒中取2个白球与乙盒中取1个白球、一个红球进行交换;二是从甲盒中取出1个白球、1个红球与乙盒中取出2个红球进行交换;所以概率是34712528252814142815132824=⨯+⨯=C C C C C C C C C C P。

高中数学选修2-3第二章概率单元测试试题2

高中数学选修2-3第二章概率单元测试试题2

选修2-3第二章概率质量检测(二)时间:120分钟总分:150分第Ⅰ卷(选择题,共60分)1.某射手射击所得环数ξ的分布列如下:已知ξA.0.2 B.0.4 C.0.6 D.0.82.若X的分布列为则D(X)等于(A.0.8 B.0.25 C.0.4 D.0.23.已知某人每天早晨乘坐的某一班次公共汽车准时到站的概率为35,则他在3天乘车中,此班次公共汽车至少有2天准时到站的概率为()A.36125 B.54125 C.81125 D.271254.设随机变量X~N(μ,σ2),且P(X<c)=P(X>c),则c的值为()A.0 B.1 C.μ D.μ25.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率P (A |B ),P (B |A )分别是( )A.6091,12B.12,6091C.518,6091D.91216,12 6.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码后放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( )A.16625B.96625C.624625D.4625 7.已知X 的分布列为且Y =aX +3,E (Y )=73,则a 为( )A .-1B .-12C .-13D .-148.已知变量x 服从正态分布N (4,σ2),且P (x >2)=0.6,则P (x >6)=( )A .0.4B .0.3C .0.2D .0.19.设由“0”,“1”组成的三位数组中,若用A 表示“第二位数字为‘0’的事件”,用B 表示“第一位数字为‘0’的事件”,则P (A |B )等于( )A.25B.34C.12D.1810.把10个骰子全部投出,设出现6点的骰子的个数为X ,则P (X ≤2)=( )A .C 210×⎝⎛⎭⎪⎫162×⎝ ⎛⎭⎪⎫568 B .C 110×16×⎝ ⎛⎭⎪⎫569+⎝ ⎛⎭⎪⎫5610C .C 110×16×⎝ ⎛⎭⎪⎫569+C 210×162×⎝ ⎛⎭⎪⎫568D .以上都不对 11.已知随机变量X ~B (6,0.4),则当η=-2X +1时,D (η)=( ) A .-1.88 B .-2.88 C .5.76 D .6.76 12.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没售出的鲜花以每束1.6元处理.据前5年节日期间这种鲜花销售情况得需求量ξ(单位:束)的统计如下表,若进这种鲜花500束在今年节日期间销售,则期望利润是( )A.706D .720元第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170,169,168,且各道工序互不影响,则加工出来的零件的次品率为________.14.已知正态总体的数据落在区间(-3,-1)内的概率和落在区间(3,5)内的概率相等,那么这个正态总体的数学期望为________.15.如果一个随机变量ξ~B ⎝ ⎛⎭⎪⎫15,12,则使得P (ξ=k )取得最大值的k 的值为________.16.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(2)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.18.(12分)某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为45,第二、第三门课程取得优秀成绩的概率分别为p ,q (p >q ),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为(1)求该生至少有1门课程取得优秀成绩的概率;(2)求p,q的值;(3)求数学期望E(ξ).19.(12分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X表示所取3张卡片上的数字的中位数,求X的分布列与数学期望.(注:若三个数a,b,c满足a≤b≤c,则称b为这三个数的中位数.)20.(12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E (X )及方差D (X ).21.(12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.22.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.答案1.B ∵E (ξ)=7x +8×0.1+9×0.3+10y =7(0.6-y )+10y +3.5=7.7+3y ,∴7.7+3y =8.9,∴y =0.4.2.B 由题意知0.5+a =1,E (X )=0×0.5+a =a =0.5,所以D (X )=0.25.3.C 设此班次公共汽车准时到站的天数为随机变量X ,则此班次公共汽车至少有2天准时到站的概率为P (X =2)+P (X =3)=C 23⎝⎛⎭⎪⎫352×25+C 33⎝ ⎛⎭⎪⎫353=81125.4.C 因为P (X <c )=P (X >c ),由正态曲线的对称性知μ=c . 5.A 由题意得事件A 包含的基本事件个数为6×5×4=120,事件B 包含的基本事件个数为63-53=91,在B 发生的条件下A 发生包含的基本事件个数为C 13A 25=60,在A 发生的条件下B 发生包含的基本事件个数为C 13A 25=60,所以P (A |B )=6091,P (B |A )=60120=12.故正确答案为A.6.B 若摸出的两球中含有4,必获奖,有5种情形;若摸出的两球是2,6,也能获奖.故获奖的情形共6种,获奖的概率为6C 26=25.现有4人参与摸奖,恰有3人获奖的概率是C 34⎝⎛⎭⎪⎫253×35=96625. 7.C E (X )=1×16+2×23+3×16=2, 由Y =aX +3,得E (Y )=aE (X )+3. 所以73=2a +3,解得a =-13.8.A 因为P (x >2)=0.6,所以P (x <2)=1-0.6=0.4.因为N (4,σ2),所以此正态曲线关于x =4对称,所以P (x >6)=P (x <2)=0.4.故选A.9.C 因为P (B )=1×2×22×2×2=12,P (A ∩B )=1×1×22×2×2=14,所以P (A |B )=P (A ∩B )P (B )=12.10.DP (X ≤2)=P (X =0)+P (X =1)+P (X =2)=C 010×⎝⎛⎭⎪⎫160×⎝ ⎛⎭⎪⎫5610+C 110×16×⎝ ⎛⎭⎪⎫569+C 210×⎝ ⎛⎭⎪⎫162×⎝ ⎛⎭⎪⎫568.11.C 由已知D (X )=6×0.4×0.6=1.44,则D (η)=4D (X )=4×1.44=5.76.12.A 节日期间这种鲜花需求量的均值E (ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束).设利润为η,则η=5ξ+1.6(500-ξ)-500×2.5=3.4ξ-450,则E (η)=E (3.4ξ-450)=3.4E (ξ)-450=3.4×340-450=706(元).13.370解析:加工出来的零件的合格品率为 ⎝⎛⎭⎪⎫1-170×⎝ ⎛⎭⎪⎫1-169×⎝ ⎛⎭⎪⎫1-168=6770,所以次品率为1-6770=370. 14.1解析:区间(-3,-1)和区间(3,5)关于x =1对称(-1的对称点是3,-3的对称点是5),所以正态分布的数学期望就是1.15.7,8解析:P (ξ=k )=C k 15⎝ ⎛⎭⎪⎫1215,则只需C k 15最大即可,此时k =7,8. 16.38解析:设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,所以该部件的使用寿命超过1 000的事件为(A B +A B +AB )C .所以该部件的使用寿命超过1 000小时的概率为⎝ ⎛⎭⎪⎫12×12+12×12+12×12×12=38. 17.解:(1)由题可得,至少购买甲、乙两种商品中的一种的概率为p =1-(1-0.5)(1-0.6)=0.8.(2)ξ可能的取值有0,1,2,3, p (ξ=0)=(1-0.8)3=0.008,p (ξ=1)=C 13(1-0.8)20.8=0.096, p (ξ=2)=C 23(1-0.8)10.82=0.384,p (ξ=3)=0.83=0.512. 故ξ的分布列为ξ18.解:记事件A i 表示“该生第i 门课程取得优秀成绩”,i =1,2,3. 由题意知P (A 1)=45,P (A 2)=p ,P (A 3)=q .(1)由于事件“该生至少有1门课程取得优秀成绩”与事件“ξ=0”是对立的,所以该生至少有1门课程取得优秀成绩的概率是1-P (ξ=0)=1-6125=119125.(2)由题意知P (ξ=0)=P (A 1A 2A 3)=15(1-p )(1-q )=6125, P (ξ=3)=P (A 1A 2A 3)=45pq =24125. 整理得pq =625,p +q =1. 由p >q ,可得p =35,q =25.(3)由题意知a =P (ξ=1)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=45(1-p )(1-q )+15p (1-q )+15(1-p )q =37125,b =P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=58125.所以E (ξ)=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3)=95.19.解:(1)由古典概型中的概率计算公式知所求概率为P =C 34+C 33C 39=584.(2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742,P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112,故X 的分布列为从而E (X )=1×1742+2×4384+3×112=4728.20.解:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6, P (A 2)=0.003×50=0.15, P (B )=0.6×0.6×0.15×2=0.108. (2)X 可能取的值为0,1,2,3,相应的概率为P (X =0)=C 03·(1-0.6)3=0.064,P (X =1)=C 13·0.6(1-0.6)2=0.288,P (X =2)=C 23·0.62(1-0.6)=0.432,P (X =3)=C 33·0.63=0.216.分布列为因为X ~B ,方差D (X )=3×0.6×(1-0.6)=0.72.21.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功}.由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.因P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=315,P (X =120)=P (E F )=23×25=415,P (X =220)=P (EF )=23×35=615,故所求的分布列为数学期望为E (X )=0×215+100×315+120×415+220×615=300+480+1 32015=2 10015=140.22.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1·B ·C +A 2·B +A 2·B ·C .P (B )=0.6,P (C )=0.4,P (A i )=C i 2×0.52,i =0,1,2,所以P (D )=P (A 1·B ·C +A 2·B +A 2·B ·C )=P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C ) =0.31.(2)X 的可能取值为0,1,2,3,4,其分布列为 P (X =0)=P (B ·A 0·C )=P (B )P (A 0)P (C )=(1-0.6)×0.52×(1-0.4)=0.06,P (X =1)=P (B ·A 0·C +B ·A 0·C +B ·A 1·C )=P (B )P (A 0)P (C )+P (B )P (A 0)P (C )+P (B )P (A 1)P (C )=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,数学期望E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X =3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.。

高二数学选修2-3第二章测试题

高二数学选修2-3第二章测试题

高二数学 (选修2-3第二章) 随机变量及其分布测试题(全卷满分150分,考试时间120分钟。

)第I 卷 (选择题 共60分)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.①某寻呼台一小时内收到的寻呼次数X ;②长江上某水文站观察到一天中的水位X ;③某超市一天中的顾客量X 其中的X 是连续型随机变量的是( ) A .① B .② C .③ D .①②③2.已知10件产品中有3件次品,从中任取2件,取到次品的件数为随机变量,用X 表示,那么X 的取值为( ) A. 0,1 B. 0,2 C. 1,2 D. 0,1,23.甲、乙两人独立解答某道题,解错的概率分别为a 和b ,那么两人都解对此题的概率是( ) A .1-ab B .(1-a )(1-b ) C .1-(1-a )(1-b ) D .a (1-b )+b (1-a ) 4.在15个村庄中,有7个村庄不太方便,现从中任意选10个村庄,用X 表示这10个村庄中交通不方便的村庄数,下列概率等于46781015C C C 的是( )A. (2)P X =B. (2)P X ≤C. (4)P X =D. (4)P X ≤ 5.盒子里有25个外形相同的球,其中10个白的,5个黄的,10个黑的,从盒子中任意取出一球,已知它不是白球,则它是黑球的概率为( )A. 15B.25C. 13D. 236.将一颗质地均匀的骰子先后抛掷3次,至少出现一次6点向上的概率是( )A. 5216B.25215C. 31216D. 912167.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8,有4台这种型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( ) A. 0.1536 B. 0.1808 C. 0.5632 D. 0.9728姓名________________ 班级__________________ 考号_____________--------------密------------------封-----------------线----------------内---------------不---------------------得--------------------答-------------------题-----------------------8.已知随机变量X 的分布为 则()E X 等于 ( )A. 0B. -0.2C. -1D. -0.3 9.随机变量Y ~),(p n B ,且() 3.6E Y =,16.2)(=Y D ,则此二项分布是 ( )A. (4,0.9)BB. (9,0.4)BC. (18,0.2)BD. (36,0.1)B 10.正态总体的概率密度函数为2()81()8πx x f x e-∈=R ,则总体的平均数和标准差分别为( )A.0,8 B .0,4 C.0,1 D.0,211.设随机变量ξ服从B (5,12),则P (ξ=3)的值是( )A .516B .316C . 58D .3812.某人从家乘车到单位,途中有3个交通岗亭.假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.4,则此人上班途中遇红灯的次数的期望为: A .0.4 B .1.2 C .34.0 D .0.6第II 卷(非选择题 共90分)二.填空题:本大题共4小题,每小题5分,共20分. 13. 100件产品中有5件次品,不放回地抽取2次,每次抽1件.已知第1次抽出的是次品,则第2次抽出正品的概率是 .14.已知随机变量X ~2(0)N σ,且(20)P X -≤≤0.4=, 则(2)P X >= .15. 若以连续掷两次骰子分别得到的点数m ,n 作为P 的坐标,则点P 落在圆1622=+y x 内的概率___________。

苏教版高中数学(选修2-3)单元测试-第二章

苏教版高中数学(选修2-3)单元测试-第二章

§2.1----2.4习题课一、教学目标梳理知识,突出二项分布,注重知识的交叉使用,理解复杂背景的题意并正确解决二、重点、难点较复杂背景的二项分布问题;知识的交叉使用三、基础回顾1.求概率分布的步骤:2.已学习了三种常见的概率分布,分别是 、 、 ,记作 、 、 。

3.若),,(~N M n H X , 则),,;(N M n r H =4.)|(D C P = ;求条件概率的两种方法是: 、5.设B A ,是两个事件,则)(B A P += ;)(A A P += ;若B A ,互斥时,)(B A P += ,)(AB P = ;B A ,独立时,)(AB P = 。

6.若),(~p n B ξ,则)(k P =ξ=四、典例研究例1.一制药厂组织两组技术人员分别独立地试制不同类型的新药,设每组试制成功的概率分别是0.4,0.3.当第一组成功时,该组研制的新药的年销售额为400万元,若失败则没有收入;当第二组成功时,该组研制的新药的年销售额为600万元,若失败则没有收入。

以X 表示这两种新药的年销售总额,求X 的概率分布。

高二理科数学 选修2—3 第二章《概率》 撰稿人:张金凤 用案时间: 编号:例2.甲、乙两人进行五局三胜制的象棋比赛,若甲每盘的胜率为53,乙每盘的胜率为52(和棋不算),求○1甲:乙=3:0的概率;○2甲:乙=3:2的概率例3.某社区提供财会和计算机培训,社员可以选择这两项中的一项培训、两项培训或不参加培训,已知该社区参加财会培训的有60%,参加计算机的有75%,假设每个人对培训项目的选择是独立的,○1任选该社员中的一名,求该人参加过培训的概率 ○2任选该社区中的2名,记η表示“2人中参加培训的人数”,求η概率分步五.夯实基础1.一个盒子中装有a只黑球和b只白球,现在从中先后有放回...地任取2只,设A表示“第一次取得黑球”的事件,B表示“第二次取得黑球”的事件,试计算P(A)与P(A|B)的值,并判断A与B 是否是独立事件。

高中数学选修2-3第二章概率单元测试试题2

高中数学选修2-3第二章概率单元测试试题2

选修2-3第二章概率质量检测(二)时间:120分钟总分:150分第Ⅰ卷(选择题,共60分)1.某射手射击所得环数ξ的分布列如下:已知ξA.0.2 B.0.4 C.0.6 D.0.82.若X的分布列为则D(X)等于(A.0.8 B.0.25 C.0.4 D.0.23.已知某人每天早晨乘坐的某一班次公共汽车准时到站的概率为35,则他在3天乘车中,此班次公共汽车至少有2天准时到站的概率为()A.36125 B.54125C.81125 D.271254.设随机变量X~N(μ,σ2),且P(X<c)=P(X>c),则c的值为()A.0 B.1 C.μ D.μ25.将三颗骰子各掷一次,记事件A =“三个点数都不同”,B =“至少出现一个6点”,则条件概率P (A |B ),P (B |A )分别是( )A.6091,12B.12,6091C.518,6091D.91216,12 6.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码后放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( )A.16625B.96625C.624625D.4625 7.已知X 的分布列为且Y =aX +3,E (Y )=73,则a 为( )A .-1B .-12C .-13D .-148.已知变量x 服从正态分布N (4,σ2),且P (x >2)=0.6,则P (x >6)=( )A .0.4B .0.3C .0.2D .0.19.设由“0”,“1”组成的三位数组中,若用A 表示“第二位数字为‘0’的事件”,用B 表示“第一位数字为‘0’的事件”,则P (A |B )等于( )A.25B.34C.12D.1810.把10个骰子全部投出,设出现6点的骰子的个数为X ,则P (X ≤2)=( )A .C 210×⎝ ⎛⎭⎪⎫162×⎝ ⎛⎭⎪⎫568 B .C 110×16×⎝ ⎛⎭⎪⎫569+⎝ ⎛⎭⎪⎫5610C .C 110×16×⎝ ⎛⎭⎪⎫569+C 210×162×⎝ ⎛⎭⎪⎫568 D .以上都不对11.已知随机变量X ~B (6,0.4),则当η=-2X +1时,D (η)=( ) A .-1.88 B .-2.88 C .5.76 D .6.76 12.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没售出的鲜花以每束1.6元处理.据前5年节日期间这种鲜花销售情况得需求量ξ(单位:束)的统计如下表,若进这种鲜花500束在今年节日期间销售,则期望利润是( )A.706D .720元第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170,169,168,且各道工序互不影响,则加工出来的零件的次品率为________.14.已知正态总体的数据落在区间(-3,-1)内的概率和落在区间(3,5)内的概率相等,那么这个正态总体的数学期望为________.15.如果一个随机变量ξ~B ⎝⎛⎭⎪⎫15,12,则使得P (ξ=k )取得最大值的k 的值为________.16.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(2)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.18.(12分)某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为45,第二、第三门课程取得优秀成绩的概率分别为p ,q (p >q ),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为(1)(2)求p ,q 的值; (3)求数学期望E (ξ).19.(12分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望.(注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数.)20.(12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E (X )及方差D (X ).21.(12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.22.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.答案1.B ∵E (ξ)=7x +8×0.1+9×0.3+10y =7(0.6-y )+10y +3.5=7.7+3y ,∴7.7+3y =8.9,∴y =0.4.2.B 由题意知0.5+a =1,E (X )=0×0.5+a =a =0.5,所以D (X )=0.25.3.C 设此班次公共汽车准时到站的天数为随机变量X ,则此班次公共汽车至少有2天准时到站的概率为P (X =2)+P (X =3)=C 23⎝ ⎛⎭⎪⎫352×25+C 33⎝ ⎛⎭⎪⎫353=81125.4.C 因为P (X <c )=P (X >c ),由正态曲线的对称性知μ=c . 5.A 由题意得事件A 包含的基本事件个数为6×5×4=120,事件B 包含的基本事件个数为63-53=91,在B 发生的条件下A 发生包含的基本事件个数为C 13A 25=60,在A 发生的条件下B 发生包含的基本事件个数为C 13A 25=60,所以P (A |B )=6091,P (B |A )=60120=12.故正确答案为A.6.B 若摸出的两球中含有4,必获奖,有5种情形;若摸出的两球是2,6,也能获奖.故获奖的情形共6种,获奖的概率为6C 26=25.现有4人参与摸奖,恰有3人获奖的概率是C 34⎝ ⎛⎭⎪⎫253×35=96625.7.C E (X )=1×16+2×23+3×16=2, 由Y =aX +3,得E (Y )=aE (X )+3. 所以73=2a +3,解得a =-13.8.A 因为P (x >2)=0.6,所以P (x <2)=1-0.6=0.4.因为N (4,σ2),所以此正态曲线关于x =4对称,所以P (x >6)=P (x <2)=0.4.故选A.9.C 因为P (B )=1×2×22×2×2=12,P (A ∩B )=1×1×22×2×2=14,所以P (A |B )=P (A ∩B )P (B )=12.10.DP (X ≤2)=P (X =0)+P (X =1)+P (X =2)=C 010×⎝ ⎛⎭⎪⎫160×⎝ ⎛⎭⎪⎫5610+C 110×16×⎝ ⎛⎭⎪⎫569+C 210×⎝ ⎛⎭⎪⎫162×⎝ ⎛⎭⎪⎫568.11.C 由已知D (X )=6×0.4×0.6=1.44,则D (η)=4D (X )=4×1.44=5.76.12.A 节日期间这种鲜花需求量的均值E (ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束).设利润为η,则η=5ξ+1.6(500-ξ)-500×2.5=3.4ξ-450,则E (η)=E (3.4ξ-450)=3.4E (ξ)-450=3.4×340-450=706(元).13.370解析:加工出来的零件的合格品率为 ⎝ ⎛⎭⎪⎫1-170×⎝ ⎛⎭⎪⎫1-169×⎝ ⎛⎭⎪⎫1-168=6770,所以次品率为1-6770=370. 14.1解析:区间(-3,-1)和区间(3,5)关于x =1对称(-1的对称点是3,-3的对称点是5),所以正态分布的数学期望就是1.15.7,8解析:P (ξ=k )=C k 15⎝ ⎛⎭⎪⎫1215,则只需C k 15最大即可,此时k =7,8.16.38解析:设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,所以该部件的使用寿命超过1 000的事件为(A B +A B +AB )C .所以该部件的使用寿命超过1 000小时的概率为⎝ ⎛⎭⎪⎫12×12+12×12+12×12×12=38.17.解:(1)由题可得,至少购买甲、乙两种商品中的一种的概率为p =1-(1-0.5)(1-0.6)=0.8.(2)ξ可能的取值有0,1,2,3, p (ξ=0)=(1-0.8)3=0.008,p (ξ=1)=C 13(1-0.8)20.8=0.096, p (ξ=2)=C 23(1-0.8)10.82=0.384,p (ξ=3)=0.83=0.512. 故ξ的分布列为ξ18.解:记事件A i 表示“该生第i 门课程取得优秀成绩”,i =1,2,3. 由题意知P (A 1)=45,P (A 2)=p ,P (A 3)=q .(1)由于事件“该生至少有1门课程取得优秀成绩”与事件“ξ=0”是对立的,所以该生至少有1门课程取得优秀成绩的概率是1-P (ξ=0)=1-6125=119125.(2)由题意知P (ξ=0)=P (A 1A 2A 3)=15(1-p )(1-q )=6125, P (ξ=3)=P (A 1A 2A 3)=45pq =24125. 整理得pq =625,p +q =1. 由p >q ,可得p =35,q =25.(3)由题意知a =P (ξ=1)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=45(1-p )(1-q )+15p (1-q )+15(1-p )q =37125,b =P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=58125.所以E (ξ)=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3)=95.19.解:(1)由古典概型中的概率计算公式知所求概率为P =C 34+C 33C 39=584.(2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742,P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112,故X 的分布列为从而E (X )=1×1742+2×4384+3×112=4728.20.解:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6, P (A 2)=0.003×50=0.15, P (B )=0.6×0.6×0.15×2=0.108. (2)X 可能取的值为0,1,2,3,相应的概率为P (X =0)=C 03·(1-0.6)3=0.064,P (X =1)=C 13·0.6(1-0.6)2=0.288,P (X =2)=C 23·0.62(1-0.6)=0.432,P (X =3)=C 33·0.63=0.216.分布列为因为X ~B ,方差D (X )=3×0.6×(1-0.6)=0.72.21.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功}.由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.因P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=315,P (X =120)=P (E F )=23×25=415,P (X =220)=P (EF )=23×35=615,故所求的分布列为数学期望为E (X )=0×215+100×315+120×415+220×615=300+480+1 32015=2 10015=140.22.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D 表示事件:同一工作日至少3人需使用设备.(1)D =A 1·B ·C +A 2·B +A 2·B ·C .P (B )=0.6,P (C )=0.4,P (A i )=C i 2×0.52,i =0,1,2,所以P (D )=P (A 1·B ·C +A 2·B +A 2·B ·C )=P (A 1·B ·C )+P (A 2·B )+P (A 2·B ·C )=P (A 1)P (B )P (C )+P (A 2)P (B )+P (A 2)P (B )P (C ) =0.31.(2)X 的可能取值为0,1,2,3,4,其分布列为 P (X =0)=P (B ·A 0·C )=P (B )P (A 0)P (C )=(1-0.6)×0.52×(1-0.4)=0.06,P (X =1)=P (B ·A 0·C +B ·A 0·C +B ·A 1·C )=P (B )P (A 0)P (C )+P (B )P (A 0)P (C )+P (B )P (A 1)P (C )=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,数学期望E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X =3)+4×P(X=4)=0.25+2×0.38+3×0.25+4×0.06=2.。

人教版高中数学选修2-3第二章随机变量及其分布单元测试(二)及参考答案

人教版高中数学选修2-3第二章随机变量及其分布单元测试(二)及参考答案

2018-2019学年选修2-3第二章训练卷随机变量及其分布(二)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.设在一次试验中事件A 出现的概率为p,在n 次独立重复试验中事件A 出现k 次的概率为p k ,则( )A.p 1+p 2+…+n p =1B.p 0+p 1+p 2+…+n p =1C.p 0+p 1+p 2+…+n p =0D.p 1+p 2+…+1n p -=12.设随机变量ξ等可能取值1,2,3,…,n.如果P(ξ<4)=0.3,那么( ) A.n =3 B.n =4 C.n =10D.n 不能确定3.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是( ) A.0.16B.0.24C.0.96D.0.044.设随机变量ξ服从正态分布()0,1N ,若()1P p ξ>=,则()10P ξ-<<=( ) A.12p + B.1p - C.12p -D.12p - 5.将一枚硬币连掷5次,如果出现k 次正面的概率等于出现k +1次正面的概率,则k 的值为( ) A.0B.1C.2D.36.设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若i i y x a =+(a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( ) A.1a +,4B.1a +,4a +C.1,4D.1,4a +7.某校14岁女生的平均身高为154.4 cm,标准差是5.1 cm,如果身高服从正态分布,那么在该校200个14岁女生中身高在164.6 cm 以上的约有( ) A.5人B.6人C.7人D.8人8.已知随机变量ξ的分布列为则ξ的数学期望是( ) A.2 B.2.1C.2.3D.随m 的变化而变化9.张家的3个鸡仔钻进了李家装有3个鸡仔的鸡笼里,现打开笼门,让鸡仔一个一个地走出来,若第一个走出的是张家的鸡仔,那么第二个走出的也是张家的鸡仔的概率是( ) A.25B.23C.15D.3510.某市教学质量检测,甲、乙、丙三科考试成绩的直方图如下图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由图中曲线可得下列说法中正确的是( )A.甲科总体的标准差最小B.乙科总体的标准差及平均数都居中C.丙科总体的平均数最小D.甲、乙、丙三科的总体的平均数不相同11.一个篮球运动员投篮一次得3分的概率为a ,得2分的概率为b,不得分的概率为(),,0,1c a b c ∈⎡⎤⎣⎦,已知他投篮一次得分的数学期望为1(不计其他得分情况),则ab 的最大值为( )此卷只装订不密封班级 姓名 准考证号考场号 座位号A.148B.124C.112D.1612.某个游戏中,一个珠子按如图所示的通道,由上至下的滑下,从最下面的六个出口出来,规定猜中者为胜,如果你在该游戏中,猜得珠子从出口3出来,那么你取胜的概率为()A.516B.532C.16D.以上都不对二、填空题(本大题共4个小题,每小题5分,共20分,把正确答案填在题中横线上) 13.甲、乙同时炮击一架敌机,已知甲击中敌机的概率为0.6,乙击中敌机的概率为0.5,敌机被击中的概率为________.14.从0,1,2,3,4,5,6,7,8,9中任取七个不同的数,则这七个数的中位数是6的概率为________.15.在等差数列{}n a 中,42a =,74a =-.现从{}n a 的前10项中随机取数,每次取出一个数,取后放回,连续抽取3次,假定每次取数互不影响,那么在这三次取数中,取出的数恰好为两个正数和一个负数的概率为________(用数字作答).16.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件,则下列结论中正确的是________(写出所有正确结论的编号). ①P(B)=25;②P(B|A 1)=511;③事件B 与事件A 1相互独立;④A 1,A 2,A 3是两两互斥的事件;⑤P(B)的值不能确定,∵它与A 1,A 2,A 3中究竟哪一个发生有关.三、解答题(本大题共6个大题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(10分)从混有5张假钞的20张百元钞票中任意抽取2张,将其中1张放在验钞机上检验发现是假钞,求2张都是假钞的概率.18.(12分)甲、乙两人各进行3次射击,甲每次击中目标的概率为12,乙每次击中目标的概率为23.(1)记甲击中目标的次数为X,求X 的概率分布列及数学期望EX ; (2)求乙至多击中目标2次的概率; (3)求甲恰好比乙多击中目标2次的概率.19.(12分)下图是某市3月1日至14日的空气质量指数趋势图.空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染.某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天.(1)求此人到达当日空气重度污染的概率;(2)设X 是此人停留期间空气质量优良的天数,求X 的分布列与数学期望; (3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)20.(12分)在一块耕地上种植一种作物,每季种植成本为1000元,此作物的市场价格和这块地上的产量均具有随机性,且互不影响,其具体情况如下表:(1)设X(2)若在这块地上连续3季种植此作物,求这3季中至少有2季的利润不少于2000元的概率.21.(12分)袋中装着标有数字1,2,3,4,5的小球各2个,从袋中任取3个小球,按3个小球上最大数字的9倍计分,每个小球被取出的可能性都相等,用X 表示取出的3个小球上的最大数字,求:(1)取出的3个小球上的数字互不相同的概率;(2)随机变量X的概率分布列;(3)计分介于20分到40分之间的概率.22.(12分)从某企业生产的某种产品中抽取500件,测量这些产品的一些质量指标值,由测量结果得如下频率分布直方图:(1)求这500件产品质量指标值的样本平均数x和样本方差s2(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值Z服从正态分布N(μ,σ2),其中μ近似为样本平均数x,2近似为样本方差s2.①利用该正态分布,求P(187.8<Z<212.2);②某用户从该企业购买了100件这种产品,记X表示这100件产品中质量指标值位于区间(187.8,212.2)的产品件数.利用①的结果,求EX.附:150≈12.2.若Z~N(μ,σ2),则P(μ-σ<Z<μ+σ)=0.6826,P(μ-2σ<Z<μ+2σ)=0.9544.2018-2019学年选修2-3第二章训练卷随机变量及其分布(二)答 案一、选择题. 1.【答案】B【解析】由题意可知ξ~B(n,p),由分布列的性质可知∑k =0np k =1.故选B.2.【答案】C【解析】∵ξ是等可能地取值,∴P(ξ=k)=1n (k =1,2,…,n),∴P(ξ<4)=3n =0.3,∴n =10.故选C.3.【答案】C【解析】三人都不达标的概率是(1-0.8)×(1-0.6)×(1-0.5)=0.04, 故三人中至少有一人达标的概率为1-0.04=0.96.故选C. 4.【答案】D【解析】()()()()1111121011112222P P p P P ξξξξ<<<<>>-=-=-=-=-⎡⎤⎣⎦. 故选D. 5.【答案】C【解析】由51511551111C C2222kkk k k k -+--+⎛⎫⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,即155C C k k +=.∴()15k k ++=.∴2k =.故选C.6.【答案】A【解析】给每个数据都加上常数a 后,均值也增加a ,方差不变,故选A. 7.【答案】A【解析】设某校14岁女生的身高为X(cm),则()2154.4,5.1X N ~. 由于P(154.4-2×5.1<X≤154.4+2×5.1)=0.9544, ∴P(X>164.6)=12×(1-0.9544)=0.0228.∵200×0.0228=4.56,∴身高在164.6 cm 以上的约有5人.故选A. 8.【答案】B【解析】∵0.2+0.5+m =1,∴m =0.3,∴Eξ=1×0.2+2×0.5+3×0.3=2.1.故选B. 9.【答案】A【解析】∵()2326A A P AB =,()1316A A P A =,∴()()()2|=5P A P B P A B A =,故选A.10.【答案】A【解析】从甲、乙、丙三科曲线可知,它们总体的平均数相同,且甲科曲线“瘦高”, ∴甲科标准差最小,只有A 正确.故选A. 11.【答案】B【解析】由已知得3201a b c ++⨯=,即321a b +=, ∴221132111326626224a b ab a b +⎛⎫⎛⎫=⋅⋅≤=⨯= ⎪ ⎪⎝⎭⎝⎭, 当且仅当1322a b ==,即16a =,14b =时取“等号”,故选B. 12.【答案】A【解析】由于珠子在每个叉口处有“向左”和“向右”两种走法, 因而基本事件个数为25.而从出口3出来的每条线路中有2个“向右”和3个“向左”,即共25C 条路线,故所求的概率为255C 5216=.故选A.二、填空题. 13.【答案】0.8【解析】()()()1P P P =-敌机被击中甲未击中敌机乙未击中敌机()()110.610.510.20.8--⨯--===.14.【答案】16【解析】十个数中任取七个不同的数共有710C 种情况,七个数的中位数为6,那么6只有处在中间位置,有36C 种情况,于是所求概率36710C 1C 6P ==.15.【答案】625【解析】由42a =,74a =-可得等差数列{}n a 的通项公式为()1021,2,,10n a n n -==.由题意,三次取数相当于三次独立重复试验,在每次试验中取得正数的概率为25,取得负数的概率为12,在三次取数中,取出的数恰好为两个正数和一个负数的概率为2123216C 5225⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭. 16.【答案】②④【解析】由题意知P(B)的值是由A 1,A 2,A 3中某一个事件发生所决定的,故①③错误;∵()()()1111552111112P B A P B A P A ⨯===,故②正确;由互斥事件的定义知④正确,()11115554111110111011C C C C 9C C C C 22P B =⨯+⨯=.三、解答题. 17.【答案】217. 【解析】若A 表示“抽到的2张都为假钞”,B 表示“抽到的2张中至少有1张为假钞”,则所求概率为P(A|B).又()()25220C C P AB P A ==;()2115515220C C C C P B +=,∴()()()252115515C 102C C C 8517P AB P A B P B ====+. 18.【答案】(1)1.5;(2)1927;(3)124.【解析】(1)X 的概率分布列为EX =0×18+1×38+2×38+3×18=1.5或EX =3×12=1.5.(2)乙至多击中目标2次的概率为3332191C 327⎛⎫-= ⎪⎝⎭.(3)设甲恰好比乙多击中目标2次为事件A,甲恰击中目标2次且乙恰击中目标0次为事件B 1,甲恰击中目标3次且乙恰击中目标1次为事件B 2,则A =B 1+B 2. B 1、B 2为互斥事件,P(A)=P(B 1)+P(B 2)=38×127+18×29=124.19.【答案】(1)213;(2)分布列见解析,1213;(3)3月5日.【解析】设A i 表示事件“此人于3月i 日到达该市” ()i 1,2,,13=.根据题意,P(A i )=113,且()i ij A A j =∅≠.(1)设B 为事件“此人到达当日空气重度污染”,则58B A A =.∴()()()()5858213P B P A A P A P A ==+=. (2)由题意可知,X 的所有可能取值为0,1,2, 且()()()()()()36711367114113P X P A A A A P A P A P A P A ==+++==, ()()()()()1212131212134)213(P X P A A A A P A P A P A P A ==+++==, ()()()5011213P X P X P X ==-==-=. ∴X 的分布列为故X 的期望EX =0×513+1×413+2×413=1213.(3)从3月5日开始连续三天的空气质量指数方差最大. 20.【答案】(1)见解析;(2)0.896.【解析】(1)设A 表示事件“作物产量为300 kg”,B 表示事件“作物市场价格为6元/kg”,由题设知P(A)=0.5,P(B)=0.4, ∵利润=产量×市场价格-成本, ∴X 所有可能的取值为500×10-1000=4000,500×6-1000=2000, 300×10-1000=2000,300×6-1000=800.()()()()()10.510.40.40003P A P B P X ==-⨯-==,()()()()()()()10.50.420000.510.40.5P A P B P A P B P X =+=-⨯+⨯-==,()()()0.50.408.200P A P B P X ==⨯==, ∴X 的分布列为(2)设C i 表示事件“第i 由题意知C 1,C 2,C 3相互独立,由(1)知,P(C i )=P(X =4000)+P(X =2000)=0.3+0.5=0.8(i =1,2,3),3季的利润均不少于2000元的概率为P(C 1C 2C 3)=P(C 1)P(C 2)P(C 3)=0.83=0.512; 3季中有2季的利润不少于2000元的概率为()()()212312312330.80.20.384P C C C P C C C P C C C ++=⨯⨯=,∴这3季中至少有2季的利润不少于2000元的概率为0.512+0.384=0.896. 21.【答案】(1)23;(2)见解析;(3)1330.【解析】(1)“取出的3个小球上的数字互不相同”的事件记为A,则()31115222310C C C C 2C 3P A ==. (2)由题意,X 的可能取值为2,3,4,5.()21122222310C C +C C 12C 30P X ===;()21124242310C C +C C 23C 15P X ===; ()21126262310C C +C C 34C 10P X ===;()21128282310C C +C C 85C 15P X ===. ∴随机变量X 的概率分布列为(3)“则P(C)=P(X =3)+P(X =4)=215+310=1330. 22.【答案】(1)200x =, 2150s =;(2)①0.6826;②68.26.【解析】(1)抽取产品的质量指标值的样本平均数x 和样本方差s 2分别为1700.021800.091900.222000.332100.242200.082300.02x =⨯+⨯+⨯+⨯+⨯+⨯+⨯ 200=,()()()2222222300.02200.091002200.33100.24200.08300.02s =-⨯+⨯+⨯+⨯+⨯++⨯-⨯-. 150=.(2)①由(1)知,Z ~N(200,150),从而P(187.8<Z<212.2)=P(200-12.2<Z<200+12.2)=0.6826.②由①知,一件产品的质量指标值位于区间(187.8,212.2)的概率为0.6826, 依题意知X ~B(100,0.6826),∴EX =100×0.6826=68.26.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

选修2-3第二章概率质量检测(二)时间:120分钟总分:150分第Ⅰ卷(选择题,共60分)1.某射手射击所得环数ξ的分布列如下:已知ξA.0.2 B.0.4 C.0.6 D.0.82.若X的分布列为则D(X)等于(A.0.8 B.0.25 C.0.4 D.0.23.已知某人每天早晨乘坐的某一班次公共汽车准时到站的概率为35,则他在3天乘车中,此班次公共汽车至少有2天准时到站的概率为()A.36125 B.54125C.81125 D.271254.设随机变量X~N(μ,σ2),且P(X<c)=P(X>c),则c的值为()A.0 B.1 C.μ D.μ25.将三颗骰子各掷一次,记事件A=“三个点数都不同”,B=“至少出现一个6点”,则条件概率P (A |B ),P (B |A )分别是( )A.6091,12B.12,6091C.518,6091D.91216,12 6.箱中装有标号为1,2,3,4,5,6且大小相同的6个球.从箱中一次摸出两个球,记下号码后放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是( )A.16625B.96625C.624625D.4625 7.已知X 的分布列为且Y =aX +3,E (Y )=3,则a 为( )A .-1B .-12C .-13D .-148.已知变量x 服从正态分布N (4,σ2),且P (x >2)=0.6,则P (x >6)=( )A .0.4B .0.3C .0.2D .0.19.设由“0”,“1”组成的三位数组中,若用A 表示“第二位数字为‘0’的事件”,用B 表示“第一位数字为‘0’的事件”,则P (A |B )等于( )A.25B.34C.12D.1810.把10个骰子全部投出,设出现6点的骰子的个数为X ,则P (X ≤2)=( )A .C 210×⎝ ⎛⎭⎪⎫162×⎝ ⎛⎭⎪⎫568 B .C 110×16×⎝ ⎛⎭⎪⎫569+⎝ ⎛⎭⎪⎫5610C .C 110×16×⎝ ⎛⎭⎪⎫569+C 210×162×⎝ ⎛⎭⎪⎫568D .以上都不对 11.已知随机变量X ~B (6,0.4),则当η=-2X +1时,D (η)=( ) A .-1.88 B .-2.88 C .5.76 D .6.76 12.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没售出的鲜花以每束1.6元处理.据前5年节日期间这种鲜花销售情况得需求量ξ(单位:束)的统计如下表,若进这种鲜花500束在今年节日期间销售,则期望利润是( )A.706D .720元第Ⅱ卷(非选择题,共90分)二、填空题(每小题5分,共20分)13.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为170,169,168,且各道工序互不影响,则加工出来的零件的次品率为________.14.已知正态总体的数据落在区间(-3,-1)内的概率和落在区间(3,5)内的概率相等,那么这个正态总体的数学期望为________.15.如果一个随机变量ξ~B ⎝ ⎛⎭⎪⎫15,12,则使得P (ξ=k )取得最大值的k 的值为________.16.某一部件由三个电子元件按下图方式连接而成,元件1或元件2正常工作,且元件3正常工作,则部件正常工作.设三个电子元件的使用寿命(单位:小时)均服从正态分布N (1 000,502),且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1 000小时的概率为________.三、解答题(写出必要的计算步骤,只写最后结果不得分,共70分)17.(10分)设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(2)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.18.(12分)某同学参加3门课程的考试.假设该同学第一门课程取得优秀成绩的概率为45,第二、第三门课程取得优秀成绩的概率分别为p ,q (p >q ),且不同课程是否取得优秀成绩相互独立.记ξ为该生取得优秀成绩的课程数,其分布列为ξ 0 1 2 3 P6125ab24125(1)(2)求p ,q 的值; (3)求数学期望E (ξ).19.(12分)一盒中装有9张各写有一个数字的卡片,其中4张卡片上的数字是1,3张卡片上的数字是2,2张卡片上的数字是3.从盒中任取3张卡片.(1)求所取3张卡片上的数字完全相同的概率;(2)X 表示所取3张卡片上的数字的中位数,求X 的分布列与数学期望.(注:若三个数a ,b ,c 满足a ≤b ≤c ,则称b 为这三个数的中位数.)20.(12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望E (X )及方差D (X ).21.(12分)某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别为23和35.现安排甲组研发新产品A ,乙组研发新产品B .设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获利润100万元.求该企业可获利润的分布列和数学期望.22.(12分)设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.6,0.5,0.5,0.4,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望.答案1.B ∵E (ξ)=7x +8×0.1+9×0.3+10y =7(0.6-y )+10y +3.5=7.7+3y ,∴7.7+3y =8.9,∴y =0.4.2.B 由题意知0.5+a =1,E (X )=0×0.5+a =a =0.5,所以D (X )=0.25.3.C 设此班次公共汽车准时到站的天数为随机变量X ,则此班次公共汽车至少有2天准时到站的概率为P (X =2)+P (X =3)=C 23⎝⎛⎭⎪⎫352×25+C 33⎝ ⎛⎭⎪⎫353=81125. 4.C 因为P (X <c )=P (X >c ),由正态曲线的对称性知μ=c . 5.A 由题意得事件A 包含的基本事件个数为6×5×4=120,事件B 包含的基本事件个数为63-53=91,在B 发生的条件下A 发生包含的基本事件个数为C 13A 25=60,在A 发生的条件下B 发生包含的基本事件个数为C 13A 25=60,所以P (A |B )=6091,P (B |A )=60120=12.故正确答案为A.6.B 若摸出的两球中含有4,必获奖,有5种情形;若摸出的两球是2,6,也能获奖.故获奖的情形共6种,获奖的概率为6C 26=25.现有4人参与摸奖,恰有3人获奖的概率是C 34⎝⎛⎭⎪⎫253×35=96625. 7.C E (X )=1×16+2×23+3×16=2, 由Y =aX +3,得E (Y )=aE (X )+3. 所以73=2a +3,解得a =-13.8.A 因为P (x >2)=0.6,所以P (x <2)=1-0.6=0.4.因为N (4,σ2),所以此正态曲线关于x =4对称,所以P (x >6)=P (x <2)=0.4.故选A.9.C 因为P (B )=1×2×22×2×2=12,P (A ∩B )=1×1×22×2×2=14,所以P (A |B )=P (A ∩B )P (B )=12.10.DP (X ≤2)=P (X =0)+P (X =1)+P (X =2)=C 010×⎝⎛⎭⎪⎫160×⎝ ⎛⎭⎪⎫5610+C 110×16×⎝ ⎛⎭⎪⎫569+C 210×⎝ ⎛⎭⎪⎫162×⎝ ⎛⎭⎪⎫568.11.C 由已知D (X )=6×0.4×0.6=1.44,则D (η)=4D (X )=4×1.44=5.76.12.A 节日期间这种鲜花需求量的均值E (ξ)=200×0.20+300×0.35+400×0.30+500×0.15=340(束).设利润为η,则η=5ξ+1.6(500-ξ)-500×2.5=3.4ξ-450,则E (η)=E (3.4ξ-450)=3.4E (ξ)-450=3.4×340-450=706(元).13.370解析:加工出来的零件的合格品率为 ⎝⎛⎭⎪⎫1-170×⎝ ⎛⎭⎪⎫1-169×⎝ ⎛⎭⎪⎫1-168=6770,所以次品率为1-6770=370. 14.1解析:区间(-3,-1)和区间(3,5)关于x =1对称(-1的对称点是3,-3的对称点是5),所以正态分布的数学期望就是1.15.7,8解析:P (ξ=k )=C k 15⎝ ⎛⎭⎪⎫1215,则只需C k 15最大即可,此时k =7,8. 16.38解析:设元件1,2,3的使用寿命超过1 000小时的事件分别记为A ,B ,C ,显然P (A )=P (B )=P (C )=12,所以该部件的使用寿命超过1 000的事件为(A B +A B +AB )C .所以该部件的使用寿命超过1 000小时的概率为⎝ ⎛⎭⎪⎫12×12+12×12+12×12×12=38. 17.解:(1)由题可得,至少购买甲、乙两种商品中的一种的概率为p =1-(1-0.5)(1-0.6)=0.8.(2)ξ可能的取值有0,1,2,3, p (ξ=0)=(1-0.8)3=0.008,p (ξ=1)=C 13(1-0.8)20.8=0.096, p (ξ=2)=C 23(1-0.8)10.82=0.384,p (ξ=3)=0.83=0.512. 故ξ的分布列为ξ18.解:记事件A i 表示“该生第i 门课程取得优秀成绩”,i =1,2,3. 由题意知P (A 1)=45,P (A 2)=p ,P (A 3)=q .(1)由于事件“该生至少有1门课程取得优秀成绩”与事件“ξ=0”是对立的,所以该生至少有1门课程取得优秀成绩的概率是1-P (ξ=0)=1-6125=119125.(2)由题意知P (ξ=0)=P (A 1A 2A 3)=15(1-p )(1-q )=6125, P (ξ=3)=P (A 1A 2A 3)=45pq =24125. 整理得pq =625,p +q =1. 由p >q ,可得p =35,q =25.(3)由题意知a =P (ξ=1)=P (A 1A 2A 3)+P (A 1A 2A 3)+P (A 1A 2A 3)=45(1-p )(1-q )+15p (1-q )+15(1-p )q =37125,b =P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=58125.所以E (ξ)=0×P (ξ=0)+1×P (ξ=1)+2×P (ξ=2)+3×P (ξ=3)=95.19.解:(1)由古典概型中的概率计算公式知所求概率为P =C 34+C 33C 39=584.(2)X 的所有可能值为1,2,3,且P (X =1)=C 24C 15+C 34C 39=1742, P (X =2)=C 13C 14C 12+C 23C 16+C 33C 39=4384, P (X =3)=C 22C 17C 39=112,故X 的分布列为从而E (X )=1×1742+2×84+3×12=28.20.解:(1)设A 1表示事件“日销售量不低于100个”,A 2表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天销售量低于50个”.因此P (A 1)=(0.006+0.004+0.002)×50=0.6,P (A 2)=0.003×50=0.15,P (B )=0.6×0.6×0.15×2=0.108.(2)X 可能取的值为0,1,2,3,相应的概率为P (X =0)=C 03·(1-0.6)3=0.064,P (X =1)=C 13·0.6(1-0.6)2=0.288,P (X =2)=C 23·0.62(1-0.6)=0.432,P (X =3)=C 33·0.63=0.216.分布列为因为X ~B ,方差D (X )=3×0.6×(1-0.6)=0.72.21.解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功}.由题设知P (E )=23,P (E )=13,P (F )=35,P (F )=25,且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则H =E F ,于是P (H )=P (E )P (F )=13×25=215,故所求的概率为P (H )=1-P (H )=1-215=1315.(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.因P (X =0)=P (E F )=13×25=215,P (X =100)=P (E F )=13×35=315,P (X =120)=P (E F )=23×25=415,P (X =220)=P (EF )=23×35=615,故所求的分布列为数学期望为E (X )=0×215+100×315+120×415+220×615=300+480+1 32015=2 10015=140.22.解:记A i 表示事件:同一工作日乙、丙中恰有i 人需使用设备,i =0,1,2,B 表示事件:甲需使用设备,C 表示事件:丁需使用设备,D表示事件:同一工作日至少3人需使用设备.(1)D=A1·B·C+A2·B+A2·B·C.P(B)=0.6,P(C)=0.4,P(A i)=C i2×0.52,i=0,1,2,所以P(D)=P(A1·B·C+A2·B+A2·B·C)=P(A1·B·C)+P(A2·B)+P(A2·B·C)=P(A1)P(B)P(C)+P(A2)P(B)+P(A2)P(B)P(C)=0.31.(2)X的可能取值为0,1,2,3,4,其分布列为P(X=0)=P(B·A0·C)=P(B)P(A0)P(C)=(1-0.6)×0.52×(1-0.4)=0.06,P(X=1)=P(B·A0·C+B·A0·C+B·A1·C)=P(B)P(A0)P(C)+P(B)P(A0)P(C)+P(B)P(A1)P(C)=0.6×0.52×(1-0.4)+(1-0.6)×0.52×0.4+(1-0.6)×2×0.52×(1-0.4)=0.25,P(X=4)=P(A2·B·C)=P(A2)P(B)P(C)=0.52×0.6×0.4=0.06,P(X=3)=P(D)-P(X=4)=0.25,P(X=2)=1-P(X=0)-P(X=1)-P(X=3)-P(X=4)=1-0.06-0.25-0.25-0.06=0.38,数学期望E(X)=0×P(X=0)+1×P(X=1)+2×P(X=2)+3×P(X =3)+4×P(X=4)。

相关文档
最新文档