高中理科数学概率大题专项习题

合集下载

概率高考题(理科)

概率高考题(理科)

1某种有奖销售的饮料,瓶盖内印有“奖励一瓶”或“谢谢购买”字样,购买一瓶若购买了一瓶该饮料。

(Ⅰ)求甲中奖且乙、丙都没有中奖的概率; (Ⅱ)求中奖人数ξ的分布列及数学期望E ξ解:(Ⅰ)设甲、乙、丙中奖的事件分别为A 、B 、C ,那么答:甲中奖且乙、丙都没有中奖的概率是21625(Ⅱ)ξ的可能取值为0,1,2,3。

123P2如图,由M 到N 的电路中有4个元件,分别标为T 1,T 2,T 3,T 4,电流能通过T 1,T 2,T 3的概率都是p ,电流能通过T 4的概率是0.9.电流能否通过各元件相互独立.已知T 1,T 2,T 3中至少有一个能通过电流的概率为0.999.(Ⅰ)求p ;(Ⅱ)求电流能在M 与N 之间通过的概率;(Ⅲ)ξ表示T 1,T 2,T 3,T 4中能通过电流的元件个数,求ξ的期望. )解:记A 1表示事件,电流能通过.4,3,2,1,1=I T A 表示事件:321,,T T T 中至少有一个能通过电流, B 表示事件:电流能在M 与N 之间通过。

(I )321321,,,A A A A A A A ⋅⋅=相互独立,又,001.0999.01()1)(=-=-=P A P 故.9.0,001.0)1(2==-p p(III )由于电流能通过各元件的概率都是0.9,且电流能通过各元件相互独立。

故)9.0,4(~Bξ3设进入某商场的每一位顾客购买甲商品的概率0.5,购买乙商品的概率为0.6,且顾客购买甲商品与购买乙商品相互独立,每位顾客间购买商品也相互独立.(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;(Ⅱ)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(Ⅲ)设ξ是进入商场的3位顾客至少购买甲、乙商品中一种的人数,求ξ的分布列及期望.解:题目这么容易,估计今年的评分标准要偏严了.(Ⅰ)0.5(10.6)(10.5)0.6P=⨯-+-⨯0.20.30.5=+=(Ⅱ)1(10.5)(10.6)0.8P=---=(Ⅲ)ξ可取0,1,2,3.ξ的分布列为42000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。

2021高考数学理科概率大题专项练习(尖子生必做)(含离散型随机变量)

2021高考数学理科概率大题专项练习(尖子生必做)(含离散型随机变量)

1. (本小题满分13分,(1)(5分),(2)(8分))在甲、乙等个单位参加的一次“唱读讲传”演出活动中,每个单位的节目集中安排在一起,若采用抽签的方式随机确定各单位的演出顺序(序号为),求:(1)甲、乙两单位的演出序号至少有一个为奇数的概率;(2)甲、乙两单位之间的演出单位个数的分布列与期望。

2. (本题满分10分)某小区停车场的收费标准为:每车每次停车时间不超过小时免费,超过小时的部分每小时收费元(不足小时的部分按小时计算)。

现有甲乙两人独立来停车场停车(各停车一次),且两人停车时间均不超过小时。

设甲、乙两人停车时间(小时)与取车概率如表所示。

(1)求甲、乙两人所付车费相同的概率;(2)设甲、乙两人所付停车费之和为随机变量,求的分布列和数学期望。

3. 甲、乙两位同学参加诗词大会,设甲、乙两人每道题答对的概率分别为和。

假定甲、乙两位同学答题情况互不影响,且每人各次答题情况相互独立。

(1)用表示甲同学连续三次答题中答对的次数,求随机变量的分布列和数学期望。

(2)设为事件“甲、乙两人分别连续答题三次,甲同学答对的次数比乙同学答对的次数恰好多”,求事件发生的概率。

4. 从甲、乙两品种的棉花中各抽测了根棉花的纤维长度(单位:),得到如图的茎叶图,整数位为茎,小数位为叶,如的茎为,叶为。

(1)试比较甲、乙两种棉花的纤维长度的平均值的大小及方差的大小(只需写出估计的结论,不需说明理(2)将棉花按纤维长度的长短分成七个等级,分级标准如表:试分别估计甲、乙两种棉花纤维长度等级为二级的概率。

(3)为进一步检验甲种棉花的其它质量指标,现从甲种棉花中随机抽取根,记为抽取的棉花纤维长度为二级的根数,求的分布列和数学期望。

5. (本小题满分12分)某市,两所中学的学生组队参加辩论赛,中学推荐了名男生、名女生,中学推荐了名男生、名女生,两校所推荐的学生一起参加集训,由于集训后队员的水平相当,从参加集训的男生中随机抽取人,女生中随机抽取人组成代表队。

(word完整版)高中数学概率大题(经典二)

(word完整版)高中数学概率大题(经典二)

高中数学概率大题(经典二)一.解答题(共10小题)1 •某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同•假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p i,寿命为2年以上的概率为P2 •从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(I)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(n)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(川)当P1=0.8 , P2=0.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).2.已知盒中有10个灯泡,其中8个正品,2个次品.需要从中取出2个正品,每次取出1 个,取出后不放回,直到取出2个正品为止•设E为取出的次数,求E的分布列及E E.3•某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动,分别由李老师和张老师负责,已知该系共有n位学生,每次活动均需该系k位学生参加(n和k都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给该系k位学生,且所发信息都能收到,记该系收到李老师或张老师所发活动通知信息的学生人数为X.(I )求该系学生甲收到李老师或张老师所发活动通知信息的概率;(II )求使P (X=m取得最大值的整数m.4•在医学生物学试验中,经常以果蝇作为试验对象,一个关有6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出,再关闭小孔.以E表示笼内还剩下的果蝇的只数.(I)写出E的分布列(不要求写出计算过程)和数学期望E E;(n)求概率P (E》E E).5. A, B, C三个班共有100名学生,为调查他们的体育锻炼情况,通过分层抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时):A班 6 6.5 7 7.5 8B班 6 78910 11 12C班 3 4.5 67.5910.5 12 13.5(I)试估计C班的学生人数;(n)从A班和C班抽出的学生中,各随机选取一个人,A班选出的人记为甲,C班选出的人记为乙.假设所有学生的锻炼时间相对独立,求该周甲的锻炼时间比乙的锻炼时间长的概率;(川)再从A, B, C三班中各随机抽取一名学生,他们该周锻炼时间分别是7, 9, 8.25 (单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为卩1,表格中数据的平均数记为卩o,试判断卩0和卩1的大小.(结论不要求证明)6.某商场经销某商品,根据以往资料统计,顾客采用的付款期数E的分布列为12345P0.40.20.20.10.1商场经销一件该商品,采用1期付款, 其利润为200 元;分2期或3期付款,其利润为250元;分4期或5期付款,其利润为300元,n表示经销一件该商品的利润.(I)求事件A: “购买该商品的3位顾客中,至少有1位采用1期付款”的概率P (A);(n)求n 的分布列及期望 E 耳.7•甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活 动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得 1分;如果两人都没猜对,则“星队”得0 分.已知甲每轮猜对的概率是务乙每轮猜对的概率是卸每轮活动中甲、乙猜对与否互不影响•各轮结果亦互不影响•假设“星队”参加两轮活动, 求: (I ) “星队”至少猜对3个成语的概率;(II ) “星队”两轮得分之和为 X 的分布列和数学期望 EX &某小组共10人,利用假期参加义工活动,已知参加义工活动次数为 1, 2, 3的人数分别为3, 3, 4,现从这10人中随机选出2人作为该组代表参加座谈会.(1 )设A 为事件“选出的 2人参加义工活动次数之和为 4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量 X 的分布列和数学期望.9•购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险, 且各投保人是否出险相互独立•已知保险公司在一年度内至少支付赔偿金10 000元的概率、r104为 1 - 0.999 .(I)求一投保人在一年度内出险的概率p ;(n)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元) 10•某公司为了解用户对其产品的满意度,从 A , B 两地区分别随机调查了 20个用户,得到用户对产品的满意度评分如下: A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89 B 地区:73 83 62 51 91 46 53 73 64 8293 48 65 81 74 56 54 76 65 79(1 )根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度 评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级: 满意度评分 低于70分 70分到89分满意度等级不满意满意记事件C : “A 地区用户的满意度等级高于 B 地区用户的满意度等级” 价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的频率,求C 的概率.11.某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有 4个红球、6个白球的甲箱和装有 5个红球、5个白球的乙箱中,各随机摸出 1个球,在摸出 的2个球中,若都是红球,则获一等奖,若只有1个红球,则获二等奖;若没有红球,则不不低于90分 非常满意,假设两地区用户的评获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X求X的分布列和数学期望.12•端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个.(I)求三种粽子各取到1个的概率;(H)设X表示取到的豆沙粽个数,求X的分布列与数学期望.13. 为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加,现有来自甲协会的运动员3名,其中种子选手2名,乙协会的运动员5名,其中种子选手3名,从这8 名运动员中随机选择4人参加比赛.(I)设A为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”,求事件A发生的概率;(n)设X为选出的4人中种子选手的人数,求随机变量X的分布列和数学期望.14. 已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(I)求第一次检测出的是次品且第二次检测出的是正品的概率;(n)已知每检测一件产品需要费用100元,设X表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元) ,求X的分布列和均值(数学期望)15. 某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定,小王到银行取钱时,发现自己忘记了银行卡的密码,但是可以确定该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码次数为X,求X的分布列和数学期望.16. 若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137, 359, 567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次,得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分,若能被5整除,但不能被10整除,得-1分,若能被10整除,得1分.(I)写出所有个位数字是5的“三位递增数”;(n)若甲参加活动,求甲得分X的分布列和数学期望EX17. 设每个工作日甲,乙,丙,丁4人需使用某种设备的概率分别为0.6 , 0.5 , 0.5 , 0.4 ,各人是否需使用设备相互独立.(I)求同一工作日至少3人需使用设备的概率;(n)实验室计划购买k台设备供甲,乙,丙,丁使用,若要求“同一工作日需使用设备的人数大于k”的概率小于0.1,求k的最小值.18. 20名学生某次数学考试成绩(单位:分)的频率分布直方图如图:(I)求频率分布直方图中a的值;(n)分别求出成绩落在[50, 60)与[60 , 70)中的学生人数;(川)从成绩在[50 , 70)的学生任选2人,求此2人的成绩都在[60 , 70)中的概率._afra30 50 60 70 80 M 10019•某大学志愿者协会有6名男同学,4名女同学,在这10名同学中,3名同学来自数学学院,其余7名同学来自物理、化学等其他互不相同的七个学院,现从这10名同学中随机选取3名同学,到希望小学进行支教活动(每位同学被选到的可能性相同)(I)求选出的3名同学是来自互不相同学院的概率;(H)设X为选出的3名同学中女同学的人数,求随机变量X的分布列和数学期望.20. 一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示•将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(I)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(n)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E (X)及方差D (X ).参考答案与试题解析.解答题(共10小题)1. ( 2005?湖北)某会议室用5盏灯照明,每盏灯各使用灯泡一只,且型号相同•假定每盏灯能否正常照明只与灯泡的寿命有关,该型号的灯泡寿命为1年以上的概率为p i,寿命为2年以上的概率为P2.从使用之日起每满1年进行一次灯泡更换工作,只更换已坏的灯泡,平时不换.(I)在第一次灯泡更换工作中,求不需要换灯泡的概率和更换2只灯泡的概率;(n)在第二次灯泡更换工作中,对其中的某一盏灯来说,求该盏灯需要更换灯泡的概率;(川)当P1=O.8 , P2=O.3时,求在第二次灯泡更换工作,至少需要更换4只灯泡的概率(结果保留两个有效数字).【解答】解:因为该型号的灯泡寿命为1年以上的概率为P1,寿命为2年以上的概率为P2.所以寿命为1〜2年的概率应为P1 - P2.其分布列为:寿命0〜1 1〜2 2〜P 1 - P1 P1- P2 P2(I )一只灯泡需要不需要换,可以看做一个独立重复试验,根据公式得到在第一次更换灯泡工作中,不需要换灯泡的概率为P15,需要更换2只灯泡的概率为C2p;(1- P1)1(II )在第二次灯泡更换工作中,对其中的某一盏灯来说,该盏灯需要更换灯泡是两个独立事件的和事件:①在第1、2次都更换了灯泡的概率为(1 - pj 2;②在第一次未更换灯泡而在第二次需要更换灯泡的概率为P1 - P2.2故所求的概率为P3= ( 1 - P1)+P1 - P2.(III )由(II )当P1=0.8 , P2=0.3时,在第二次灯泡更换工作中,对其中的某一盏灯来说, 2该盏灯需要更换灯泡的概率P3= (1 - P1) +P1 ( P1 - P2)=0.54 .在第二次灯泡更换工作,至少换4只灯泡包括换5只和换4只两种情况:5 5①换5只的概率为P3 =0.54 =0.046 ;②换 4 只的概率为C51P34(1 - P3)=5X 0.54 4(1 - 0.54 ) =0.196 , 故至少换4只灯泡的概率为:P4=0.046+0.196=0.242 .即满两年至少需要换4只灯泡的概率为0.242 .2. ( 2004?安徽)已知盒中有 10个灯泡,其中8个正品,2个次品.需要从中取出 2个正 品,每次取出1个,取出后不放回,直到取出 2个正品为止.设E 为取出的次数,求E 的分布列及E E.【解答】 解:由题意知每次取 1件产品, •••至少需2次,即E 最小为2,有2件次品, 当前2次取得的都是次品时,E =4, • E 可以取2, 3, 4当变量是2时,表示第一次取出正品,第二次取出也是正品, 根据相互独立事件同时发生的概率公式得到E E =2X P (E =2) +3X P (E =3) +4X P (E =4) .3. (2013?安徽)某高校数学系计划在周六和周日各举行一次主题不同的心理测试活动, 分别由李老师和张老师负责,已知该系共有n 位学生,每次活动均需该系k 位学生参加(n 和k 都是固定的正整数),假设李老师和张老师分别将各自活动通知的信息独立、随机地发给 该系k 位学生,且所发信息都能收到, 记该系收到李老师或张老师所发活动通知信息的学生 人数为X . (I )求该系学生甲收到李老师或张老师所发活动通知信息的概率; (II )求使P (X=m 取得最大值的整数 m.【解答】解:(I )因为事件A : “学生甲收到李老师所发信息”与事件 B : “学生甲收到张老_1—I I —|J n — 1 Jr师所发信息”是相互独立事件,所以 ■-与「相互独立,由于 P (A ) =P ( B )= 丄,故P C k n f 1 1(鼻)=P 广)=1-二,L-l 2 2kn-因此学生甲收到活动信息的概率是1-( 1-半)2=——-—(II )当 k=n 时,m 只能取 n ,此时有 P (X=m ) =P (X=n ) =1当k v n 时,整数m 满足k < m < t ,其中t 是2k 和n 中的较小者,由于“李老师与张老师各 自独立、随机地发送活动信息给k 位”所包含的基本事件总数为()2,当X=m 时,同时P (E =2) P (E =3) =呂 X 7 = 1g =8 X Z >lolg 仁2 X 呂X 7. _14i 9 ■3=1- 45• E 的分布列如下:P (E =4)14. _ 145二;■-;收到两位老师所发信息的学生人数为2k- m,仅收到李老师或张老师转发信息的学生人数为m- k,由乘法原理知:事件{X=m}所包含的基本事件数为n K UK n K n JC2 因此 k w 2k -「< tn+2综上得,符合条件的 m=2k-[4. ( 2007?安徽)在医学生物学试验中,经常以果蝇作为试验对象,一个关有 6只果蝇的笼子里,不慎混入了两只苍蝇(此时笼内共有8只蝇子:6只果蝇和2只苍蝇),只好把笼子打开一个小孔,让蝇子一只一只地往外飞,直到两只苍蝇都飞出, 再关闭小孔•以E 表示笼内还剩下的果蝇的只数.(I )写出E 的分布列(不要求写出计算过程)和数学期望 E E;(H )求概率P (E 》E O .【解答】解:(I )由题意知以E 表示笼内还剩下的果蝇的只数,E 的可能取值是 0, 1, 2,3, 4, 5, 6 得到E 的分布列为:E 01 2 3 4 5 6P 16 54 3 2 1 28 282828 28 28 28•••数学期望为 E E =二(1X 6+2 X 5+3 X 4 ) =2. (II )所求的概率为P (E> E E ) =P (E> 2)丄卫-叭叶引f ]k _k|R, cc .止 ri-fckTY-(即P ( x=m=544+3+2+1 1528 ' _28当 k w m< t 时,P (X=M V P (X=M+1 ? 2(m — k+1) w (n — m (2k - m ) ? m w 2k -(k+1 】[ 假如k w 2k -k w 2k -(k 圮)‘ n+2(k+122n+2 < t 成立,则当(2k+1)能被n+2整除时,<2k+1 - (k+1 ) 1 n+22<t ,故 P(X=M 在 m=2k- n+2和 m=2k+1-(k+1 n+2 处达到最大值;2当(k+1) 2不能被n+2整除时,P (X=M )在m=2k- [ n+2 ]处达到最大值(注:[x ]表示不超过x 的最大整数), (k+1 ) 2n+2F 面证明k w 2k -因为1 w k < n ,所以2k -(k+1)' n+2k= kn- k 2 - 1- k 2- 1 k- 1------------ > ------------------ = ----n+2n+2n+2而 2k -— n+2n=一 n+2< 0,故 2k -@+l_)2n+2< n ,显然2k -31〕$n+2< 2k5. ( 2016?北京)A , B , C 三个班共有100名学生,为调查他们的体育锻炼情况,通过分层 抽样获得了部分学生一周的锻炼时间,数据如表(单位:小时) :A 班 6 6.5 7 7.5 8B 班 6 7 89 10 11 12C 班3 4.5 6 7.59 10.5 12 13.5(I )试估计C 班的学生人数;(n )从A 班和C 班抽出的学生中, 各随机选取一个人,A 班选出的人记为甲,C 班选出的人记为乙.假设所有学生的锻炼时间相对独立, 求该周甲的锻炼时间比乙的锻炼时间长的概率;(川)再从A , B, C 三班中各随机抽取一名学生,他们该周锻炼时间分别是 7, 9, 8.25 (单位:小时),这3个新数据与表格中的数据构成的新样本的平均数记为卩 1,表格中数据的平均数记为卩0,试判断卩0和卩1的大小.(结论不要求证明)【解答】 解:(I )由题意得:三个班共抽取 20个学生,其中C 班抽取8个,(n )从从A 班和C 班抽出的学生中,各随机选取一个人, 共有5 X 8=40种情况, 而且这些情况是等可能发生的, 当甲锻炼时间为 当甲锻炼时间为 当甲锻炼时间为 当甲锻炼时间为 当甲锻炼时间为故周甲的锻炼时间比乙的锻炼时间长的概率 P 二 ----- '~ 二-•(川)卩0>卩1.6. ( 2016?东城区模拟)某商场经销某商品,根据以往资料统计,顾客采用的付款期数E 的 分布列为E1 23 4 5P0.40.2 0.2 0.1 0.1商场经销一件该商品,采用1期付款,其利润为 200 元; 分2期或3期付款,其利润为250 元;分4期或5期付款,其利润为 300元,n 表示经销一件该商品的利润.(I )求事件A : “购买该商品的3位顾客中,至少有1位采用1期付款”的概率P (A ); (n )求n的分布列及期望 E n.【解答】 解:(I )由题意知购买该商品的 3位顾客中至少有1位采用1期付款的对立事件 是购买该商品的3位顾客中无人采用1期付款,设A 表示事件“购买该商品的 3位顾客中至少有1位采用1期付款”. 知、表示事件“购买该商品的 3位顾客中无人采用1期付款”P (A )=(1 - 0. 4)^0.216, .•匸丄丄F 「一c m 」.6时,甲的锻炼时间比乙的锻炼时间2种情况; 3种情况; 3种情况; 3种情况; 4种情况;40(n)根据顾客采用的付款期数E 的分布列对应于n 的可能取值为 得到变量对应的事件的概率P (n =200) =P (E =1) =0.4 ,P (n =250) =P (E =2) +P (E =3) =0.2+0.2=0.4 ,P (n =300) =1 - P (n =200)- P (n =250) =1 - 0.4 - 0.4=0.2 . •••n 的分布列为n200 250 300 P0.40.40.2• E n =200X 0.4+250 X 0.4+300 X 0.2=240 (元).7. ( 2016?山东)甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成 语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则 “星队” 得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是 亍,乙每轮猜对的概率是二;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参 加两轮活动,求:(I ) “星队”至少猜对3个成语的概率;(II ) “星队”两轮得分之和为 X 的分布列和数学期望 EX【解答】解:(I ) “星队”至少猜对 3个成语包含“甲猜对 1个,乙猜对2个”,“甲猜对2 个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率(X=6) 200 元,250 元,300 元.5 122 »(II ) “星队”两轮得分之和为 X 可能为:0P •討1-汁(£円和2 2 则P (x=0)=a ・弓~)・d -青) ・(i 违)■亍)■計a-P (X=1) =2X [ -1144 2 2P (X=2)43 J4 J 43 ;4」3 3、2 _ 3 . 2 4” 3-4)丐4 f-I)卸吩)2 243 -':-:-・ - i + ;■ --」 3 2 .八 _ 3(X=3) (X=4) =2X12=2X [60 144=144X 0346故X的分布列如下图所示:& (2016?天津)某小组共10人,利用假期参加义工活动, 已知参加义工活动次数为 1, 2,3的人数分别为3,3, 4,现从这10人中随机选出2人作为该组代表参加座谈会.(1 )设A 为事件“选出的 2人参加义工活动次数之和为 4”求事件A 发生的概率;(2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.【解答】 解:(1)从10人中选出2人的选法共有,■ . =45种,事件A :参加次数的和为 4,情况有:①1人参加1次,另1人参加3次,②2人都参加2 次;9. ( 2015?鄂州校级模拟)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得 10 000元的赔偿金•假定在一年度内有 10000人购买了这种保险,且各投保人是否出险相互独立•已知保险公司在一年度内至少支付104赔偿金10 000元的概率为1 - 0.999 .(I)求一投保人在一年度内出险的概率p ;P•••数学期望1 1025 12 60144 144 144 144 144144EX=O X ___ +1 x 144 10144 +2X 二=J_144'T共有•事件A 发生概率:P=—(n) X 的可能取值为0, 1,2102.=_ 3(X=0)• X 的分布列为:4 15• EX=0X+1 X +2 X ■=1.15_15 +4X —L +6 144 种,(x=1) (X=2)(n)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于o ,求每位投保人应交纳的最低保费(单位:元) 【解答】解:由题意知各投保人是否出险互相独立,且出险的概率都是 p ,记投保的10000人中出险的人数为E, 由题意知E 〜B (104, p ).(I)记A 表示事件:保险公司为该险种至少支付10000元赔偿金,则发生当且仅当E =0,「二-二「=1 - P (E =0) =1-( 1-p ) 104, 又 P (A ) =1 - 0.999 ,故 p=0.001 .(n)该险种总收入为 10000a 元,支出是赔偿金总额与成本的和.支出 10000 E +50000,盈利 n =10000a -( 10000 E +50000),盈利的期望为 E n =10000a - 10000E E- 50000,.4- 3 .由 E 〜B (10 , 10 )知, —3E E =10000X 10,44 4444― 34E n =10 a - 10 E E - 5X 10 =10 a - 10 x 10 x 10- 5x 10 .444E n> 0? 10 a - 10 x 10- 5x 10 >0? a - 10- 5>0? a > 15 (元). •••每位投保人应交纳的最低保费为15元.10. (2015?新课标II )某公司为了解用户对其产品的满意度,从 A, B 两地区分别随机调查了 20个用户,得到用户对产品的满意度评分如下: A 地区:62 73 81 92 95 85 74 64 53 7678 86 95 66 97 78 88 82 76 89B 地73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(1 )根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度 评分的平均值及分散程度(不要求计算出具体值,给出结论即可)(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级: 满意度评分 低于70分 70分到89分满意度等级不满意满意 记事件C : “A 地区用户的满意度等级高于 B 地区用户的满意度等级”价结果相互独立,根据所给数据,以事件发生的频率作为相应事件发生的频率,求C 的概率.不低于90分 非常满意,假设两地区用户的评【解答】解:(1)两地区用户满意度评分的茎叶图如下Aifi区B地区43513 4 66 4 26 2 4 5 56 S S 0 4 31 3 3 4 6 99 S 6 5 2 1S 1 2 37 S 5 29 1 3通过茎叶图可以看出,地区用户满意度评分比较集中,(2)记C Ai表示事件“ A地区用户满意度等级为满意或非常满意记C A2表示事件“ 记C Bi表示事件“ 记C B2表示事件“ 则C Ai与C Bi独立,则C=C AI C BI U C A2C B2,P (C) =P ( C AI C BI)+P (C A2C B2) =P ( C AI)P ( C BI)+P (C A2)P( C B2),11020"20820A地区用户满意评分的平均值高于B地区用户满意评分的平均值;A B地区用户满意度评分比较分散;A地区用户满意度等级为非常满意” B地区用户满意度等级为不满意”,B地区用户满意度等级为满意”,C A2与C B2独立,C B1与C B2互斥,。

高考理科数学概率题型归纳与练习(含答案)

高考理科数学概率题型归纳与练习(含答案)

专题三:高考理科数学概率与数学期望一.离散型随机变量的期望(均值)和方差若离散型随机变量X 的分布列或概率分布如下:X 1x 2x …n xP1p 2p …n p1. 其中,120,1,2,...,,...1i n p i n p p p ≥=+++=,则称1122...n n x p x p x p +++为随机变量X 的均值或X 的数学期望,记为()E X 或μ.数学期望 ()E X =1122...n n x p x p x p +++性质 (1)()E c c =;(2)()()E aX b aE X b +=+.(,,a b c 为常数)2. 2221122()()...()n n x p x p x p μμμ-+-++-,(其中120,1,2,...,,...1i n p i n p p p ≥=+++=)刻画了随机变量X 与其均值μ的平均偏离程度,我们将其称为离散型随机变量X 的方差,记为()D X 或2σ.方差2221122()()...()n n DX x p x p x p μμμ=-+-++-2.方差公式也可用公式22221()()ni i i D X x p EX EX μ==-=-∑计算.3.随机变量X 的方差也称为X 的概率分布的方差,X 的方差()D X 的算术平方根称为X的标准差,即()D X σ=.1.设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX 。

X -1 01 P95二.超几何分布对一般情形,一批产品共N 件,其中有M 件不合格品,随机取出的n 件产品中,X 012… lP0n M N MnNC C C - 11n M N MnNC C C -- 22n M N MnNC C C -- …l n l M N MnNC C C -- 其中min(,)l n M =一般地,若一个随机变量X 的分布列为()r n r M N MnNC C P X r C --==, 其中0r =,1,2,3,…,l ,min(,)l n M =,则称X 服从超几何分布,记为(,,)XH n M N ,并将()r n r M N MnNC C P X r C --==记为(;,,)H r n M N . 1.高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同.现一次从中摸出5个球,(1)若摸到4个红球1个白球的就中一等奖,求中一等奖的概率. (2)若至少摸到3个红球就中奖,求中奖的概率.X 0 1 2 3 4 5P258423751807523751855023751380023751700237514223751从而2584807585503800700425()012345 1.66672375123751237512375123751237513E X =⨯+⨯+⨯+⨯+⨯+⨯=≈ 答:X 的数学期望约为1.6667.说明:一般地,根据超几何分布的定义,可以得到0()r n r nM N Mnr Nr C C M E X n C N --===∑.2. 在10件产品中,有3件一等品,4件二等品,3件三等品。

高考理科概率大题

高考理科概率大题

高三数学总复习概率大题集锦1. 甲、乙二人用4张扑克牌(分别是红桃2,红桃3,红桃4,方片4)玩游戏,他们将扑克牌洗均匀后,背面朝上放在桌面上,甲先抽,乙后抽,抽出的牌不放回,各抽一张。

(1)设(i,j )分别表示甲、乙抽到的牌的数字,写出甲乙二人抽到的牌的所有情况; (2)若甲抽到红桃3,则乙抽出的牌面数字比3大的概率是多少?(3)甲乙约定:若甲抽到的牌的牌面数字比乙大,则甲胜,否则,则乙胜。

你认为此游戏是否公平,说明你的理由。

解:(1)甲乙二人抽到的牌的所有情况(方片4用4′表示)为(2,3)、(2,4)(2,4′)、(3,2)、(3,4)、(3,4′)、(4,2)、(4,3)、(4,4′)、(4,2′)、(4′,3)、(4′,4),共12种不同情况。

……4分(2)甲抽到3,乙抽到的牌只能是2,4,4。

因此乙抽到的牌的数字大3的概率为;32……………………8分 (3)由甲抽到的牌比乙大有(3,2)、(4,2)、(4,3)(4′,2)、(4′,3)共5种 ………………11分甲胜的概率p 1=125,乙获胜的概率为,1272=p ,127125<∴此游戏不公平………………………………12分2.甲、乙队进行篮球总决赛,比赛规则为:七场四胜制,即甲或乙队,谁先累计获胜四场比赛时,该队就是总决赛的冠军,若在每场比赛中,甲队获胜的概率均为0.6,每场比赛必须分出胜负,且每场比赛的胜或负不影响下一场比赛的胜或负. (1)求甲队在第五场比赛后获得冠军的概率; (2)求甲队获得冠军的概率; 解:(理)(1)设甲队在第五场比赛后获得冠军为事件M ,则第五场比赛甲队获胜,前四场比赛甲队获胜三场,依题意得20736.04.06.0)(434=⨯⨯=C M P .(2)设甲队获得冠军为事件E ,则E 包含第四、第五、第六、第七场获得冠军四种情况,且它们被彼此互斥.∴ 710208.04.06.04.06.04.06.06.0)(343624354344=⨯⨯+⨯⨯+⨯⨯+=C C C E P .3. 一个袋中装有大小相同的球10个,其中红球8个,黑球2个,现从袋中有放回地取球,每次随机取1个.求:(Ⅰ)连续取两次都是红球的概率;(Ⅱ)如果取出黑球,则取球终止,否则继续取球,直到取出黑球,求取球次数不超过3次的概率.解:(Ⅰ)连续取两次都是红球的概率4416;5525P =⨯=…………………… 6分 (Ⅱ)取到黑球时取球次数为1次,2次,3次的事件,分别记为A 、B 、C .1()5P A =, 414()5525P B =⨯=, 24116()()55125P C =⨯= 所以,取球次数不超过3次的概率是()()()()P A B C P A P B P C ++=++=15+425+16125=61125. 答:取球次数不超过3次的概率是61125.…………………………………………12分4.将一颗骰子先后抛掷2次,观察向上的点数,求: (1)两数之和为6的概率;(2)两数之积是6的倍数的概率;(3)以第一次向上的点数为横坐标x ,第二次向上的点数为纵坐标y 的点(x, y)在直线 x -y=3的下方区域的概率(1)两数之和为6的概率为365 (2)此问题中含有36个等可能基本事件,记“向上的两数之积是6的倍数”为事件A ,则由下面的列表可知,事件A 中含有其中的15个等可能基本事件, 所以P(A)=3615=125, 两数之积是6的倍数的概率为1256. 两个人射击,甲射击一次中靶概率是p 1,乙射击一次中靶概率是p 2,已知 1p 1 , 1p 2是方程x 2-5x + 6 = 0的根,若两人各射击5次,甲的方差是 54 .(1) 求 p 1、p 2的值;(2) 两人各射击2次,中靶至少3次就算完成目的,则完成目的的概率是多少?(3) 两人各射击一次,中靶至少一次就算完成目的,则完成目的的概率是多少?解析:(1) 由题意可知 ξ甲 ~ B(5, p 1),∴D ξ甲 = 5p 1 (1-p 1) = 54 ⇒ p 12-p 1 + 14=0 ⇒ p 1 = 12 .2分;又 1p 1 ·1p 2 = 6,∴ p 2 = 13. 3分(2) 两类情况:共击中3次概率C 22 ( 12 ) 2 ( 12 ) 0×C 12 ( 13 ) 1 ( 23 ) 1 + C 12 ( 12 ) 1 ( 12)1×C 22 ( 13 ) 2 ( 13 ) 0 = 16;共击中4次概率C 22 ( 12 ) 2 ( 12 ) 0×C 22 ( 13 ) 2 ( 23 ) 0 = 136 . 6分所求概率为 16 + 136 = 736. 8分(3) 设事件A, B 分别表示甲、乙能击中.∵ A, B 互相独立(9分),∴ P (⎺A ·⎺B ) = P (⎺A )P (⎺B ) = (1-P (A ) )(1-P (B ) ) = (1-p 1)(1-p 2) = 12×23= 13(11分),∴ 1-P (⎺A ·⎺B ) =23为所求概率. 12分 评析:这一类型的试题在连续几年的新课程卷都出现了,重点考查了分类讨论的数学思想,体现了《考试说明》所要求的创新意识和实践能力以及运用数学知识解决实际问题的能力.该题仍然是常规题,要求考生耐心细致,审题能力较强,并善于利用材料进行分析说明. 7. 有甲、乙两个篮球运动员,每人各投篮三次,甲三次投篮命中率均为53;乙第一次在距离8米处投篮命中率为43,若第一次投篮未中,则乙进行第二次投篮,但距离为12米,如果又未中,则乙进行第三次投篮,并且在投篮时距离为16米,乙若投中,则不再继续投篮,且知乙命中的概率与距离的平方成反比.(Ⅰ)求甲三次投篮命中次数ξ的期望与方差; (Ⅱ)求乙投篮命中的概率.解:(Ⅰ)甲三次投篮的命中次数ξ服从二项分布,即)53,3(~B ξ,…………2分则393,55E np ξ==⨯= ………………………………4分 32183.5525D npq ξ==⨯⨯=…………………………6分(Ⅱ) 记乙三次投篮依次为事件A 、B 、C ,设乙命中概率与距离的平方成反比的比例系数为a ,则由题意得23(),4884a P A a ==∴=……………………………………7分 21()123a P B ∴==…………………………8分 .16316)(2==a C P ……………………9分故乙投篮命中的概率为)()()()()()()()()(C P B P A P B P A P A P C B A P B A P A P P ⋅⋅+⋅+=++=.96831633241314143=⨯⨯+⨯+=………………………………12分 8. 某办公室有5位教师,只有3台电脑供他们使用,教师是否使用电脑是相互独立的。

高中概率问题练习题及讲解

高中概率问题练习题及讲解

高中概率问题练习题及讲解1. 掷骰子问题- 题目:一个均匀的六面骰子被掷两次,求两次掷出的点数之和为7的概率。

- 解析:首先确定所有可能的结果总数,即6*6=36种。

然后找出两次掷骰子点数和为7的组合,它们是(1,6)、(2,5)、(3,4)、(4,3)、(5,2)和(6,1),共6种。

因此,所求概率为6/36,简化后为1/6。

2. 抽卡片问题- 题目:从一副没有大小王的52张扑克牌中随机抽取一张,求抽到黑桃A的概率。

- 解析:一副标准扑克牌中有13张黑桃,其中只有1张是黑桃A。

因此,抽到黑桃A的概率为1/52。

3. 独立事件问题- 题目:如果一个事件A发生的概率是0.3,另一个事件B发生的概率是0.5,且A和B是相互独立的,求A和B同时发生的概率。

- 解析:独立事件同时发生的概率等于各自发生概率的乘积。

因此,A和B同时发生的概率为0.3*0.5=0.15。

4. 互斥事件问题- 题目:如果事件A和事件B是互斥的,且它们发生的概率分别为0.4和0.3,求至少有一个事件发生的概率。

- 解析:互斥事件至少有一个发生的概率等于它们各自发生概率的和,减去它们同时发生的概率(如果有的话)。

由于A和B互斥,它们不可能同时发生,所以同时发生的概率为0。

因此,至少有一个事件发生的概率为0.4+0.3=0.7。

5. 条件概率问题- 题目:已知事件A发生的概率为0.5,事件B在A发生条件下发生的概率为0.7,求事件B发生的概率。

- 解析:事件B发生的总概率等于事件A发生且B发生的概率加上事件A不发生且B发生的概率。

由于A和B在A发生条件下是相关的,我们只能计算A发生且B发生的概率,即0.5*0.7=0.35。

事件A不发生且B发生的概率需要额外信息才能计算。

6. 全概率公式问题- 题目:如果事件A1、A2、A3是两两互斥的事件,它们发生的概率分别为p1、p2、p3,且它们的并集概率为1,求事件B在这些条件下发生的概率,已知B在A1、A2、A3条件下发生的概率分别为p(B|A1)、p(B|A2)、p(B|A3)。

(word完整版)高考数学概率大题专项题型

(word完整版)高考数学概率大题专项题型

高考概率大题专项题型一.解答题1.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E(X).2.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.3.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.4.某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望.5.集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率;(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.6.某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元:方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款半价7折8折原价(Ⅰ)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;(Ⅱ)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?7.为丰富中学生的课余生活,增进中学生之间的交往与学习,某市甲乙两所中学举办一次中学生围棋擂台赛.比赛规则如下,双方各出3名队员并预先排定好出场顺序,双方的第一号选手首先对垒,双方的胜者留下进行下一局比赛,负者被淘汰出局,由第二号选手挑战上一局获胜的选手,依此类推,直到一方的队员全部被淘汰,另一方算获胜.假若双方队员的实力旗鼓相当(即取胜对手的概率彼此相等)(Ⅰ)在已知乙队先胜一局的情况下,求甲队获胜的概率.(Ⅱ)记双方结束比赛的局数为ξ,求ξ的分布列并求其数学期望Eξ.8.M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.另外只有成绩高于180分的男生才能担任“助理工作”.(Ⅰ)如果用分层抽样的方法从“甲部分”人选和“乙部分”人选中选取8人,再从这8人中选3人,那么至少有一人是“甲部门”人选的概率是多少?(Ⅱ)若从所有“甲部门”人选中随机选3人,用X表示所选人员中能担任“助理工作”的人数,写出X的分布列,并求出X的数学期望.9.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:测试指标[70,76)[76,82)[82,88)[88,94)[94,100]元件A81240328元件B71840296(Ⅰ)试分别估计元件A,元件B为正品的概率;(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.10.一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X 的分布列和数学期望.(以直方图中的频率作为概率)11.某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试.在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为;(1)求该小组中女生的人数;(2)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为,每个男生通过的概率均为;现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量ξ,求ξ的分布列和数学期望.12.某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:海洋学院医学院经济学院学院机械工程学院人数4646(Ⅰ)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一学院的概率;(Ⅱ)从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.13.甲、乙两名同学参加“汉字听写大赛”选拔测试,在相同测试条件下,两人5次测试的成绩(单位:分)如下表:第1次第2次第3次第4次第5次甲5855769288乙6582878595(Ⅰ)请画出甲、乙两人成绩的茎叶图.你认为选派谁参赛更好?说明理由(不用计算);(Ⅱ)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,设抽到的两个成绩中,90分以上的个数为X,求随机变量X的分布列和期望EX.14.某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为,,;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).(1)如果把10万元投资甲项目,用ξ表示投资收益(收益=回收资金﹣投资资金),求ξ的概率分布及Eξ;(2)若把10万元投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.15.袋中装有围棋黑色和白色棋子共7枚,从中任取2枚棋子都是白色的概率为.现有甲、乙两人从袋中轮流摸取一枚棋子.甲先摸,乙后取,然后甲再取,…,取后均不放回,直到有一人取到白棋即终止.每枚棋子在每一次被摸出的机会都是等可能的.用X表示取棋子终止时所需的取棋子的次数.(1)求随机变量X的概率分布列和数学期望E(X);(2)求甲取到白球的概率.16.小王为了锻炼身体,每天坚持“健步走”,并用计步器进行统计.小王最近8天“健步走”步数的频数分布直方图(如图)及相应的消耗能量数据表(如表).健步走步数(千卡)16171819480520消耗能量(卡路里)40044(Ⅰ)求小王这8天“健步走”步数的平均数;(Ⅱ)从步数为16千步,17千步,18千步的几天中任选2天,设小王这2天通过健步走消耗的“能量和”为X,求X的分布列.17.某校从参加某次数学能力测试的学生中中抽查36名学生,统计了他们的数学成绩(成绩均为整数且满分为120分),成绩的频率直方图如图所示,其中成绩分组间是:[80,90),[90,100),[100,110),[110,120](1)在这36名学生中随机抽取3名学生,求同时满足下列条件的概率:(1)有且仅有1名学生成绩不低于110分;(2)成绩在[90,100)内至多1名学生;(2)在成绩是[80,100)内的学生中随机选取3名学生进行诊断问卷,设成绩在[90,100)内的人数为随机变量X,求X的分布列及数学期望EX.18.一批产品需要进行质量检验,检验方案是:先从这批产品中任取5件作检验,这5件产品中优质品的件数记为n.如果n=3,再从这批产品中任取2件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;如果n=5,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为200元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为x(单位:元),求x的分布列.概率大题专项题型参考答案一.解答题1.某年级星期一至星期五每天下午排3节课,每天下午随机选择1节作为综合实践课(上午不排该课程),张老师与王老师分别任教甲、乙两个班的综合实践课程.(1)求这两个班“在星期一不同时上综合实践课”的概率;(2)设这两个班“在一周中同时上综合实践课的节数”为X,求X的概率分布表与数学期望E(X).【解答】解:(1)这两个班“在星期一不同时上综合实践课”的概率为.…(4分)(2)由题意得,.…(6分)所以X的概率分布表为:X012345P…(8分)所以,X的数学期望为.…(10分)2.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语,在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一个人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是,乙每轮猜对的概率是;每轮活动中甲、乙猜对与否互不影响.各轮结果亦互不影响.假设“星队”参加两轮活动,求:(I)“星队”至少猜对3个成语的概率;(II)“星队”两轮得分之和为X的分布列和数学期望EX.【解答】解:(I)“星队”至少猜对3个成语包含“甲猜对1个,乙猜对2个”,“甲猜对2个,乙猜对1个”,“甲猜对2个,乙猜对2个”三个基本事件,故概率P=++=++=,(II)“星队”两轮得分之和为X可能为:0,1,2,3,4,6,则P(X=0)==,P(X=1)=2×[+]=,P(X=2)=+++=,P(X=3)=2×=,P(X=4)=2×[+]=P(X=6)==故X的分布列如下图所示:X012346P∴数学期望E(X)=0×+1×+2×+3×+4×+6×==3.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;(2)设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.【解答】解:(1)从10人中选出2人的选法共有=45种,事件A:参加次数的和为4,情况有:①1人参加1次,另1人参加3次,②2人都参加2次;共有+=15种,∴事件A发生概率:P==.(Ⅱ)X的可能取值为0,1,2.P(X=0)==P(X=1)==,P(X=2)==,∴X的分布列为:X012P∴EX=0×+1×+2×=1.4.某商场一号电梯从1层出发后可以在2、3、4层停靠.已知该电梯在1层载有4位乘客,假设每位乘客在2、3、4层下电梯是等可能的.(Ⅰ)求这4位乘客中至少有一名乘客在第2层下电梯的概率;(Ⅱ)用X表示4名乘客在第4层下电梯的人数,求X的分布列和数学期望.【解答】解:(Ⅰ)设4位乘客中至少有一名乘客在第2层下电梯的事件为A,…(1分)由题意可得每位乘客在第2层下电梯的概率都是,…(3分)则.…(6分)(Ⅱ)X的可能取值为0,1,2,3,4,…(7分)由题意可得每个人在第4层下电梯的概率均为,且每个人下电梯互不影响,所以,.…(9分)X01234P…(11分).…(13分)5.集成电路E由3个不同的电子元件组成,现由于元件老化,三个电子元件能正常工作的概率分别降为,,,且每个电子元件能否正常工作相互独立,若三个电子元件中至少有2个正常工作,则E能正常工作,否则就需要维修,且维修集成电路E所需费用为100元.(Ⅰ)求集成电路E需要维修的概率;(Ⅱ)若某电子设备共由2个集成电路E组成,设X为该电子设备需要维修集成电路所需的费用,求X的分布列和期望.【解答】解:(Ⅰ)三个电子元件能正常工作分别记为事件A,B,C,则P(A)=,P(B)=,P(C)=.依题意,集成电路E需要维修有两种情形:①3个元件都不能正常工作,概率为P1=P()=P()P()P()=××=.②3个元件中的2个不能正常工作,概率为P2=P(A)+P(B)+P(C)=++×=.所以,集成电路E需要维修的概率为P1+P2=+=.(Ⅱ)设ξ为维修集成电路的个数,则ξ服从B(2,),而X=100ξ,P(X=100ξ)=P(ξ=k)=••,k=0,1,2.X的分布列为:X0100200P∴EX=0×+100×+200×=.6.某商场举行优惠促销活动,顾客仅可以从以下两种优惠方案中选择一种,方案一:每满200元减50元:方案二:每满200元可抽奖一次.具体规则是依次从装有3个红球、1个白球的甲箱,装有2个红球、2个白球的乙箱,以及装有1个红球、3个白球的丙箱中各随机摸出1个球,所得结果和享受的优惠如下表:(注:所有小球仅颜色有区别)红球个数3210实际付款半价7折8折原价(Ⅰ)若两个顾客都选择方案二,各抽奖一次,求至少一个人获得半价优惠的概率;(Ⅱ)若某顾客购物金额为320元,用所学概率知识比较哪一种方案更划算?【解答】解:(Ⅰ)记顾客获得半价优惠为事件A,则P(A)==,两个顾客至少一个人获得半价优惠的概率:P=1﹣P()P()=1﹣(1﹣)2=.…(5分)(Ⅱ)若选择方案一,则付款金额为320﹣50=270元.若选择方案二,记付款金额为X元,则X可取160,224,256,320.P(X=160)=,P(X=224)==,P(X=256)==,P(X=320)==,则E(X)=160×+224×+256×+320×=240.∵270>240,∴第二种方案比较划算.…(12分)7.为丰富中学生的课余生活,增进中学生之间的交往与学习,某市甲乙两所中学举办一次中学生围棋擂台赛.比赛规则如下,双方各出3名队员并预先排定好出场顺序,双方的第一号选手首先对垒,双方的胜者留下进行下一局比赛,负者被淘汰出局,由第二号选手挑战上一局获胜的选手,依此类推,直到一方的队员全部被淘汰,另一方算获胜.假若双方队员的实力旗鼓相当(即取胜对手的概率彼此相等)(Ⅰ)在已知乙队先胜一局的情况下,求甲队获胜的概率.(Ⅱ)记双方结束比赛的局数为ξ,求ξ的分布列并求其数学期望Eξ.【解答】解:(Ⅰ)在已知乙队先胜一局的情况下,相当于乙校还有3名选手,而甲校还剩2名选手,甲校要想取胜,需要连胜3场,或者比赛四场要胜三场,且最后一场获胜,所以甲校获胜的概率是(Ⅱ)记双方结束比赛的局数为ξ,则ξ=3,4,5所以ξ的分布列为ξ345P数学期望.8.M公司从某大学招收毕业生,经过综合测试,录用了14名男生和6名女生,这20名毕业生的测试成绩如茎叶图所示(单位:分),公司规定:成绩在180分以上者到“甲部门”工作;180分以下者到“乙部门”工作.另外只有成绩高于180分的男生才能担任“助理工作”.(Ⅰ)如果用分层抽样的方法从“甲部分”人选和“乙部分”人选中选取8人,再从这8人中选3人,那么至少有一人是“甲部门”人选的概率是多少?(Ⅱ)若从所有“甲部门”人选中随机选3人,用X表示所选人员中能担任“助理工作”的人数,写出X的分布列,并求出X的数学期望.【解答】解:(I)用分层抽样的方法,每个人被抽中的概率为=,根据茎叶图,有“甲部门”人选10人,“乙部门”人选10人,所以选中的“甲部门”人选有10×=4人,“乙部门”人选有10×=4人,用事件A表示“至少有一名甲部门人被选中”,则它的对立事件表示“没有一名甲部门人被选中”,则P(A)=1﹣P()=1﹣=1﹣=.因此,至少有一人是“甲部门”人选的概率是;(Ⅱ)依据题意,所选毕业生中能担任“助理工作”的人数X的取值分别为0,1,2,3,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.因此,X的分布列如下:所以X的数学期望EX=0×+1×+2×+3×=.9.生产A,B两种元件,其质量按测试指标划分为:指标大于或等于82为正品,小于82为次品.现随机抽取这两种元件各100件进行检测,检测结果统计如下:测试指标[70,76)[76,82)[82,88)[88,94)[94,100]元件A81240328元件B71840296(Ⅰ)试分别估计元件A,元件B为正品的概率;(Ⅱ)生产一件元件A,若是正品可盈利40元,若是次品则亏损5元;生产一件元件B,若是正品可盈利50元,若是次品则亏损10元.在(Ⅰ)的前提下,(ⅰ)记X为生产1件元件A和1件元件B所得的总利润,求随机变量X的分布列和数学期望;(ⅱ)求生产5件元件B所获得的利润不少于140元的概率.【解答】解:(Ⅰ)元件A为正品的概率约为.元件B为正品的概率约为.(Ⅱ)(ⅰ)∵生产1件元件A和1件元件B可以分为以下四种情况:两件正品,A次B正,A正B次,A次B次.∴随机变量X的所有取值为90,45,30,﹣15.∵P(X=90)==;P(X=45)==;P(X=30)==;P(X=﹣15)==.∴随机变量X的分布列为:EX=.(ⅱ)设生产的5件元件B中正品有n件,则次品有5﹣n件.依题意得50n﹣10(5﹣n)≥140,解得.所以n=4或n=5.设“生产5件元件B所获得的利润不少于140元”为事件A,则P(A)==.10.一个盒子中装有大量形状大小一样但重量不尽相同的小球,从中随机抽取50个作为样本,称出它们的重量(单位:克),重量分组区间为[5,15],(15,25],(25,35],(35,45],由此得到样本的重量频率分布直方图(如图),(1)求a的值,并根据样本数据,试估计盒子中小球重量的众数与平均值;(2)从盒子中随机抽取3个小球,其中重量在[5,15]内的小球个数为X,求X 的分布列和数学期望.(以直方图中的频率作为概率)【解答】解:(1)由题意得,(0.02+0.032+a+0.018)×10=1解得a=0.03;又由最高矩形中点的横坐标为20,可估计盒子中小球重量的众数约为20,而50个样本小球重量的平均值为:=0.2×10+0.32×20+0.3×30+0.18×40=24.6(克)故估计盒子中小球重量的平均值约为24.6克.(2)利用样本估计总体,该盒子中小球的重量在[5,15]内的0.2;则X~B(3,),X=0,1,2,3;P(X=0)=×()3=;P(X=1)=×()2×=;P(X=2)=×()×()2=;P(X=3)=×()3=,∴X的分布列为:X0123P即E(X)=0×=.11.某企业准备招聘一批大学生到本单位就业,但在签约前要对他们的某项专业技能进行测试.在待测试的某一个小组中有男、女生共10人(其中女生人数多于男生人数),如果从中随机选2人参加测试,其中恰为一男一女的概率为;(1)求该小组中女生的人数;(2)假设此项专业技能测试对该小组的学生而言,每个女生通过的概率均为,每个男生通过的概率均为;现对该小组中男生甲、男生乙和女生丙3个人进行测试,记这3人中通过测试的人数为随机变量ξ,求ξ的分布列和数学期望.【解答】解:(1)设该小组中有n 个女生,根据题意,得解得n=6,n=4(舍去),∴该小组中有6个女生;(2)由题意,ξ的取值为0,1,2,3;P(ξ=0)=P(ξ=1)=P(ξ=3)=P(ξ=2)=1﹣∴ξ的分布列为:ξ0123P∴Eξ=1×12.某大学准备在开学时举行一次大学一年级学生座谈会,拟邀请20名来自本校机械工程学院、海洋学院、医学院、经济学院的学生参加,各学院邀请的学生数如下表所示:学院机械工程学海洋学院医学院经济学院院人数4646(Ⅰ)从这20名学生中随机选出3名学生发言,求这3名学生中任意两个均不属于同一学院的概率;(Ⅱ)从这20名学生中随机选出3名学生发言,设来自医学院的学生数为ξ,求随机变量ξ的概率分布列和数学期望.【解答】解:(Ⅰ)从20名学生随机选出3名的方法数为,选出3人中任意两个均不属于同一学院的方法数为:所以(Ⅱ)ξ可能的取值为0,1,2,3,,所以ξ的分布列为0123P所以13.甲、乙两名同学参加“汉字听写大赛”选拔测试,在相同测试条件下,两人5次测试的成绩(单位:分)如下表:第1次第2次第3次第4次第5次甲5855769288乙6582878595(Ⅰ)请画出甲、乙两人成绩的茎叶图.你认为选派谁参赛更好?说明理由(不用计算);(Ⅱ)若从甲、乙两人5次的成绩中各随机抽取一个成绩进行分析,设抽到的两个成绩中,90分以上的个数为X,求随机变量X的分布列和期望EX.【解答】解:(Ⅰ)茎叶图如图所示,由图可知,乙的平均成绩大于甲的平均成绩,且乙的方差小于甲的方差,因此应选派乙参赛更好.(Ⅱ)随机变量X的所有可能取值为0,1,2.,,,随机变量X的分布列是:X012P.14.某公司有10万元资金用于投资,如果投资甲项目,根据市场分析知道:一年后可能获利10%,可能损失10%,可能不赔不赚,这三种情况发生的概率分别为,,;如果投资乙项目,一年后可能获利20%,也可能损失20%,这两种情况发生的概率分别为α和β(α+β=1).(1)如果把10万元投资甲项目,用ξ表示投资收益(收益=回收资金﹣投资资金),求ξ的概率分布及Eξ;(2)若把10万元投资乙项目的平均收益不低于投资甲项目的平均收益,求α的取值范围.【解答】解:(1)依题意,ξ的可能取值为1,0,﹣1,P(ξ=1)=,P(ξ=0)=,P(ξ=﹣1)=,∴ξ的分布列为:ξ10﹣1pEξ=﹣=.…(6分)(2)设η表示10万元投资乙项目的收益,则η的可能取值为2,﹣2,P(η=2)=α,P(η=﹣2)=β,η的分布列为η2﹣2pαβ∴Eη=2α﹣2β=4α﹣2,∵把10万元投资乙项目的平均收益不低于投资甲项目的平均收益,∴4α﹣2≥,解得.…(12分)15.袋中装有围棋黑色和白色棋子共7枚,从中任取2枚棋子都是白色的概率为.现有甲、乙两人从袋中轮流摸取一枚棋子.甲先摸,乙后取,然后甲再取,…,取后均不放回,直到有一人取到白棋即终止.每枚棋子在每一次被摸出的机会都是等可能的.用X表示取棋子终止时所需的取棋子的次数.(1)求随机变量X的概率分布列和数学期望E(X);(2)求甲取到白球的概率.【解答】解:设袋中白球共有x个,则依题意知:=,即=,即x2﹣x﹣6=0,解之得x=3,(x=﹣2舍去).…(1分)(1)袋中的7枚棋子3白4黑,随机变量X的所有可能取值是1,2,3,4,5.P(x=1)==,P(x=2)==,P(x=3)==,P(x=4)==,P(x=5)==,…(5分)(注:此段(4分)的分配是每错1个扣(1分),错到4个即不得分.)随机变量X的概率分布列为:X12345P所以E(X)=1×+2×+3×+4×+5×=2.…(6分)(2)记事件A=“甲取到白球”,则事件A包括以下三个互斥事件:A1=“甲第1次取球时取出白球”;A2=“甲第2次取球时取出白球”;A3=“甲第3次取球时取出白球”.依题意知:P(A1)==,P(A2)==,P(A3)==,…(9分)(注:此段(3分)的分配是每错1个扣(1分),错到3个即不得分.)所以,甲取到白球的概率为P(A)=P(A1)+P(A2)+P(A3)=…(10分)16.小王为了锻炼身体,每天坚持“健步走”,并用计步器进行统计.小王最近8天“健步走”步数的频数分布直方图(如图)及相应的消耗能量数据表(如表).健步走步数(千卡)16171819480520消耗能量(卡路里)40044(Ⅰ)求小王这8天“健步走”步数的平均数;(Ⅱ)从步数为16千步,17千步,18千步的几天中任选2天,设小王这2天通过健步走消耗的“能量和”为X,求X的分布列.【解答】(本小题满分13分)解:(I)小王这8天“健步走”步数的平均数为:(千步).…..(4分)(II)X的各种取值可能为800,840,880,920.,,,,X的分布列为:X800840880920P…..(13分)17.某校从参加某次数学能力测试的学生中中抽查36名学生,统计了他们的数学成绩(成绩均为整数且满分为120分),成绩的频率直方图如图所示,其中成绩分组间是:[80,90),[90,100),[100,110),[110,120](1)在这36名学生中随机抽取3名学生,求同时满足下列条件的概率:(1)有且仅有1名学生成绩不低于110分;(2)成绩在[90,100)内至多1名学生;(2)在成绩是[80,100)内的学生中随机选取3名学生进行诊断问卷,设成绩在[90,100)内的人数为随机变量X,求X的分布列及数学期望EX.【解答】解:(1)由频率分布直方图,得;10a=1﹣(++)×10=,解得a=;∴成绩在[80,90)分的学生有36××10=3人,成绩在[90,100)分的学生有36××10=6人,成绩在[100,110)分的学生有36××10=18人,成绩在[110,120)分的学生有36××10=9人;记事件A为“抽取3名学生中同时满足条件①②的事件”,包括事件A1=“抽取3名学生中,1人成绩不低于110分,0人在[90,100)分之间”,事件A2=“抽取3名学生中,1人成绩不低于110分,1人在[90,100)分之间”,且A1、A2是互斥事件;∴P(A)=P(A1+A2)=P(A1)+P(A2)=+=+=;(2)随机变量X的可能取值为0,1,2,3;∴P(X=0)==,p(X=1)==,P(X=2)==,P(X=3)==;∴X的分布列为X0123P数学期望为EX=0×+1×+2×+3×=2.18.一批产品需要进行质量检验,检验方案是:先从这批产品中任取5件作检验,这5件产品中优质品的件数记为n.如果n=3,再从这批产品中任取2件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;如果n=5,则这批产品通过检验;其他情况下,这批产品都不能通过检验.假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立.(1)求这批产品通过检验的概率;(2)已知每件产品检验费用为200元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为x(单位:元),求x的分布列.【解答】解:(1)由题意知:第一次取5件产品中,恰好有k件优质品的概率为:P(k)=,k=0,1,2,3,4,5,∴这批产品通过检验的概率:p==+5×+()5=.(2)由题意得X的可能取值为1000,1200,1400,P(X=1000)=()5=,P(X=1200)==,P(X=1400)=++=,X的分布列为:。

高考理科数学概率题型归纳与练习含答案(供参考)

高考理科数学概率题型归纳与练习含答案(供参考)

专题三:高考理科数学概率与数学期望一.离散型随机变量的期望(均值)和方差1. 其中,120,1,2,...,,...1i n p i n p p p ≥=+++=,则称1122...n n x p x p x p +++为随机变量X 的均值或X 的数学期望,记为()E X 或μ.数学期望 ()E X =1122...n n x p x p x p +++性质 (1)()E c c =;(2)()()E aX b aE X b +=+.(,,a b c 为常数)2. 2221122()()...()n n x p x p x p μμμ-+-++-,(其中120,1,2,...,,...1i n p i n p p p ≥=+++=)刻画了随机变量X 与其均值μ的平均偏离程度,我们将其称为离散型随机变量X 的方差,记为()D X 或2σ.方差2221122()()...()n n DX x p x p x p μμμ=-+-++-2.方差公式也可用公式22221()()ni i i D X x p EX EX μ==-=-∑计算.3.随机变量X 的方差也称为X 的概率分布的方差,X 的方差()D X 的算术平方根称为X的标准差,即σ1.设X 是一个离散型随机变量,其分布列如下表,试求EX ,DX 。

对一般情形,一批产品共N 件,其中有M 件不合格品,随机取出的n 件产品中,其中min(,)l n M =一般地,若一个随机变量X 的分布列为()r n r M N MnNC C P X r C --==, 其中0r =,1,2,3,…,l ,min(,)l n M =,则称X 服从超几何分布,记为(,,)XH n M N ,并将()r n r M N MnNC C P X r C --==记为(;,,)H r n M N . 1.高三(1)班的联欢会上设计了一项游戏:在一个口袋中装有10个红球,20个白球,这些球除颜色外完全相同.现一次从中摸出5个球,(1)若摸到4个红球1个白球的就中一等奖,求中一等奖的概率. (2)若至少摸到3个红球就中奖,求中奖的概率.X 0 1 2 3 4 5P从而2584807585503800700425()012345 1.66672375123751237512375123751237513E X =⨯+⨯+⨯+⨯+⨯+⨯=≈ 答:X 的数学期望约为1.6667.说明:一般地,根据超几何分布的定义,可以得到0()r n r nM N Mnr Nr C C M E X n C N --===∑. 2. 在10件产品中,有3件一等品,4件二等品,3件三等品。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1、如图,A、B两点之间有6条网线连接,它们能通过的最大信息量分别为1,1,2,2,3,4.从中任取三条线且使每条网线通过最大信息量,设这三条网线通过的最大信息量之和为ζ。

(1)当ζ≥6时,则保证线路信息畅通,求线路信息畅通的概率;
(2)求ζ的分布列和数学期望。

2、某企业生产的一批产品中有一、二、三等品及次品共四个等级,1件不同等级产品的利润(单位:元)如表1,从这批产品中随机抽取1件产品,该件产品为不同等级的概率如表2。

若从这批产品中随机抽取出1件产品的平均利润(即数学期望)为元。

(1)求a,b的值;
(2)从这批产品中随机取出3件产品,求这3件产品的总利润不低于17元的概率。

m)表示每立方米空气中可入肺颗粒物的含量,这个值
3、空气质量指数(单位:μg/3
越高,就代表空气污染越严重。

某市2012年3月9日~4月7日(30天)对空气质量指数进行检测,获得数据后得到如下条形图:
(1)估计该城市一个月内空气质量类别为良的概率;
(2)在上述30个监测数据中任取2个,设X为空气质量类别为优的天数,求X的分布列。

4、某班50位学生期中考试数学成绩的频率分布直方图如图4所示,其中成绩分组区间是:
[)[)[)[)[)[]
40,50,50,60,60,70,70,80,80,90,90,100。

(1)求图中x的值;
(2)从成绩不低于80分的学生中随机选取2人,该
2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的
数学期望。

5、某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的40件
产品作为样本称出它们的重量(单位:克),重量的分组区间为(490,495],(495,500],……,
(510,515],由此得到样本的频率分布直方图,如图4
(1)根据频率分布直方图,求重量超过505克的产品数量,
(2)在上述抽取的40件产品中任取2件,设Y为重量超过505克的产品数量,求Y的分布列;
(3)从该流水线上任取5件产品,求恰有2件产品的重量超过505克的概率。

p与运动员离飞碟的
6、一射击运动员进行飞碟射击训练, 每一次射击命中飞碟的概率
距离s (米)成反比, 每一个飞碟飞出后离运动员的距离s (米)与飞行时间t(秒)满足()()
=+≤≤
s t t
15104
, 每个飞碟允许该运动员射击两次(若第一次射击命中,则不再进行第二次射击).该运动员在每一个飞碟飞出秒时进行第一次射击, 命中的概率为, 当第一次射击没有命中飞碟, 则在第一次射击后秒进行第二次射击,子弹的飞行时间忽略不计.
(1) 在第一个飞碟的射击训练时, 若该运动员第一次射击没有命中, 求他第二次射击命中飞碟的概率;
(2) 求第一个飞碟被该运动员命中的概率;
(3) 若该运动员进行三个飞碟的射击训练(每个飞碟是否被命中互不影响), 求他至少命中两个飞碟的概率.
7、为了解某班学生喜爱打篮球是否与性别有关,对本班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球
不喜爱打篮

合计
男生 5 女生 10 合计
50 已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为
5
3. (1)请将上面的列联表补充完整(不用写计算过程);
(2)能否在犯错误的概率不超过的前提下认为喜爱打篮球与性别有关说明你的理由; (3)现从女生中抽取2人进一步调查,设其中喜爱打篮球的女生人数为ξ,求ξ的分布列与期望.
下面的临界值表供参考:
P (K 2
≥k)
k
1、(本小小题主要考查古典概型、离散型随机变量的分布列与数学期望等知识,考查或然与必
然的数学思想方法,以及数据处理能力、运算求解能力和应用意识)
(I)解:从6条网线中随机任取三条网线共有203
6=C 种情况. ……………1分
,6321411=++=++
⋅=+==∴4
1
1)6(361
212C C C P ξ ……………2分 ,7322421=++=++
4
1
1)7(3
61
212=+==∴C C C P ξ ……………3分 ,8422431=++=++
20
3
1)8(3
612=+==∴C C P ξ ……………4分 ,9432=++
⋅===∴10
1
)9(3612C C P ξ …………5分
)
9()8()7()6()6(=+=+=+==≥∴ξξξξξP p P P P
⋅=+++=
4
31012034141
答:线路信息畅通的概率为
4
3
……………6分 (2)解:ξ的取值为4,5,6,7,8,9. ……………7分
,4211=++
⋅===∴10
1
)4(3612C C p ξ ……………
8分,5221311=++=++
⋅=+==∴20
3
1)5(3
61
2C C P ξ ……………9分
∴ξ的的分布列为:
……………10分
4
1741620351014+⨯+⨯+⨯+⨯
=∴ξE ……………11分
.5.6= ……………12分
2、(1)解:设1件产品的利润为随机变量ξ,依题意得ξ的分布列为:

60.6540.1 4.9E a b ξ=⨯++⨯-=,即50.9a b -=. …… 3分
∵ 0.60.20.11a b ++++=, 即0.3a b +=, …… 4分
解得0.2,0.1a b ==.
∴0.2,0.1a b == . …… 6分
(2)解:为了使所取出的3件产品的总利润不低于17元,则这3件产品可以有两种取法:3件都
是一等品或2件一等品,1件二等品. (8)
6
4 1
-
0.6
0.1b

故所求的概率P =3
0.6+C 2230.60.2⨯⨯
0.432=. ……
12分
3、(Ⅰ)由条形统计图可知,空气质量类别为良的天数为16天, 所以此次监测结果中空气质量类别为良的概率为 168
3015
=.…………………4分 (Ⅱ)随机变量X 的可能取值为0,1,2,则
()2
222302310435C P X C ===,()118222301761435C C P X C ===,()282
3028
2435
C P X C === 所以X 的分布列为:
X 0 1 2 P
231
435 176
435 28435
4、(1)由题意:(0.0540.010.0063)101x ++⨯+⨯=,解得0.018x =; (2)80~90分有500.018109⨯⨯=人;90~100分有500.006103⨯⨯=人。

ξ所有可能的取值为0, 1, 2
211
299332221212121291
(0); (1); (0)222222
C C C C P P P C C C ξξξ=========
故 129101222222
212E ξ=⨯+⨯+⨯=。

5解:(1)重量超过505克的产品数量是:.123.040)501.0505.0(40=⨯=⨯+⨯⨯ (2)Y 的分布列为:
(3)设所取的5件产品中,重量超过505克的产品件数为随机变量Y ,则Y
)103
,
5(B ,从而10000
3087)107()103()2(3225===C Y P 即恰有2件产品的重量超过505克的概率为100003087
……12分
6、(1)解:依题意设(k
p k s
=为常数),由于()()15104s t t =+≤≤, ∴ ()
()04151k
p t t =≤≤+. (2)

当0.5t =时, 14
5
p =
, 则()45150.51k =⨯+,解得18k =.
∴()()
()186
0415151p t t t ==≤≤++. (4)

当1t =时, 263525
p =
=⨯. ∴该运动员第二次射击命中飞碟的概率为3
5
. …6分
(2) 解:设“该运动员第一次射击命中飞碟”为事件A ,“该运动员第二次射击命中飞碟”为事
件B ,则“第一个飞碟被该运动员命中”为事件:A AB +. …7分
∵()()43,55
P A P B =
=, ∴()()()
()P A AB P A P A P B +=+ 44323
155525
⎛⎫=+-⨯= ⎪⎝⎭. ∴
















23
25
. …10分 (3) 解:设该运动员进行三个飞碟的射击训练时命中飞碟的个数为ξ, 则
23325B ,ξ
⎛⎫ ⎪⎝⎭
.













()()23P P P ξξ==+= …12分
=C ()22
31p p -+ C 333
p
7、。

相关文档
最新文档