第二章各向异性材料的应力应变关系
弹性力学:04 应力和应变的关系

广义胡克定律
杨氏模量
单向应力状态时的胡克定律是
x E x
式中 E 称为弹性模量。对于一种材 料在一定温度下,E 是常数。
Chapter 5.1
广义胡克定律
泊松比
在单向拉伸时,在垂直于力作用线的方向发生收缩。
在弹性极限内,横向相对缩短 x 和纵向相对伸长 y
成正比,因缩短与伸长的符号相反,有:
ν
x y
Chapter 5.1
广义胡克定律
根据实验可知,xy只引起 xy 坐标面内的剪应变xy,
而不引起 xz、yz,于是可得
xy
xy
G
同理
yz
yz
G
zx
zx
G
Chapter 5.1
广义胡克定律
于是,得到各向同性材料的应变-应y
1 E
y
ν x
z
z
ij
1 2
ui, j u j.i
协调条件:
ij,kl kl,ij ik , jl jl,ik 0
对于一个假定位移场ui ,其相应的协调应变分量ij 可直接由应
变-位移关系得到。显然,这组协调的应变和位移,仅仅是许 多其他可能的应变和位移场中的一组。
几何可能的位移未必是真实的,真实位移在弹性体内部须满足 以位移表示的平衡微分方程。
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
应力和应变的关系
1. 本构关系的概念 2. 广义胡克定律 各向同性体 3. 各向异性弹性体 4. 热力学定律与应变能函数 5. 应变能和应变余能(自学) 6. 热弹耦合本构关系(自学) 7. 例题
第二章 各向异性材料弹性力学基本知识

C12 C22 C32 C42 C52 C62
C13 C23 C33 C43 C53 C63
C14 C24 C34 C44 C54 C64
C15 C25 C35 C45 C55 C65
C16 x C26 y C36 z C46 yz C56 zx C66 xy
2 x 2 z 2 zx 2 2 z x zx
应力边界条件:
2 x 2 y z 2 y xy yz zx 2 y z x y zx 2 z yz zx xy 2 z x y z xy
x xy xz fx 0 x y z xy y yz fy 0 x y z xz yz z fz 0 x y z
ij ,i fi 0
ij ,i fi 0
i, j 1,2,3
其中:fx, fy, fz 为体力分量
对于直角坐标系oxyz,几何方程为
u x x v y y w z z v w yz z y w u xz x z u v xy y x
1 ij ui , j u j ,i 2
i, j 1, 2,3
应力与应变关系的一般形式为:
x f1 x , y , z , yz , zx , xy y f 2 x , y , z , yz , zx , xy z f3 x , y , z , yz , zx , xy xy f 6 x , y , z , yz , zx , xy
各向异性弹性力学(课堂PPT)

17
有的文献中定义应力“列矢量”为
1 11
2 22
3 33
4 23
5 31
6 12
应变“列矢量”为
1 11
4 223
2 22
5 231
3 33
6 212
注意: 4 , 5 , 6 就是剪切角 2 3 , 3 1 , 1 2 。 18
于是可以把弹性本构关系写成:
i Cij j
量,L理解为弹性刚度张量;也可以理解为矩阵等式, ,
理解为应力列矢量和应变列矢量,[L]理解为弹性刚度矩
阵。L与M具有Voigt对称性,因此矩阵L与M为9列9行的
对称矩阵。
15
由于应力张量与应变张量都是对称张量。(2-2)式
中的列矢量 与 的第4行与第5行相同,第6行与第7行 相同,第8行与第9行相同。弹性刚度矩阵 L 与柔度矩阵 M
L1133 L2233 L3333 L2333 L3133 L1233
L1123 L2223 L3323 L2323 L3123 L1223
L1131 L2231 L3331 L2331 L3131 L1231
L1112
L2212
L3312 L2312
L3112
L1212
M1111
M2211
图2-1 25
斜面BCD的外法线为N,令N的方向余弦为:
则有
cos(N , x) 1
c
o
s
(
N
,
y)
m
c o s ( N , z ) n
(dF)x ldF (dF)y mdF (dF)z ndF
式中,( d F ) 、( d F ) x 、( d F ) y 、( d F ) z 依次为三角形BCD、ACD、 ABD、ABC的面积。令四面体微元的体积为dV,斜面 BCD上应力向量在坐标方向上的分量为P N x 、P N y 、P N z ,则
2 第二章 应力和应变

第二章应力和应变地震波传播的任何定量的描述,都要求其能表述固体介质的内力和变形的特征。
现在我们对后面几章所需要的应力、应变理论的有关部分作简要的复习。
虽然我们把这章作为独立的分析,但不对许多方程进行推导,读者想进一步了解其细节,可查阅连续介质力学的教科书。
三维介质的变形称为应变,介质不同部分之间的内力称为应力。
应力和应变不是独立存在的,它们通过描述弹性固体性质的本构关系相联系。
2.1 应力的表述——应力张量2.1.1应力表示考虑一个在静力平衡状态下,均匀弹性介质里一个任意取向的无限小平面。
平面的取向可以用这个平面的单位法向矢量nˆ来规定。
在nˆ方向的一侧施加在此面单位面积上的力叫做牵引力,用矢量),,()ˆ(zyxtttnt=表示。
在nˆ相反方向的另一侧施加在此面上的力与其大小相等,方向相反,即)ˆ()ˆ(ntnt-=-。
t在垂直于平面方向的分量叫做法应力,平行于平面方向的分量叫做剪应力。
在流体的情况下,没有剪应力,nptˆ-=,这里P 是压强。
上面的表示这是一个平面上的应力状况,为表示固体内部任意平面上的应力状态,应力张量τ在笛卡尔坐标系(图 2.1)里可以用作用于xyxzyz,,平面的牵引力来定义(:ˆˆˆ()()()ˆˆˆ()()()ˆˆˆ()()()xx xy xzx x xy y y yx yy yzz z z zx zy zzt x t y t zt x t y t zt x t y t zττττττττττ⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(2.1)在右式的表示中,第一个下角标表示面的法线方向,第二个下角标表示该面上应力在该坐标轴上的投影。
图2.1 在笛卡尔坐标系里描述作用在无限小立方体面上的力的牵引力矢量)ˆ(),ˆ(),ˆ(z t y t xt 。
应力分量的符号规定如下:对于正应力,我们规定拉应力为正,压应力为负。
对于剪应力,如果截面的外法线方向与坐标轴一致,则沿着坐标轴的正方向为正,反之为负;如果截面方向与外法线方向相反,则沿着坐标轴反方向为正。
第二章:弹性力学基本理论及变分原理

第二章 弹性力学基本理论及变分原理弹性力学是固体力学的一个分支。
它研究弹性体在外力或其他因素(如温度变化)作用下产生的应力、应变和位移,并为各种结构或其构件的强度、刚度和稳定性等的计算提供必要的理论基础和计算方法。
本章将介绍弹性力学的基本方程及有关的变分原理。
§2.1小位移变形弹性力学的基本方程和变分原理在结构数值分析中,经常用到弹性力学中的定解问题及与之等效的变分原理。
现将它们连同相应的矩阵形式的张量表达式综合引述于后,详细推导可参阅有关的书籍。
§2.1.1弹性力学的基本方程的矩阵形式弹性体在载荷作用下,体内任意一点的应力状态可由6个应力分量表示,它们的矩阵表示称为应力列阵或应力向量111213141516222324252633343536444546555666x x y y z z xy xy yz yz zx zx D D D D D D D D D D D D D D D D D D D D D σεσεσετγτγτγ⎧⎫⎡⎤⎧⎫⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎪⎪=⎢⎥⎨⎬⎨⎬⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎢⎥⎪⎪⎪⎪⎩⎭⎣⎦⎩⎭ (2.1.1) 弹性体在载荷作用下,将产生位移和变形,弹性体内任意一点位移可用3个位移分量表示,它们的矩阵形式为[]T u u v u v w w ⎧⎫⎪⎪==⎨⎬⎪⎪⎩⎭(2.1.2)弹性体内任意一点的应变,可由6个应变分量表示,应变的矩阵形式为x y Tz xy z xy yz zx xy yz zx εεεσεεεγγγγγγ⎧⎫⎪⎪⎪⎪⎪⎪⎪⎪⎡⎤==⎨⎬⎣⎦⎪⎪⎪⎪⎪⎪⎪⎪⎩⎭(2.1.3)对于三维问题,弹性力学的基本方程可写成如下形式 1 平衡方程0xy x zx x f x y z τστ∂∂∂+++=∂∂∂ 0xy y zy y f xyzτστ∂∂∂+++=∂∂∂0yz zx zz f x y zττσ∂∂∂+++=∂∂∂ x f 、y f 和z f 为单位体积的体积力在x 、y 、z 方向的分量。
第2章 各向异性材料弹性力学基础_2017_19990

The basic questions of lamina macromechanics are: (1) what are the characteristics of a lamina? and (2) how does a lamina respond to applied stresses as in Figure 2-1?
• 平衡方程 σ ij , j + fi = 0 i, j = 1,2,3
展开一个方程:
∂σ x ∂x
+
∂τ xy ∂y
+
∂τ xz ∂z
+
f
= 0x
• 运动方程:
σ ij , j +
fi = ρ
∂ 2u ∂t 2
惯性力
指标重复服从加法约定
平衡方程
⎧ ⎪ ⎪
∂σ x ∂x
+
∂τ xy ∂y
+
∂τ xz ∂z
线性弹性力学中的六个应变分量εij之 间必须满足的微分方程。 六个应变分 量εij是由三个位移分量导出的,它们 彼此之间存在一定的内在联系,这些 联系就是应变协调方程。
• (i, j 交换)共有六个方程,六个应变分量应该 满足的一个关系,即:
ε ε ε ε + = + ij,kl
kl,ij
ik, jl
几何关系方程
εx
=
∂u ∂x
,
εy
=
∂v ∂y
,
εz
=
∂w ∂z ,
γ yz
=
∂w ∂y
+
∂v ∂z
;
γ zx
=
第二章各向异性弹性力学

以上的力学,几何,物理,以及边界条件诸方 面构成各向异性弹性力学的基本方程,与 各向同性弹性力学的区别在于物理方程. 其它均相同
弹性介质的本构关系 均质弹性体的弹性性质 坐标转换(应力应变及弹性系数转轴公式 坐标转换 应力应变及弹性系数转轴公式) 应力应变及弹性系数转轴公式 弹性对称性——本构关系的简化 本构关系的简化 弹性对称性 正交异性材料弹性常数的物理意义
各向异性弹性力学问题需满足的 基本方程
与各向同性弹性力学一样, 与各向同性弹性力学一样,各向异性弹性 力学有15 15个未知量 力学有15个未知量
3个位移分量,u,v,w
6个应变分量,ε x ,ε y , ε z ,γ yz ,γ xz ,γ yx
6个应力分量,σ x ,σ y , σ z ,τ yz ,τ xz ,τ yx
L1122 L2222 L3322 L2322 L3222 L3122 L1322 L1222 L2122
L1133 L2233 L3333 L2333 L3233 L3133 L1333 L1233 L2133
L1123 L2223 L3323 L2323 L3223 L3123ห้องสมุดไป่ตู้L1323 L1223 L2123
15个场方程 15个场方程 静力平衡方程( )+几何关系 几何关系( )+本构方程 本构方程( 静力平衡方程(3)+几何关系(6)+本构方程(6) 可以求解了吗? 可以求解了吗?
定解还需边界条件! 定解还需边界条件!
给定力的边界条件(3) 给定力的边界条件(3)
σ x l + τ xy m + τ xz n = X ,已知 τ yx l + σ y m + τ yz n = Y ,已知 τ l + τ m + σ n = Z ,已知 zy z zx
我所认识的应力与应变的关系

我所认识的应力与应变的关系我所认识的本构关系可以从三个不同的受力条件下进行分析,第一是在弹性变形下的应力与应变的关系,第二是在屈服条件下的应力与应变的关系,第三是在塑性条件下的应力与应变的关系,而对应力与应变的关系的研究也可以归结为对本构关系的研究。
首先,弹塑性力学分别从静力学和几何学的角度出发,导出了平衡方程的和几何方程,这些方程均与物体的材料性质(物理性质)无关,因而适用于任何连续介质。
但仅仅依靠平衡方程和几何方程来解决实际中的工程问题是不够的。
由于平衡方程仅建立了力学参数(应力分量与外力分量)之间的联系,而几何方程也仅建立了运动学参数(位移分量与应变分量)之间的关系,所以平衡方程与几何方程式两类完全相互独立的方程,他们之间还缺乏必要的联系。
对于所求解的问题来讲,因为您未知量的数目多于任何一类方程的个数,所以无法利用这两类方程求的全部未知量。
平衡方程:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂⎪⎪⎭⎫ ⎝⎛∂∂=+∂∂+∂∂+∂∂222222000t w Z z y x t v Y z y x t u X z y x z zy zx yz y yx xz xy x ρσττρτστρττσ (1) 几何方程:⎪⎪⎪⎭⎪⎪⎪⎬⎫∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=∂∂+∂∂=∂∂=x w z u z w z v y w y v y u x v x u zx z yz y xy x γεγεγε (2) 为了求解具体的力学问题,还必须引进一些关系式,这些关系式即所谓的本构关系。
本构关系反映可变形体材料的固有特此那个,故也称为物理关系,它实际上是一组联系力学参数和运动学参数的方程式,即所谓的本构方程。
本构方程实际上就是一组反映可变形体材料应力和应变之间关系的方程。
在单向应力状态下,理想弹性材料的应力和应变之间的关系极其简单。
这就是在材料力学中寻出的如下形式的胡克定律:x x E εσ= (3)胡克定律是一个实验定律,在式(1.1)中的E 是材料性质有关的弹性常数,称为弹性模量和杨氏模量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i Cij j i Sij j
(i.j=1.2.3.4.5.6)
其中:[Cij]刚度矩阵,[Sij] 柔度矩阵,互为逆矩 阵,即[Cij]= [Sij]-1
1O2 平面是弹性对称面,沿 3 轴和 3′ 轴方向上的应力和 应变有以下关系:
单对称材料的应力
则单对称材料的应力应变关系就可以表示为:
式中E1,E2,E3和G12,G23,G13分 别为正交各向异性材料的拉压弹 性模量和剪切弹性模量; V12,V23,V13以及V21,V32,V31分 别为主泊松比和副泊松比
则用工程弹性常数表达的正交各向异性材料的应 变-应力关系为:
由刚度系数矩阵与柔度系数矩阵的可逆性,可得:
式中:
➢ 工程弹性常数的互等关系 由于柔度矩阵的对称性,可得工程弹性常数的
第二章各向异性材料的应力应变关系
一:广义胡克定律
在弹性变形范围内,应力与应变成正比例关系,
其比例系数称为弹性量。(拉压模量、剪切模
量等)
ij Cijkl kl
应力与应变的 关系
S ij
ijkl kl (i.j.k.l=1.2.3)
应变与应力的 关系
简化后,工程上常用的胡克定律表达式:
互等关系为:
9个工程弹性常数,3个拉压 弹性模量,3个剪切弹性模量, 3个主泊松比Leabharlann 则刚度矩阵和柔度矩阵分别为:
其应力-应变关系为:
独立弹性常数只有5 个
具有无穷多个弹性对称面的材料称为各向同性材 料。这种材料对于三个相互垂直的弹性对称面 的弹性性能完全相同。刚度系数满足:
其应力-应变关系:
应变-应力关系:
只有2个独 立弹性常数
用工程弹性常数(拉压模量、剪切模量、泊松比) 来表示各向异性材料应力-应变关系。
则其应变-应力关系可以表示为:
具有三个相互正交的弹性对称面的材料称为正交 各向异性材料。按单对称材料分析方法可得:
则应力-应变关系为:
应变-应力关系为:
独立弹性常数只有9个, 正交各向异性材料三个 相互垂直的弹性对称面
的法线方向 称为该材料的主方向。
三个相互垂直的弹性对称面中有一个是各向同 性的,如单向纤维增强复合材料。
➢ 柔度系数、刚度系数与工程弹性常数关系 由三个单向拉伸和三个纯剪切示意图来推导
沿 1 轴向单向拉伸时,应力σ ≠ 0 ,其他应力 均为零,可得: 根据胡克定律和泊松效应有:
则柔度系数与工程弹性常数关系为:
同理,沿 2 轴向和 3 轴向的 单向拉伸,还可得:
对于102面、203面和103面的纯剪切,可得: