(完整版)八年级上册函数的概念教案沪教版

合集下载

一次函数12.1函数第1课时函数及其相关概念教案新-沪科版八年级数学上册优秀教案设计

一次函数12.1函数第1课时函数及其相关概念教案新-沪科版八年级数学上册优秀教案设计

第十二章一次函数12.1函数第1课时函数及其相关概念◇教学目标◇【知识与技能】1.使学生了解函数的意义,会举出函数的实例,并能写出简单的函数表达式;2.了解常量、变量,能分清实例中出现的常量、变量、自变量与因变量.【过程与方法】1.通过常量、变量、函数概念的学习,培养学生会运用运动、变化的观点思考问题;2.通过函数的教学,培养学生观察、分析的能力.【情感、态度与价值观】通过例题向学生进行生动具体的“知识来源于实践,反过来又作用于实践”的辩证唯物主义教育.◇教学重难点◇【教学重点】了解函数、常量、变量,能指出实例中的常量、变量,并能写出简单的函数表达式.【教学难点】对函数意义的正确理解.◇教学过程◇一、情境导入某粮店在一段时间内出售同一种大米,在整个的售米过程中出现了哪些量?其中哪些量是变化的?这其中有没有不变的量?结论:共出现了米的千克数、每千克米的价格、总价三个量,其中千克数和总价是变化的,但每千克米的价钱即单价是不变的.二、合作探究从上面的例子我们可以看到,在某一具体变化过程中,有些量是可以取不同的数值的,如上例中的大米的千克数、总价,我们称之为变量;而有些量在整个过程中都保持不变,例如米的单价,我们称之为常量.注意:常量和变量并不是绝对的,而是相对的.问题1:从大连到北京,如果乘坐火车,且火车的速度保持不变,在这一过程中,哪些量是变量?哪些量是常量?结论:随着时间的不同,距北京的距离不同;但速度是不变的.问题2:从大连到北京,如果我们一部分人坐火车,一部分人乘飞机,在这一过程中,哪些量是变量,哪些量是常量?结论:距离不变,但随着两种交通工具速度的不同,到北京的时间也不同.在日常生活中,工农业生产和科学实验中,常量和变量是普遍存在的,但数学所要研究的是某一变化过程中的两个量之间的关系,即它们是怎样互相制约、互相联系的.例如:大米的千克数与总价,圆的半径与面积之间的关系,这就是数学中一个很重要的基本概念——函数.问题3:若每千克大米售价2.40元,用字母n表示大米的千克数,字母m表示总价,那么n 与m之间有怎样的关系式?结论:对于每一个n的值,总价m都有唯一的确定值与它相对应.m=2.4n.问题4:若已知圆的半径为r,半径r与面积S有怎样的关系?结论:对于每一个半径r的值,面积S都有唯一的确定值与它相对应.S=πr2.类似于这种变量间相互依存的关系还有很多,就不再一一列举.由上面两个例子中的共同特点,总结出函数的概念.一般地,设在一个变化过程中有两个变量x与y,如果对于x在它允许取值范围内的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数.典例1用总长为60 m的篱笆围成矩形场地,求矩形面积S(m2)与一边长L(m)之间的表达式,并指出式中的常量、变量、自变量.[解析]表达式为S=L(30-L),常量为30,变量为L和S,自变量为L.【技巧点拨】在一个具体的变化过程中,数值发生变化的量为变量,数值始终不变的量为常量.典例2下列表达式是函数吗?若是函数,指出自变量与函数;若不是函数,请说明理由.(1)y=2x+3;(2)y=;(3)y=;(4)x2+y2=1.[解析](1)(2)(3)是函数,其中x是自变量,y是x的函数;(4)不是函数.因为对于每一个x 的值,y不是有唯一的值与它对应.三、板书设计函数及其相关概念1.变量与常量、自变量与因变量.2.函数的定义:一般地,设在一个变化过程中有两个变量x与y,如果对于x在它允许范围内的每一个值,y都有唯一确定的值与它对应,那么就说x是自变量,y是x的函数.◇教学反思◇带领学生更深入地认识两个量之间的关系,并引入常量、变量、自变量、因变量等概念,要让学生明白函数是两个变量之间的关系.。

沪教版数学八年级上册18.1《函数的概念及正比例函数》教学设计

沪教版数学八年级上册18.1《函数的概念及正比例函数》教学设计

沪教版数学八年级上册18.1《函数的概念及正比例函数》教学设计一. 教材分析《函数的概念及正比例函数》是沪教版数学八年级上册第18.1节的内容。

本节主要介绍函数的概念和正比例函数的定义、性质及图像。

通过本节的学习,学生应能理解函数的基本概念,掌握正比例函数的性质和图像,并为后续学习函数的其他类型打下基础。

二. 学情分析八年级的学生已经学习了初中数学的基础知识,具备一定的逻辑思维能力和抽象思维能力。

但是对于函数这一概念,学生可能还比较陌生,难以理解函数的本质。

因此,在教学过程中,需要通过具体实例让学生感受函数的意义,逐步引导学生理解和掌握函数的概念。

三. 教学目标1.了解函数的概念,知道函数的定义要素。

2.掌握正比例函数的定义、性质和图像。

3.能够运用函数的知识解决实际问题。

四. 教学重难点1.函数的概念及正比例函数的定义。

2.正比例函数的性质和图像。

五. 教学方法1.情境教学法:通过具体实例引入函数的概念,让学生感受函数的意义。

2.讲授法:讲解函数的定义、性质和图像,引导学生理解和掌握。

3.实践操作法:让学生动手绘制正比例函数的图像,加深对函数的理解。

4.问题驱动法:设计一系列问题,引导学生思考和探索,提高学生的思维能力。

六. 教学准备1.教学PPT:制作包含实例、图片、动画和练习题的PPT,辅助教学。

2.教学素材:准备一些实际问题,用于引导学生应用函数的知识。

3.黑板、粉笔:用于板书和标注。

七. 教学过程1.导入(5分钟)通过一个具体实例引入函数的概念,如“汽车以每小时60公里的速度行驶,行驶时间与所经过的路程之间的关系”。

让学生思考和讨论,引导学生感受函数的意义。

2.呈现(10分钟)讲解函数的定义,阐述函数的三个要素:定义域、值域、对应关系。

通过PPT 展示函数的图像,让学生直观地理解函数的概念。

3.操练(10分钟)讲解正比例函数的定义、性质和图像。

让学生动手绘制一些简单的正比例函数图像,加深对正比例函数的理解。

沪教版八年级上册-函数的概念、正比例函数讲义

沪教版八年级上册-函数的概念、正比例函数讲义

【知识精要】1. 函数(1) 变量和常量变量:可以取不同数值的量;常量:保持数值不变的量。

区别:表示量的数值变还是不变。

(2)函数的定义:在某个变化过程中变化有两个变量,设为X和Y,如果在X的允许取值范围内,变量Y 随着X的变化而变化,他们之间存在着确定的依赖关系(对应法则),那么变量Y叫做变量X 的函数,X叫做自变量。

注意:(1) 函数并不是数,它是指在一个变化过程中两个变量的一种对应关系;(2) 自变量x有取值范围,这个允许取值的范围叫做函数的定义域;(3) 函数三要素:自变量、因变量、对应法则。

(3) 函数解析式:两个变量之间依赖关系的数学式子;(4)函数的定义域和函数值定义域:如果y是x的函数,自变量x有取值范围,这个允许取值的范围叫做函数的定义域。

函数值:如果y是x的函数,那么对于x在定义域内取定的一个值a,变量y的对应值叫做当x=a时的函数值。

符号“y=f(x)”表示y是x的函数,f表示y随x变化而变化的规律(对应法则)。

值域:函数的自变量取定义域中的所有值,对应的函数值的全体叫做这个函数的值域。

2. 正比例函数(1) 概念:如果两个变量的每一组对应值的比值是一个非零常数,那么就说这两个变量成正比例;用数学符号语言记为ykx=或y=kx(0k≠).解析式形如y=kx(0k≠)的函数叫做正比例函数,其中常数k 叫做比例系数。

正比例函数解析式右边是常数与自变量的乘积的形式,且这个常数不为0;自变量的指数为1。

(可用来判断一个函数是不是正比例函数)(2) 定义域:一切实数。

(3) 图像一般地,正比例函数y=kx(k是常数,且k0≠)的图像是经过原点O(0,0)和点M(1,k)的一条直线,我们把正比例函数y=kx的图像叫做直线y=kx.(4) 正比例函数的性质①当k>0时,函数图像经过第一.三象限;当k<0时,函数图像经过第二.四象限。

②当k>0时,自变量x逐渐增大时,函数值y也在逐渐增大;当k<0时,自变量x逐渐增大时,函数值y反而减小。

12.1 函数 教案-2024-2025学年沪科版八年级数学上册

12.1 函数  教案-2024-2025学年沪科版八年级数学上册

《 12.1 函数》教学设计教学内容分析本节课是在学习了函数的表示方法的基础上学习的,让学生学会观察、分析函数图象信息,并能利用获取的信息解决实际问题,感受数形结合的数学思想,能在利用函数图象解决实际问题的过程中,获得自主观察、分析的能力,提高读图能力。

学习者分析学生已经学习了函数的表示法,对从图象中获得信息有一定的基础,有观察,分析,读图的能力,本节课的学习还是比较轻松的。

教学目标 1.能从函数图象中获取与函数有关的信息,解决函数中的问题;2.能通过函数间变量的关系,理解图象中的点或线段代表的实际意义;3.体会数形结合思想,提高解决问题的能力.教学重点学会观察、分析函数图象信息.教学难点利用从图象中获取的信息解决实际问题.学习活动设计教师活动学生活动环节一:新知导入教师活动1:下图是自动测温仪记录的图象,它反映了北京的春季某天气温T随时间t的变化而变化的情况.图象中包括了很多信息,比如一天中的最低温度与最高温度,你还能从中得到哪些信息?比如,温度呈下降趋势的时间段,温度呈上升趋势的时间段.本节课,我们一起来学习怎样从图象中获取信息. 学生活动1:学生动脑回忆思考,并积极回答.活动意图说明:引导学生观察图象,从图象中获得信息,调动学生学习的积极性,并通过提问激发学生的好奇心和求知欲,引出新课.环节二:从函数图象中获取信息教师活动2:思考1 如图是记录某人在24h内的体温变化情况的图象.图中纵轴上0~35一段省略了.(1)图中有哪两个变化的量?哪个变量是自变量?哪个变量是因变量?(2)在这天中此人的最高体温与最低体温各是多少?分别是在什么时刻达到的?(3)21:00时此人的体温是多少?(4)这天体温达到36.2℃时是在什么时刻?(5)此人体温在哪几段时间上升?在哪几段时间下降?在哪几段时间变化最小?解:(1)时间t与温度T,其中t是自变量,T 是因变量(2)最高温度为36.7℃,在18:00达到,最低温度为35.9℃,在4:00达到.(3)36.3℃学生活动2:学生观察图象,思考回答.(4)6:00或23:00.(5)体温上升的时间段:4:00~7:00、8:00~9:00、10:00~11:00、12:00~14:00、15:00~16:00、17:00~18:00.体温下降的时间段:2:00~4:00、7:00~8:00、9:00~10:00、11:00~12:00、14:00~15:00、16:00~17:00、18:00~24:00 .体温变化最小的时间段:0:00~2:00、9:00~11:00.函数关系用图象表示,直观、形象,容易从中了解函数的一些变化情况.横轴表示自变量,纵轴是因变量.最高点表示因变量的最大值,最低点表示因变量的最小值.水平线部分表示函数在相应区间内函数值不变.不同区间表示的函数意义不同.思考2 一艘轮船在甲港与乙港之间往返运输学生小组交流思考后,回答问题.[左图],只行驶一个来回,中间经过丙港,右图是这艘轮船离开甲港的距离随时间的变化曲线.(1)观察曲线回答下列问题:①从甲港(O)出发到达丙港(A),需用多长时间?②由丙港(A)到达乙港(C),需用多长时间?③图中CD段表示什么情况,船在乙港停留多长时间?返回时,多长时间到达丙港(B)?④从丙港(B)返回到出发点甲港(E),用多长时间?(2)你知道轮船从甲港前往乙港的平均行驶速度快,还是轮船返回的平均速度快呢?(3)如果轮船往返的机器速度是一样的,那么从甲港到乙港是顺水还是逆水?解:(1)①从甲港(O)出发到达丙港(A)用去1 h;②从丙港(A)出发到达乙港(C)用去2 h;③图中CD段表示船在乙港停留1 h,返回时4 h到达丙港(B);④从丙港(B)返回到甲港(E)用了2 h.(2)轮船往返行驶的路程一样,用的时间越少则平均速度越快.(3)若轮船往返的机器速度一样,那么顺水时速度快,逆水时速度慢.如何从图象中获得有用信息:1.明确“两轴”的含义通常横轴表示自变量,纵轴表示函数值.通过图象可明确自变量、函数值以及它们的取值范围.2.明确图象上的点的意义学生在教师的引导下总结.过一点分别向横轴和纵轴作垂线,两个垂足分别所表示的数就是自变量与函数值的一对对应值.3.弄清上升线、下降线和水平线上升(下降)线表示函数值随自变量的增大而增大(减小),水平线表示随自变量的变化函数值不变.活动意图说明:通过熟悉的例子,让学生认识函数图象的实际意义,并通过观察从函数图象中获取需要的信息,培养学生自主观察、分析的能力,提高读图能力.通过归纳明确如何从图象中获取有用的信息,培养学生的归纳概括能力.板书设计课题:12.1.4函数如何从图象中获得有用信息:(1)明确“两轴”的含义(2)明确图象上的点的意义(3)弄清上升线、下降线和水平线课堂练习【知识技能类作业】必做题:1.甲、乙两人进行慢跑练习,慢跑路程y(米)与所用时间t(分钟)之间的关系如图所示,下列说法错误的是( D )A.前2分钟,乙的平均速度比甲快B.5分钟两人都跑了500米C.甲跑完800米的平均速度为100米/分D.甲乙两人8分钟各跑了800米2.某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.如图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是( A )A.小明修车花了15 minB.小明家距离学校1 100 mC.小明修好车后花了30 min到达学校D.小明修好车后骑行到学校的平均速度是3 m/s3.小明从家出发到商场购物后返回,如图表示的是小明离家的路程s(m)与时间t(min)之间的函数关系.已知小明购物用时30min,返回速度是去商场的速度的1.2倍,则a的值为( D )A.46B.48C.50D.524.汽车在行驶过程中,速度往往是变化的,下图表示一辆汽车的速度随时间变化而变化的情况.观察图象回答:(1)汽车从出发到最后停止共经过了多少时间?它的最高时速是多少?(2)汽车在哪些时间段匀速行驶?时速分别是多少?(3)出发后8分到10分之间可能发生了什么?(4)用自己的语言大致描述这辆汽车的行驶情况.解:(1)24分钟,最高时速是90千米/时.(2)2~6分钟匀速行驶,时速为30千米/时,18~22分钟匀速行驶,时速为90千米/时.(3)汽车停下了.(4)汽车从0~2分钟加速,从2~6分钟匀速行驶,6~8分钟减速行驶,8~10停下了,10~18分又加速行驶,18~22分匀速行驶,22~24减速到停止.选做题:5. 向一个容器内均匀地注入水,液面升高的高度y与注水时间x满足如图所示的图象,则符合图象条件的容器为(A)6.如图,四个图象近似地刻画了两个变量之间的关系,请按图象顺序将下面四种情景与之对应,正确的排序为__③②④①__ . (填序号)①一辆汽车在公路.上匀速行驶(汽车行驶的路程与时间的关系);②向锥形瓶(上小下大)中匀速注水(水面的高度与注水时间的关系);③将常温下的温度计插入一杯热水中(温度计的读数与时间的关系);④一杯越来越凉的水(水温与时间的关系).【综合拓展类作业】7.小红帮弟弟荡秋千(如图①),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图②所示.结合图象回答:(1)当t=0.7时,h的值是多少?并说明它的实际意义;(2)将秋千向后拉到最高点然后松开,秋千向前摆动,再向后返回到最高点,这叫做一个周期,秋千摆第二个周期需要多少时间?解:(1)由函数图象可知,当t=0. 7时,h=0. 5,它的实际意义是秋千摆动0.7 s时,离地面的高度是0.5 m;(2)从图象看,第一个周期用时2.8 s,后一个周期.用时5.4-2.8=2.6(s),故秋千摆第二个周期需要2.6 s.课堂总结如何从图象中获得有用信息:(1)明确“两轴”的含义(2)明确图象上的点的意义(3)弄清上升线、下降线和水平线作业设计【知识技能类作业】必做题:1.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是(B )2.如图所示的折线图描述了某地某日的气温变化情况.根据图中信息,下列说法错误的是(D )A.4:00气温最低B.6:00气温为24 CC.14:00气温最高D.气温是30 C的时刻为16:003.如图是某汽车行驶的路程s(km)与时间t(min)的函数图象,汽车在前9min内的平均速度是80 km/h,汽车在中途停了7 min.选做题:4.如图所示的函数图象反映如下过程:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x表示时间,y表示小徐离家的距离,读图可知菜地离小徐家的距离为( A )A. 1.1千米B. 2千米C. 15千米D. 37千米5.甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离开出发地的距离s(千米)和行驶时间t(小时)之间的函数关系如图所示.根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)甲乙两人同时到达目的地.其中符合图象描述的说法有(C)A.1个B.2个C.3个D.4个【综合拓展类作业】6.如图是小明从学校到家里行进的路程s(m)与时间t(min)的函数图象.观察图象,从中得到如下信息:①学校离小明家1000m;②小明用了20min到家;③小明前10min走了路程的一-半;④小明后10min比前10min走得快.其中,正确的有①②④ .(填序号)教学反思在这个信息充斥的时代,我们身边有很多信息载体,本节课带领学生去读信息,获取、分析图象上的信息,让学生去想问题和答案,调动学生的积极性,锻炼学生的分析能力和语言表达能力.。

八年级上册--函数的概念教案----沪教版

八年级上册--函数的概念教案----沪教版

八年级上册--函数的概念教案----沪教版教学目标:通过本节课的学习让学生知道什么是常量和变量,明确函数的概念,掌握求借函数定义域和函数值域重点:函数概念,函数的定义域和值域难点:函数概念,函数的定义域和值域考点分析:函数的概念这一小节内容是第十八章的基础内容,为以后学习正比例函数、反比例函数做铺垫。

在以后不管是期中、期末考试还是中考经常以选择题、填空题的形式出现,让学生求函数的定义域或值域。

所以,学生要认真对待本节课。

教学内容函数的概念知识回顾Array平面直角坐标系:1、在图中描出下列各点:E(3,2),F(–1,–3),G(0,1),H(–2,0)2、平面直角坐标系中①不同位置点的特征:x轴上的点_______坐标为零;y轴上的点_______坐标为零;第二象限的点,横坐标为____,纵坐标为_____;②对称点的坐标的特征:关于x轴对称的两个点的__相同,_______相反;关于原点对称的两个点的横坐标______,纵坐标______。

1、授课内容探究过程:问题1:某粮店在某一段时间内出售同一种大米,请思考:在整个的售米过程中出现了哪些量?其中哪些量是变化的?这其中有没有不变的量?知识点1:常量与变量在某一变化过程中,可以取不同数值的量,叫做变量;在某一变化过程中,始终保持不变的量叫做常量。

点拨:变量和常量最大的区别在于表示量的数值变还是不变,此外,还要注意,区分变量和常量,要结合具体问题进行具体分析,如在火车行驶的问题上,火车在启动阶段,速度v就不是常量,而是变量。

例题一:(1)瓜子每千克12元,买x 千克瓜子需付款y 元,用x 的代数式表示y ,并指出这个问题中的变量和常量。

解:y=12x 。

在这个问题中,单价12元是常量,瓜子的重量x 千克、付款金额y 元是变量。

(2)写出圆周长公式,并指出公式中每个字母所表示的量是常量还是变量解:C=2πR 或C=πd.在公式中,2π或π是常量,半径R 或直径d 、圆周长C 都是常量。

沪科版八年级上册教案122一次函数

沪科版八年级上册教案122一次函数

沪科版八年级上册教案122一次函数12.2一次函数第一教时教学目标1、理解一次函数的概念,并能根据实际上问题列出简单的一次函数的表达式2、理解一次函数的图象是一条直线,熟练地作出一次函数的图象教学重点、难点1、重点:一次函数的概念,及一次函数的图象2、难点:实际问题中一次函数解析式的确定。

教学过程在上节,遇到过这样一些函数:h=30t+1800; Q=-25t+300; y=2x; y=-2x; s=80t.这些函数有什么共同特点?不难看出,这些函数都是用自变的量的一次式表示的.可以写成:y=kx+b的形式.一般地,如果有:y=kx+b(k,b为常数,且k≠),那么,y 叫做x的一次函数.其中,当b=0时,一次函数y=kx+b就成为y=kx(k≠).如上面的y=2x、y=-2x、s=80t,这些函数中两个变量间的关系,就是小学学过的正比例关系.因此,y=kx(k≠)中y叫做x的正比例函数.可见,正比例函数是一次函数的特殊景遇.下面,来研讨一次函数的图像与性质.前面画过函数y=2x、y=-2x及另外一些正比例函数的图象,可见正比例函数y=kx(k≠)的图象是一条直线,通常我们把正比例函数y=kx(k≠)的图象叫做直线y=kx.因为两点确定一条直线,所以画正比例函数的图象,只要先描出两点,再过这两点画直线,就可以了.例1在同一坐标系里,画下列函数的图像:解列表:(为便于比较,三个函数值计算表排在一起)xy=xy=3x…………113…………过两点(,),(1,1)画直线,得y=x的图象;过两点(,),(1,3)画直线,得y=3x的图象;学生练课本P35,第1、2布置作业1、课本P43-44题中,第1、3题2、《基训》教学后记:第二教时教学目标1、理解正比例函数的观点及其图像是一条直线2、闇练地作出一次函数和正比例函数的图像,掌握k与b的取值对直线位置的影响。

讲授重点、难点1、重点:理解一次函数与正比例函数图像间的位置干系2、难点:理解一次函数与正比例图象间的位置关系讲授过程正比例函数y=kx(k≠0)的图象是一条直线.对于一次函数y=kx+b,当b≠时,它的图象又是什么呢?下面我们用具体例子来说明.例2画一次函数y=2x+3的图像.解为了便于对比,列出一次函数y=2x+3与正比例函数y=2x的x与y的对应值表:xy=2xy=2x+3………-2-4-4+3-1-2-2+30+3122+3244+3………从表中可以看出,对于自变量x的同一个值,一次函数y=2x+3的函数值要比函数y=2x的函数值大3个单位.也就是说,对于相同的横坐标,一次函数y=2x+3的图象上点的纵坐标要比正比例函数y=2x图象上点的纵坐标大3.因此,把直线y=2x向上平移3个单位,就得到一次函数y=2x+3的图象.由此可见,一次函数y=2x+3的图象是平行于直线y=2x的一条直线,如图13-12.在图13-12中,把直线y=2x向下平移3个单位,这时∣直线应是什么函数的图象?一般地,一次函数y=kx+b的图象是平行于直线y=kx的一条直线,因此,我们以后把一次函数y=kx+b的图象叫做直线y=kx+b.直线y=kx+b与y轴订交于点(,b),b叫做直线y=kx+b在y轴上的截距,简称截距.直线y=kx+b可以看做是由直线y=kx平移∣b∣个单位长度而获得(当b>时,向上平移;当b<时,向下平移).xy-231、画出函数y=2x、y=-2x的图象2、把上述两个函数图像划分与y=2x+3、y=-2x-2的图角比力,它们之间有如何的联系?直线y=kx+b可以看做是由直线y=kx平移|b|个单位长度而获得(当b>时,向上平移;当b <时,向下平移)学生练:课本P36,第1、2、3小结:1、正比例函数也是一次函数,它是一次函数的特例2、两个一次函数,当k一样,b不一样时,共同之处是直线平行都是由直线y=kx(k≠)向上或向下XXX得到的。

沪科版数学八年级上册(教学设计)12.1《函数》

沪科版数学八年级上册(教学设计)12.1《函数》

《函数》教学设计第1课时《变量与函数》教学设计教学目标:1.了解常量与变量的含义,能分清实例中的常量与变量;初步理解函数的概念,了解自变量与函数的意义;2.通过动手实践与探索,让学生参与变量的发现和函数概念的形成过程,以提高分析问题和解决问题的能力;3.引导学生探索实际问题中的数量关系,培养对学习的兴趣和积极参与数学活动的热情。

教学重点:了解常量与变量的含义,能分清实例中的常量与变量;初步理解函数的概念,了解自变量与函数的意义。

教学难点:探索实际问题中的数量关系,培养对学习的兴趣和积极参与数学活动的热情。

教学过程:一、情境导入在学习与生活中,经常要研究一些数量关系,先看下面的问题.如图是某地一天内的气温变化图.从图中我们可以看到,随着时间t(时)的变化,相应地气温T(℃)也随之变化.那么在生活中是否还有其他类似的数量关系呢?二、合作探究探究点一:变量与常量写出下列各问题中的关系式中的常量与变量:(1)分针旋转一周内,旋转的角度n(度)与旋转所需要的时间t(分)之间的关系式n=6t;(2)一辆汽车以40千米/时的速度向前匀速直线行驶时,汽车行驶的路程s(千米)与行驶时间t(时)之间的关系式s=40t.解析:根据在一个变化的过程中,数值发生变化的量称为变量;数值始终不变的量称为常量,即可答题.解:(1)常量:6,变量:n,t;(2)常量:40,变量:s,t.方法总结:确定在该过程中哪些量是变化的,而哪些量又是不变的,数值发生变化的量为变量,数值始终不变的量称之为常量.探究点二:函数的相关概念【类型一】识别函数下列关系式中,哪些y是x的函数,哪些不是?(1)y=x;(2)y=x2+z;(3)y2=x;(4)y=±x.解析:要判断一个关系式是不是函数,首先看这个变化过程中是否只有两个变量,其次看每一个x的值是否对应唯一确定的y值.解:(1)此关系式只有两个变量,且每一个x值对应唯一的一个y值,故y是x的函数;(2)此关系式中有三个变量,因此y不是x的函数;(3)此关系式中虽然只有两个变量,但对于每一个确定的x值(x>0)对应的都有2个y 值,如当x=4时,y=±2,故y不是x的函数;(4)对于每个确定的x值(x>0)对应的都有2个y值,如当x=9时,y=±3,故y不是x的函数.方法总结:由函数的定义可知在某个变化过程中,有两个变量x和y,对于每一个确定的x值,y值都有且只有一个值与之对应,当x值取不同的值时,y的值可以相等也可以不相等,但如果一个x的值对应着两个不同的y值,那么y一定不是x的函数.根据这一点,我们可以判定一个关系式是否表示函数.【类型二】判断函数关系判断下列变化过程中,两变量存在函数关系的是( )A.x,y是变量,y=±2xB.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间解析:选项A 中根据x 每取一个值y 有两个值与其对应,故不存在函数关系,故此选项错误;选项B 中人的年龄变但身高不一定变,故人的身高与年龄不存在函数关系,故此选项错误;选项C 中高不能确定,共有三个变量,故不存在函数关系,故此选项错误;选项D 中速度一定的汽车所行驶的路程与时间,存在函数关系,故此选项正确.故选D.方法总结:判断函数关系时,应先看问题中是否仅有两个变量,再看一个变量是否随着另一个变量的变化而变化,最后看给定一个自变量的值,因变量的值是否有唯一的值与它对应.【类型三】 自变量和因变量A ,B 两地相距50千米,明明以每小时5千米的速度由A 到B ,若他与点B 的距离为y ,到的时间为x .请你写出在这个变化过程中的自变量和因变量.解析:因为这个变化过程中,他与点B 的距离为y 随时间的变化而变化的,所以自变量是时间x ,因变量是他与点B 的距离y .解:在这个变化过程中,自变量是时间x ,因变量是他与点B 的距离y .方法总结:在判断自变量和因变量时,要分清哪个量是主动变化的,哪个量是被动变化的,主动变化的量是自变量,被动变化的量是因变量.【类型四】 求函数值根据下图所示的程序计算变量y 的值,若输入自变量x 的值为32,则输出的结果是( )A.72B.94C.12D.32解析:根据输入的数所处的范围,应将x =32代入y =-x +2,即可求得y 的值.∵x =32,∴1<x ≤2,则将x =32代入y =-x +2,得y =-32+2=12.故选C.方法总结:(1)当已知函数解析式时,求函数值就是求代数式的值;函数值是唯一的,而对应的自变量可以是多个.(2)函数表达式中只有两个变量,给定一个变量的值,将其代入函数表达式即可求另一个变量的值,即给自变量的值可求函数值,给函数值可求自变量的值.教学反思:变量和函数是用来描述我们所熟悉的变化的事物以及自然界中出现的一些变化现象的两个重要的量,对于我们所熟悉的变化,在用了这两个量的描述之后更加鲜明.函数的概念是学好本章的基础,教学中立足于学生的认知基础,激发学生的认知冲突,提升学生的认知水平,使学生在原有的知识基础上迅速迁移到新知上来.第2课时《函数的表示方法》教学设计教学目标:1.了解和掌握函数表示方法中的列表法、解析法和图象法,理解这三种表示方法的优缺点;2.体会用描点法画函数图象的一般步骤,初步掌握用描点法画函数图象;3.理解和掌握函数中自变量取值范围的确定,能用这种表示函数的方法解决简单的实际问题;4.能从函数的图象中获得相关的信息,能结合对函数关系的分析,尝试对变量的变化规律进行初步预测。

沪教版数学八年级上册18.1《函数的概念及正比例函数》教学设计

沪教版数学八年级上册18.1《函数的概念及正比例函数》教学设计

沪教版数学八年级上册18.1《函数的概念及正比例函数》教学设计一. 教材分析《函数的概念及正比例函数》是沪教版数学八年级上册第18.1节的内容。

本节课主要介绍了函数的概念,以及正比例函数的定义和性质。

教材通过具体的例子让学生理解函数的意义,并通过数学语言和符号来表示函数关系。

同时,通过正比例函数的学习,让学生掌握如何求解函数的值,以及如何判断两个函数是否成正比例。

二. 学情分析八年级的学生已经具备了一定的代数基础,对数学符号和概念有一定的理解。

但是,对于函数的概念和正比例函数的性质,学生可能还存在一定的困惑。

因此,在教学过程中,需要通过具体的例子和实际问题,帮助学生理解和掌握函数的概念,以及正比例函数的性质。

三. 教学目标1.理解函数的概念,能够用数学语言和符号表示函数关系。

2.掌握正比例函数的定义和性质,能够求解正比例函数的值。

3.能够判断两个函数是否成正比例,并能够应用正比例函数解决实际问题。

四. 教学重难点1.函数的概念和表示方法。

2.正比例函数的定义和性质。

3.判断两个函数是否成正比例的方法。

五. 教学方法1.采用问题驱动的教学方法,通过具体的例子和实际问题,引导学生理解和掌握函数的概念和正比例函数的性质。

2.利用数形结合的方法,通过图形和表格展示函数关系,帮助学生直观地理解函数的意义。

3.采用小组合作的学习方式,让学生在讨论和交流中,共同探索和解决问题。

六. 教学准备1.准备相关的教学材料和课件,包括函数的定义和表示方法,正比例函数的性质和图形的展示。

2.准备一些实际问题,用于引导学生应用正比例函数解决实际问题。

七. 教学过程1.导入(5分钟)通过一个实际问题,引导学生思考函数的意义。

例如,提问:“如果一辆汽车以每小时60公里的速度行驶,那么它在3小时内行驶的距离是多少?”让学生认识到,函数可以用来描述两个变量之间的关系。

2.呈现(10分钟)介绍函数的概念,以及如何用数学语言和符号表示函数关系。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教学目标:通过本节课的学习让学生知道什么是常量和变量,
明确函数的概
念,掌握求
借函数定义
域和函数值
域 重 难
考点分析:函数的概念这一小节内容是第十八章的基础内容,
函数、反比例函数做铺垫。

在以后不管是期中、期末考试还是中考经常
以选择题、 填空题的形式出现,让学生求函数的定义域或值域。

所以,学生要认真对待本节 课。

教学内容
函数的概念
知识回顾
平面直角坐标系:
1、 在图中描出下列各点:
E (3,2 ),
F (- 1, - 3),
G (0,1 ),
H (- 2,0 )
2、 平面直角坐标系中①不同位置点的特征:
x 轴上的点 __________ 标为零;
y 轴上的点 __________ 标为零;
第二象限的点,横坐标为 _______ ,纵坐标为 _______ ;
②对称点的坐标的特征:关于x 轴对称的两个点的__相同, 相反;关于原点对称的两
个点的横坐标 __________________________________________ ,纵坐标
1、授课内容
探究过程:
问题1:某粮店在某一段时间内出售同一种大米,请思考:在整个的售米过程中 出现了哪些量?其中哪些量是变化的?这其中有没有不变的量?
知识点1:常量与变量
在某一变化过程中,可以取不同数值的量,叫做变量;在某一变化过 程中,始终
保持不变的量叫做常量。

点拨:变量和常量最大的区别在于表示量的数值变还是不变,此外, 还要注意,
区分变量和常量,要结合具体问题进行具体分析,如在火车行驶的问 题上,火车在启动阶段,点:函数概念,函数的定义域和值域 点:函数概念,函数的定义域和值域 为以后学习正比例
速度V就不是常量,而是变量。

例题一:(1)瓜子每千克12元,买x千克瓜子需付款y元,用x的代数式表示y,并指出这个问题中的变量和常量。

解:y=12x。

在这个问题中,单价12元是常量,瓜子的重量x千克、付款金额y元是变量。

(2)写出圆周长公式,并指出公式中每个字母所表示的量是常量还是变量
解:C=2冗R或C=n d.在公式中,2n或n是常量,半径R或直径d、圆周长C都是常量。

点拨:变量一般用字母表示,常量用具体的数表示,但有时也用字母表示,如例题(2)中的n表示圆周率是常量。

知识点2:在某个变化过程中有两个变量x和y,如果在x的允许范围内,变
量y随着x的变化而变化,它们之间存在确定的依赖关系,那么变量y叫做变量x的函数,x 叫做自变量,y叫做因变量。

理解函数的概念,要注意以下三点:
其一:函数并不是数,它是指在一个变化过程中两个变量的一种对应关系,至于这两个变量是否一定要用字母x、y来表示,不一定。

其二:自变量x虽然可以任意取值,但在很多问题中,自变量x的取值是有范围的,如x表示时间则x 一般在正数范围内取值;自变量允许取值的范围叫做函数的定义域。

其三:对自变量x在定义域内的每一个值,变量y都有唯一确定的值与它对应。

这里确定与对应对理解函数概念是非常重要的关键词,至于唯一确定是中学阶段对函数概念的一种界定。

例题二:(1)2x+1是不是变量x的函数?为什么?
(2 )在二元一次方程2x+3y=6中,y是不是x的函数?为什么?
解:(1)因为x是变量,代数式2x+1的值也是一个变量,且随着字母x的取值而唯一确定,所以变量2x+1是变量x的函数。

(2)在二元一次方程2x+3y=6中,因为x、y可以取不同的数值,所以x、y是变量。

当x取确定的值时,可由y= 6—2^求出y,即y的值随之唯
3
一确定。

所以在这个二元一次方程中,y是x的函数。

练习:物体所受的重力与它的质量之间有如下的关系:G=mg其中,m表示质量, G表示重力,g=9.8牛/千克,物体所受的重量G是不是它的质量m的函数?
3
知识点3:函数的定义域与函数值
函数的自变量允许取值的范围叫做这个函数的定义域。

如果y 是x 的函数,那么对于x 在定义域内取定的一个值a ,变 量y 的对
应值叫做当x=a 时的函数值。

符号“y=f (x )”表示y 是x 的函数,f 表示y 随x 变化而变化的 规律。

函数的自变量取定义域中的所有值,对应的函数值的全体叫做这
个函数的值域。

如函数y=x+10(4<x<10),它的值域是14<y<20
例题3:求下列函数的定义域
分析:(1)是整式函数,整式函数的定义域是全体实数;
(2)是分式函数,分式函数的定义域是使分母不等于零的 一切实

(3)是二次根式函数,二次根数函数的定义域是使被开方 数大于等于零的一切实数
(4) 解: 是二次根式与分式的综合,要注意综合考虑
(1)定义域是全体函数
(2) 2x+3=0,即 x=--
2
2
(3) 5-2x 为,即 x <5
3 4x 3 0 x — (4)
4x 3 0解不等式组得 /即 1 3x 0 x 1 x _ x<l
2
(1) y=3x -2x
(3)y= 5 2x
(4)y= (2) y=2x 3 4x 3
练习:求下列各函数的定义域
(1)y=2x+ 5 (2)y= 3x 1
x 2
(3)y= . 3x 4 ⑷丫二 x 1
x 4
例题4:已知f(X )= —3x 「,求f(- 1)的值
2x 1 2
分析:函数与函数值是不同的概念,函数是指两个变量之间的某种关系, 而函数值指的是当自变量取某一数值时,函数的一个对应值 ,求f(- 1)得值,
2
1
就是当x=-1时,求y= 3x _ ,的值,只需要把x=- 2代入后计算即可。

2 V 2x 1
练习:已知 f(x )=”,求 f(-2),f(- 2),f (0),f ( 2)解: f(-1)= 3 (却
.2( 1
3、. 2 4
练习:把下列x与y的关系写成y=f(x)的形式,并指出函数的定义域
(1)8x+7y=16 ⑵xy=9
(3)x= ⑷(x+2)(y-3)=-6。

相关文档
最新文档