上海市西初级中学八年级数学上册第五单元《分式》检测题(答案解析)

合集下载

八年级数学上册《分式》单元测试卷(含答案解析)

八年级数学上册《分式》单元测试卷(含答案解析)

八年级数学上册《分式》单元测试卷(含答案解析)一.选择题1.下列各式﹣3x,,,,,,中,分式的个数为()A.1 B.2 C.3 D.42.下列各式中:①;②;③;④;⑤;⑥分式有()A.1个B.2个C.3个D.4个3.代数式中,,, +b,,分式有()A.1个B.2个C.3个D.4个4.下列约分中,正确的是()A.= B.=0 C.=x3 D.=5.把分式﹣约分结果是()A.﹣B.﹣C.﹣D.﹣6.已知=7,则的值是()A.B.2 C.D.7.下列运算中正确的是()A.= B.C.•=﹣ D.÷=8.当x=﹣2时,下列分式有意义的是()A. B.C. D.9.若分式的值为0,则x的值为()A.﹣5 B.5 C.﹣5和5 D.无法确定10.下列各式,从左到右变形正确的是()A.B. C. D.二.填空题11.当x时,分式有意义.12.约分=.13.写出一个含有字母m,且m≠2的分式,这个分式可以是.14.若分式的值为负数,则x的取值范围是.15.计算=.16.一组按规律排列的式子:,,,,,…,其中第7个式子是,第n个式子是(用含的n式子表示,n 为正整数).17.若式子的值为零,则x的值为.18.不改变分式的值,使分式的分子、分母中各项系数都为整数,=.19.化简:=.20.下列各式中中分式有个.三.解答题21.(1)=(2)=22.当x为何值时,分式的值为0?23.给定下面一列分式:,…,(其中x≠0)(1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式.24.下列分式,当x取何值时有意义.(1);(2).25.已知实数a,b满足,6a=2010,335b=2010,求+的值.26.定义:如果一个分式能化成一个整式与一个分子为常数的分式的和的形式,则称这个分式为“和谐分式”.如==+=1+,==a﹣1+,则和都是“和谐分式”.(1)下列分式中,属于“和谐分式”的是:(填序号);①;②;③;④(2)将“和谐分式化成一个整式与一个分子为常数的分式的和的形为:=.(3)应用:已知方程组有正整数解,求整数m的值.参考答案与解析一.选择题1.解:﹣3x,,的分母中均不含有字母,因此它们是整式,而不是分式.﹣,,,分母中含有字母,因此是分式.故选:D.2.解:①分母中含有π,是具体的数,不是字母,所以不是分式;②分母中含有字母a,是分式;③是等式,不是分式;④分母中没有字母,不是分式;⑤分母中含有字母x,是分式;⑥分母中没有字母,不是分式;分式有②⑤2个,故选:B.3.解;代数式, +b的分母中含有字母,是分式,故选:B.4.解:A、=,故此选项错误;B、,无法化简,故此选项错误;C、=x4,故此选项错误;D、=,正确.故选:D.5.解:﹣=﹣=﹣.故选:C.6.解:∵=7,∴=,∴x﹣4﹣=,∴x﹣=,∵的倒数为x﹣1﹣=﹣1=,∴=,故选:C.7.解:A、=≠,不正确;B、=﹣1,正确;C、=,不正确;D、==,不正确;故选:B.8.解:A、当x=﹣2时,x+2=0,无意义;B、当x=﹣2时,有意义;C、当x=﹣2时,x2﹣4=0,无意义;D、当x=﹣2时,x2+3x+2=4﹣6+2=0,无意义.故选:B.9.解:由题意得,|x|﹣5=0,解得x=±5,当x=5时,x2﹣4x﹣5=0,分式无意义;当x=﹣5时,x2﹣4x﹣5=40≠0,分式有意义;∴x的值为﹣5.故选:A.10.解:A、2前面是加号不是乘号,不可以约分,原变形错误,故本选项不符合题意;B、原式=﹣,原变形错误,故本选项不符合题意;C、原式==,原变形正确,故本选项符合题意;D、从左边到右边不正确,原变形错误,故本选项不符合题意;故选:C.二.填空题11.解:由题意得:2x+3≠0,解得:x≠﹣,故答案为:≠﹣.12.解:=.故答案为:.13.解:含有字母m,且m≠2的分式可以是,故答案为:(答案不唯一).14.解:∵分式的值为负数,∴﹣2x+3<0,解得:x>.故答案为:x>.15.解:原式=x=.故答案为:.16.解:∵=(﹣1)2•,=(﹣1)3•,=(﹣1)4•,…∴第7个式子是,第n个式子为:.故答案是:,.17.解:∵式子的值为零,∴x2﹣1=0,(x﹣1)(x+2)≠0,解得:x=﹣1.故答案为:﹣1.18.解:分式的分子,分母同时乘以500就可得到.故答案为:.19.解:原式==,故答案为:.20.解:中分式为:、+1,﹣共3个.故答案为:3.三.解答题21.解:(1)由分式的基本性质,可得故答案为:5y.(2)分式的分子分母同时乘以﹣1,得=,故答案为2﹣x.22.解:∵分式的值为0,∴,解得x=0且x≠3,∴x=0.∴当x=0时,分式的值为0.23.解:(1)﹣÷=﹣;÷(﹣)=﹣…规律是任意一个分式除以前面一个分式恒等于;(2)∵由式子:,…,发现分母上是y1,y2,y3,…故第7个式子分母上是y7,分子上是x3,x5,x7,故第7个式子是x15,再观察符号发现第偶数个为负,第奇数个为正,∴第7个分式应该是.24.解:(1)要使分式有意义,则分母3x+2≠0,解得:x≠﹣;(2)要使分式有意义,则分母2x﹣3≠0,x≠.25.解:∵6a=2010,335b=2010,∴6ab=2010b,335ab=2010a,∴6ab×335ab═2010b+a,(6×335)ab=2010 a+b,∴ab=a+b,∴+==1.26.解:(1)①=,故是和谐分式;②=,故不是和谐分式;③=,故是和谐分式;④=,故是和谐分式;故答案为①③④;(2)===,故答案为;(3)解方程组得,∵方程组有正整数解,∴m=﹣1或﹣7.。

上海上师初级中学八年级数学上册第五单元《分式》测试卷(包含答案解析)

上海上师初级中学八年级数学上册第五单元《分式》测试卷(包含答案解析)

一、选择题1.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ayy y++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .32.若关于x 的分式方程122x a x -=-的解为非负数,且关于x 的不等式组5x x a ≥⎧⎨>⎩的解集是5x ≥,则符合条件的整数a 有( )A .1个B .2个C .3个D .4个3.若a =1,则2933a a a -++的值为( ) A .2B .2-C .12D .12-4.已知2340x x --=,则代数式24xx x --的值是( ) A .3B .2C .13D .125.已知2,1x y xy +==,则y xx y+的值是( ) A .0B .1C .-1D .26.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每名同学比原来少分摊3元车费.设原来参加游览的学生共x 人.则所列方程是( ) A .18018032x x -=- B .18018032x x -=+ C .18018032x x -=- D .18018032x x -=+ 7.下列分式中,最简分式是( )A .211x x +-B .2211x x -+C .2222x xy y x xy-+-D .21628x x -+8.3333x a a y x y y x +--+++等于( ) A .33x y x y-+B .x y -C .22x xy y -+D .22xy +9.已知227x ,y ==-,则221639yx y x y ---的值为( ) A .-1B .1C .-3D .310.下列各式中正确的是( )A .263333()22=x x y y B .222224()=++a a a b a b C .22222()--=++x y x y x y x yD .333()()()++=--m n m n m n m n 11.020122012(31)(0.125)8-+⨯的结果是( ) A .3 B .32-C .2D .012.若分式2-3xx 在实数范围内有意义,则实数x 的取值范围是( ) A .x >32 B .x <32 C .x =32D .x ≠32二、填空题13.某班在“世界读书日”当天开展了图书交换活动,第一组同学共带图书24本,第二组同学共带图书27本.已知第一组同学比第二组同学平均每人多带1本图书,第二组人数是第一组人数的1.5倍,则第一组的人数为_________人.14.如图是一个数值转换器,每次输入3个不为零的数,经转换器转换后输出3个新数,规律如下:当输入数分别为x ,y ,z 时,对应输出的新数依次为11x y z ++,11y z x++,11z x y ++.例如,输入1,2,3,则输出65,34,23.那么当输出的新数为13,14,15时,输入的3个数依次为____.15.已知2510m m -+=,则22125m m m-+=____. 16.A B 两地相距36千米,一艘轮船从A 地顺流行至B 地,又立即从B 地逆流返回A 地,共用9小时,已知水流速度为4千米/时,若设该轮船在静水中的速度为x 千米时,则可列方程为__________. 17.方程111x x x x -+=-的解是______. 18.某公司生产了A 型、B 型两种计算机,它们的台数相同,但总价值和单价不同.已知A 型计算机总价值为102万元;B 型计算机总价值为81.6万元,且单价比A 型机便宜了2400元.问A 型、B 型两种计算机的单价各是多少万元.若设A 型计算机的单价是x 万元,请你根据题意列出方程________. 19.计算:05(21)-+-=__. 20.已知关于x 的方程321x mx -=-的解是正数,则m 的取值范围为____________. 三、解答题21.某高速公路有300km 的路段需要维修,拟安排甲、乙两个工程队合作完成.已知甲队每天维修公路的长度是乙队每天维修公路长度的2倍,并且在各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.(1)求甲乙两工程队每天能完成维修公路的长度分别是多少km ?(2)两个工程队合作15天后乙队另有任务,余下工程由甲队完成,请你用所学过的知识判断能否在规定的30天工期完成并写出求解过程.22.已知点()0,A y 在y 轴正半轴上,以OA 为边作等边OAB ,其中y 是方程31222y +-31y =-的解. (1)求点A 的坐标;(2)如图1,点P 在x 轴正半轴上,以AP 为边在第一象限内作等边APQ ,连QB 并延长交x 轴于点C ,求证:OC BC =;(3)如图2,若点M 为y 轴正半轴上一动点,点M 在点A 的上边,连MB ,以MB 为边在第一象限内作等边MBN △,连NA 并延长交x 轴于点D ,当点M 运动时,DN AM -的值是否发生变化?若不变,求出其值;若变化,求出其变化的范围.23.解分式方程: (1)13x -+2=43x x --;(2)()3211x x x x +---= 0 24.先化简,再求值:22141244x x x x x ,其中3x =-25.(112019(2)(3)2π-⎛⎫---+ ⎪⎝⎭(2)化简:2(2)()x x y x y --+26.计算:(1)化简:()()22n m n m n -++; (2)解分式方程:2132163x x x -=---.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可. 【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩,∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解,∴2015a+<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a=, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3 ∴所有满足条件的整数a 的值之和是4, 故选A . 【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.2.C解析:C 【分析】解分式方程的得出x=2a-2,根据解为非负数得出2a-2≥0,且2a-2≠2,据此求出解得a≥1且a≠2;解不等式组两个不等式,根据解集得出a <5;综合以上两点得出整数a 的值,从而得出答案. 【详解】 解:分式方程122x a x -=-, 去分母,得:2(x-a )=x-2, 解得:x=2a-2,∵分式方程的解为非负数, ∴2a-2≥0,且2a-2≠2, 解得a≥1且a≠2, ∵不等式组5x x a ≥⎧⎨>⎩的解集是x≥5, ∴1≤a <5,且a≠2,则整数a 的值为1、3、4共3个, 故选:C . 【点睛】本题主要考查分式方程的解和解一元一次不等式组,解题的关键是根据分式方程的解的情况及不等式组解集的情况得出a 的取值范围.3.B解析:B 【分析】根据同分母分式减法法则计算,再将a=1代入即可求值. 【详解】2933a a a -++=293a a -+=a-3, 当a=1时,原式=1-3=-2, 故选:B . 【点睛】此题考查分式的化简求值,掌握因式分解及同分母分式的减法计算法则是解题的关键.4.D解析:D 【分析】利用等式的性质对2340x x --=变形可得43x x-=,利用分式的性质对24x x x --变形可得141x x--,从而代入求值即可. 【详解】由条件2340x x --=可知,0x ≠,∴430x x --=,即:43x x-=, 根据分式的性质得:21144411x x x x x x x==------, 将43x x-=代入上式得:原式11312==-, 故选:D . 【点睛】本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键.5.D解析:D 【分析】 将y xx y+进行通分化简,整理出含已知条件形式的分式,即可得出答案. 【详解】解:2222()2221=21y x y x x y xy x y xy xy ++--⨯+=== 故选D . 【点睛】本题考查了分式的混合运算,熟练运用完全平方公式是解题的关键.6.D解析:D 【分析】设原来参加游览的学生共x 人,增加2人后的人数为(x+2)人,用租价180元除以人数,根据后来每名同学比原来少分摊3元车费列方程. 【详解】设原来参加游览的学生共x 人,由题意得18018032x x -=+, 故选:D . 【点睛】此题考查分式的实际应用,正确理解题意是解题的关键.7.B解析:B 【分析】最简分式的标准是分子、分母中不含有公因式,不能再约分,判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分;【详解】A 、()()21111111x x x x x x ++==-+-- ; B 、2211x x -+ 的分子分母不能再进行约分,是最简分式;C 、()()22222x y x xy y x y x xy x x y x--+-==-- ; D 、()()()24416428242x x x x x x +---==++ ; 故选:B . 【点睛】本题考查了最简分式,分式的化简过程,首先要把分子分母分解因式,互为相反数的因式是比较易忽视的问题,在解题中一定要引起注意;.8.A解析:A 【分析】按同分母分式相减的法则计算即可. 【详解】333333x a a y x y x y y x x y+---+=+++ 故选:A 【点睛】本题考查同分母分式相加减法则:分母不变,分子相加减.9.B解析:B 【分析】先通分,再把分子相加减,把x 、y 的值代入进行计算即可. 【详解】原式=()()16333yx y x y x y --+- =()()3633x y y x y x y +-+-=()()333x yx y x y -+-=13x y+,当227x ,y ==-,原式=112221=-,故选B . 【点睛】本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.10.D解析:D 【分析】根据分式的乘法法则计算依次判断即可. 【详解】A 、2633327()28=x x y y ,故该项错误; B 、22224()()=++a a a b a b ,故该项错误; C 、222()()()--=++x y x y x y x y ,故该项错误; D 、333()()()++=--m n m n m n m n ,故该项正确; 故选:D . 【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.11.C解析:C 【分析】根据零次幂定义,积的乘方的逆运算进行计算. 【详解】020122012201211)(0.125)81(8)1128+⨯=+⨯=+=.故选:C 【点睛】此题考查实数的混合运算,掌握零次幂定义,积的乘方的逆运算是解题的关键.12.D解析:D 【分析】根据分式有意义的条件是分母不等于零列出不等式,解不等式得到答案. 【详解】解:由题意得,2x-3≠0, 解得,x ≠32, 故答案为:D . 【点睛】本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不等于零是解题的关键.二、填空题13.6【分析】先设第一组有x 人则第二组人数是15x 人根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1根据等量关系列出方程即可【详解】解:设第一组有解析:6 【分析】先设第一组有x 人,则第二组人数是1.5x 人,根据题意可得等量关系:第一组同学共带图书24本÷第一组的人数-第二组同学共带图书27本÷第二组的人数=1,根据等量关系列出方程即可. 【详解】解:设第一组有x 人. 根据题意,得242711.5x x-=, 解得x=6.经检验,x=6是原方程的解,且符合题意. 答:第一组有6人, 故答案为6. 【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程,不要忘记检验.14.11【分析】根据转换器转换后输出3个新数得到关于xyz 的方程组解之即可【详解】解:根据题意得:则3(x+y+z )=xy+zx①4(x+y+z )=xy+yz②5(x+y+z )=yz+zx③①+②+③得解析:113,112,11 【分析】根据转换器转换后输出3个新数得到关于x 、y 、z 的方程组,解之即可 【详解】 解:根据题意得:111=3++x y z ,111=4++y z x ,111=5++z x y ,则3(x+y+z )=xy+zx①,4(x+y+z )=xy+yz②,5(x+y+z )=yz+zx③, ①+②+③,得6(x+y+z )=xy+yz+zx ,④ ④﹣①,得3(x+y+z )=yz⑤, ④﹣②,得2(x+y+z )=zx⑥, ④﹣③,得x+y+z=xy⑦, ∴23x y =,z=2y , 把23x y =,z=2y 代入⑦,得y (2y ﹣11)=0, ∴y=112(由题意知y≠0), ∴x=113,z=11, ∴x=113,y=112,z=11 【点睛】本题考查了分式的混合运算、方程组的计算.解题关键是求出6(x+y+z )=xy+yz+zx ,进而用y 分别表示x 、z .15.22【分析】根据m2﹣5m+1=0可得m+=55m=m2+1然后将原分式适当变形后整体代入计算即可【详解】解:∵m2﹣5m+1=0∴m ﹣5+=05m=m2+1∴m+=5∴2m2﹣5m+=2m2﹣m2解析:22 【分析】根据m 2﹣5m+1=0可得m +1m=5,5m=m 2+1,然后将原分式适当变形后整体代入计算即可. 【详解】解:∵m 2﹣5m+1=0, ∴m ﹣5+1m=0,5m=m 2+1, ∴m +1m=5, ∴2m 2﹣5m+21m =2m 2﹣m 2﹣1+21m=m 2+21m﹣1=(m +1m)2﹣3 =52﹣3=25﹣3=22.故答案为:22.【点睛】 本题考查分式的求值.掌握整体代入思想是解题关键.在本题中还需理解22211()2m m m m+=++. 16.【分析】设该轮船在静水中的速度为x 千米/时则一艘轮船从A 地顺流航行至B 地已知水流速度为4千米/时所花时间为;从B 地逆流返回A 地水流速度为4千米/时所花时间为根据题意列方程即可【详解】解:设该轮船在静 解析:3636944x x +=+- 【分析】设该轮船在静水中的速度为x 千米/时,则一艘轮船从A 地顺流航行至B 地,已知水流速度为4千米/时,所花时间为364x +;从B 地逆流返回A 地,水流速度为4千米/时,所花时间为364x -根据题意列方程3636944x x +=+-即可. 【详解】解:设该轮船在静水中的速度为x 千米时,根据题意列方程得:3636944x x +=+- 【点睛】本题考查列分式方程解应用题,关键是正确列出分式方程,找出题干中等量关系式即可. 17.【分析】先通过去分母将分式方程化为整式方程求出的值然后再检验即可即可【详解】解:方程两边都乘以得:解得:检验:时所以分式方程的解为故答案为【点睛】本题主要考查解分式方程解分式方程的步骤如下:①去分母 解析:13x = 【分析】先通过去分母将分式方程化为整式方程求出x 的值,然后再检验即可即可.【详解】解:方程两边都乘以(1)x x -,得:2(1)(1)x x x -=+, 解得:13x =,检验:13x =时,2(1)09x x -=-≠, 所以分式方程的解为13x =. 故答案为13x =. 【点睛】 本题主要考查解分式方程,解分式方程的步骤如下:①去分母;②求出整式方程的解;③检验;④得出结论.18.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是万元/台根 解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.19.【分析】分别计算绝对值和0次幂再计算和即可【详解】解:原式=5+1=6故答案为:6【点睛】此题主要考查了实数运算解题的关键是熟练掌握绝对值及零次幂的性质解析:【分析】分别计算绝对值和0次幂,再计算和即可.【详解】解:原式=5+1=6.故答案为:6.【点睛】此题主要考查了实数运算,解题的关键是熟练掌握绝对值及零次幂的性质.20.m >2且m≠3【分析】先给分式方程去分母化为整式方程用m 表示出方程的解再由解为正数求出m 的取值范围即可【详解】解:去分母得:3x ﹣m=2(x ﹣1)解得:x=m ﹣2∵分式方程的解是正数且x≠1∴m ﹣2解析:m >2且m≠3【分析】先给分式方程去分母化为整式方程,用m 表示出方程的解,再由解为正数求出m 的取值范围即可.【详解】解:去分母,得:3x ﹣m=2(x ﹣1),解得:x=m ﹣2,∵分式方程的解是正数,且x≠1,∴m ﹣2>0,且m ﹣2≠1,解得:m >2且m≠3,故答案为:m >2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.三、解答题21.(1)甲、乙工程队每天能完成维修公路的长度分别是8km 和4km ;(2)能,理由见解析【分析】(1)设乙工程队每天能完成维修公路的长度是xkm .由甲队每天维修公路的长度是乙队每天维修公路长度的2倍,可得甲队每天维修公路的长度为2xkm ,根据等量关系各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.列方程484862x x -=,解方程及检验即可;(2)求出甲乙两队合作15天的工作量,求出余下的工作量,最后利用公式余下的工作量除以甲的工作效率求出余下的时间,比较合作时间15天+甲作余下工作时间与30天的大小即可.【详解】解:()1设乙工程队每天能完成维修公路的长度是xkm , 依题意得484862x x-=, 解得:4x =,经检验:4x =是原方程的解.则甲工程队每天能完成维修公路的长度是()24=8km ⨯.答:甲、乙工程队每天能完成维修公路的长度分别是8km 和4km .()()2154+8=180km ⨯,300-180=120km ,1208=15÷天,15+15=30(天),所以能在规定工期内完成.【点睛】本题考查工程问题列分式方程解应用题,掌握列分式方程解应用题的方法,以及工作量,工作时间,和工作效率之间关系,抓住由甲队每天维修公路的长度是乙队每天维修公路长度的2倍设未知数,各自独立完成长度为48km 公路的维修时,甲队比乙队少用6天.构造方程,注意分式方程要验根.22.(1)()0,4A ;(2)见解析;(3)DN AM -的值不变,其值为12.【分析】(1)解分式方程求出y 即可知道A 点坐标;(2)证明△AOP ≌△ABQ ,进而得到∠ABQ=∠AOP=90°,再由∠AOB=∠ABO=60°得到∠BOC=∠OCB=30°,由此可以证明CO=CB ;(3)证明△ABN ≌△OBM ,得到OM AN =,60BAN BOM ∠=∠=︒,进而求出∠DAO=60°,在Rt △DAO 中求出DA=2AO=8,最后DN-AM=(DA+AN)-(MO-AO)= (DA+AN)-(AN-AO)=8+4=12.【详解】解:(1)∵y 是方程3132221y y +=--的解, 方程两边同时乘以最简公分母2(1)-y :解得4y =经检验4y =是原方程的解∴点()0,4A .(2)∵APQ 、ABO 都是等边三角形∴AO AB =,AP AQ =,60BAO PAQ ∠=∠=︒,∴PAO BAQ ∠=∠,∴()≌PAO QAB SAS △△,∴90QBA POA ∠=∠=︒, ∵ABO 是等边三角形,∴60AOB ABO ∠=∠=︒,∴30COB CBO ∠=∠=︒∴CO BC =.(3)其值不会变化,且12DN AM -=,理由如下:∵AOB ∆、MBN ∆都是等边三角形,∴4BO AB AO ===,MB BN =,60BAO ABO MBN ∠=∠=∠=︒, ∴OBM ABN ∠=∠,∴()ABN OBM SAS ≌△△,∴OM AN =,60BAN BOM ∠=∠=︒,∴4AN OM OA AM AM ==+=+,∵18060OAD OAB BAN ∠=︒-∠-∠=︒,∴30ADO ∠=︒∴28AD AO ==∴4812DN AM AN AD AM AM AM -=+-=++-=即DN AM -的值不变,其值为12. 【点睛】本题是三角形综合题,考查了分式方程的解法,等边三角形性质,全等三角形的性质和判定的应用,主要考查学生运用定理进行推理的能力.23.(1)x =1;(2)无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程无解;【详解】解:(1)去分母得:1+2(x ﹣3)=x ﹣4,解得:x =1,经检验x =1是分式方程的解;(2)去分母,得3x-(x+2)=0,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.24.32x +,3-. 【分析】 先算括号里面的,再算除法,最后将x 的值代入进行计算即可.【详解】解:22141244x x x x x 22212=222x x x x x x x23=22x x x 23=22x x x 3=2x当3x =-时,原式3=332. 【点睛】本题考查的是分式的化简求值,熟悉相关运算法则是解题的关键.25.(1)8;(2)24y xy --【分析】(1)先计算算术平方根,乘方,零次幂及负整数指数幂,再计算加减法;(2)先计算单项式乘以多项式及完全平方公式,再合并同类项.【详解】解:(1)原式3412=+-+8=;(2)原式22222x xy x y xy =----24y xy =--.【点睛】此题考查实数的混合运算及整式的混合运算,掌握实数算术平方根,乘方,零次幂及负整数指数幂计算法则,以及整式的单项式乘以多项式及完全平方公式计算法则是解题的关键.26.(1)24m mn +;(2)x=1【分析】(1)根据单项式乘多项式法则和完全平方公式,即可得到结果;(2)通过去分母,把分式方程化为整式方程,即可求解.【详解】(1)原式=22222mn n m mn n -+++=24m mn +;(2)2132163x x x -=--- 213213(21)x x x -=---2(21)3--=-x x--=-423x xx5=5x=1,经检验,x=1是方程的解,∴x=1.【点睛】本题主要考查整式的混合运算以及解分式方程,熟练掌握完全平方公式以及解分式方程的步骤,是解题的关键.。

(常考题)人教版初中数学八年级数学上册第五单元《分式》测试(含答案解析)

(常考题)人教版初中数学八年级数学上册第五单元《分式》测试(含答案解析)

一、选择题1.使分式21x x -有意义的x 的取值范围是( ) A .x ≠1 B .x ≠0C .x ≠±1D .x 为任意实数 2.若整数a 使得关于x 的方程3222a x x-=--的解为非负数,且使得关于y 的一元一次不等式组322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩至少有3个整数解,则所有符合条件的整数a 的和为( ) A .23 B .25 C .27 D .283.下列命题中,属于真命题的是( )A .如果0ab =,那么0a =B .253x x x -是最简分式C .直角三角形的两个锐角互余D .不是对顶角的两个角不相等4.分式293x x --等于0的条件是( ) A .3x = B .3x =- C .3x =± D .以上均不对 5.张明与李强共同清点一批图书,已知张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相同,且李强平均每分钟比张明多清点10本,则张明平均每分钟清点图书( )A .20本B .25本C .30本D .35本6.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2 B .3 C .4 D .57.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1- B .1 C .3 D .3-8.若实数a 使关于x 的不等式组313212x x a xx +⎧+≥⎪⎪⎨+⎪-≥⎪⎩有解且最多有4个整数解,且使关于y 的方程3233y a y y --++ 1=的解是整数,则符合条件的所有整数a 的个数是( ) A .4 B .3 C .2 D .1 9.已知a 、b 为实数且满足a ≠﹣1,b ≠﹣1,设M =11a b a b +++,N =1111a b +++,则下列两个结论( ) ①ab =1时,M =N ;ab >1时,M <N .②若a +b =0,则M •N ≤0.A .①②都对B .①对②错C .①错②对D .①②都错 10.下列计算正确的是( )A .1112a a a += B .2211()()a b b a +--=0 C .m n a -﹣m n a +=0 D .11a b b a+--=0 11.化简232a b c a b c c b a b c a c b c a b -+-+--++--+--的结果是( ) A .0 B .1 C .-1 D .2(2)b c c a b --- 12.计算a b a b a ÷⨯的结果是() A .a B .2a C .2b a D .21a 二、填空题13.如图是一个数值转换器,每次输入3个不为零的数,经转换器转换后输出3个新数,规律如下:当输入数分别为x ,y ,z 时,对应输出的新数依次为11x y z ++,11y z x ++,11z x y ++.例如,输入1,2,3,则输出65,34,23.那么当输出的新数为13,14,15时,输入的3个数依次为____.14.符号“a bc d ”称为二阶行列式,规定它的运算法则为:a bc d =ad ﹣bc ,请你根据上述规定求出下列等式中x 的值.若2111111xx =--,那么x =__.15.当2x =,3y =-时,代数式22222-⋅++x y x x x xy y 的值为________.16.已知关于x的分式方程211ax+=+的解是负数,则a的取值范围_____________.17.某公司生产了A型、B型两种计算机,它们的台数相同,但总价值和单价不同.已知A型计算机总价值为102万元;B型计算机总价值为81.6万元,且单价比A型机便宜了2400元.问A型、B型两种计算机的单价各是多少万元.若设A型计算机的单价是x万元,请你根据题意列出方程________.18.若关于x的分式方程11222mxx x-=---无解,则m =______.19.已知关于x的方程321x mx-=-的解是正数,则m的取值范围为____________.20.计算:()3 0120202-⎛⎫---=⎪⎝⎭______.三、解答题21.在今年新冠肺炎防疫工作中,学校购买了A、B两种不同型号的口罩,已知A型口罩的单价比B型口罩的单价多1.5元,且用8000元购买A型口罩的数量与用5000元购买B 型口罩的数量相同.(1)求A、B两种型号口罩的单价各是多少元?(2)根据疫情发展情况,学校还需要增加购买一些口罩,增加购买B型口罩数量是A型口罩数量的2倍,若总费用不超过7200元,求增加购买A型口罩的数量最多是多少个?22.在某一城市美化工程招标时,有甲、乙两个工程队投标.经测算:甲队单独完成这项工程需要时间比规定时间早25天,乙单独完成这项工程需要时间比规定时间多20天.若由甲乙两队先合作10天,剩下的工程由乙队单独做,正好在规定时间内完成(既没提前,也没延后).(1)求规定时间是多少天?(2)乙队单独施工2天后,甲队开始加入合作,合作时,甲队的人数增加了10%,每个人的效率提高了3a%,同时乙队的人数增加了a%,每个人的效率提高了40%,结果合作20天完成了任务,求a的值(假设每队每人的效率相等).23.轻轨3号线北延伸段渝北空港广场站的一项挖土工程招标时,接到甲、乙两个工程队的投标书,每施工一天,需付甲工程队工程款2.1万元,付乙工程队工程款1.5万元,工程领导小组根据甲、乙两队的投标书测算,可有三种施工方案:(方案一)甲队单独完成这项工程,刚好按规定工期完成;(方案二)乙队单独完成这项工程要比规定工期多用5天;(方案三)若由甲、乙两队合作做4天,剩下的工程由乙队单独做,也正好按规定工期完工.(1)请你求出完成这项工程的规定时间;(2)如果你是工程领导小组的组长,为了节省工程款,同时又能如期完工,你将选择哪一种方案?说明理由.24.已知:240x x+-=,求代数式321121x x xx x x-⎛⎫-÷⎪--+⎝⎭的值.25.先化简,再求值:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中a 与2,3构成ABC 的三边长,且a 为整数.26.解分式方程:63122x x x -=--.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】分式有意义的条件是分母不等于零,据此可得x 的取值范围.【详解】由题意,得x 2−1≠0,解得:x≠±1,故选:C .【点睛】此题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 2.B解析:B【分析】表示出不等式组的解集,由不等式至少有3个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而求出之和.【详解】 解:322222010y y y a --⎧+>⎪⎪⎨-⎪≤⎪⎩, 不等式组整理得:2y y a -⎧⎨≤⎩>, 由不等式组至少有3个整数解,得到-2<y≤a ,解得:a≥1,即整数a=1,2,3,4,5,6,…,3222a x x-=--, 去分母得:2(x-2)-3=-a ,解得:x=72a -, ∵72a -≥0,且72a -≠2, ∴a≤7,且a≠3,由分式方程的解为非负数以及分式有意义的条件,得到a 为1,2,4,5,6,7, 之和为1+2+4+5+6+7=25.故选:B .【点睛】此题考查了解分式方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键. 3.C解析:C【分析】根据有理数的乘法、最简分式的化简、直角三角形的性质、对顶角的概念判断即可.【详解】解:A. 如果 ab=0,那么a=0或b=0或a 、b 同时为0,本选项说法是假命题,不符合题意; B. ()2555==333x x x x x x x ---,故253x x x-不是最简分式,本选项说法是假命题,不符合题意;C. 直角三角形的两个锐角互余,本选项说法是真命题,符合题意;D. 不是对顶角的两个角可能相等,本选项说法是假命题,不符合题意;故选:C .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉教材中的性质定理.4.B解析:B【分析】根据分式等于0的条件:分子为0,分母不为0解答.【详解】由题意得:290,30x x -=-≠,解得x=-3,故选:B .【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键. 5.A解析:A【分析】设张明平均每分钟清点图书的数量为x ,则李强平均每分钟清点图书的数量为x +10,由张明清点完200本图书所用的时间与李强清点完300本图书所用的时间相等这个条件可列分式方程,求解即可.【详解】设张明平均每分钟清点图书x 本,则李强平均每分钟清点(10)x +本, 依题意,得:20030010x x =+,解得:20x , 经检验,20x是原方程的解, 所以张明平均每分钟清点图书20本.故选:A .【点睛】本题考查了分式方程的应用.找到题中的等量关系,列出分式方程,注意分式方程一定要验根. 6.A解析:A【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案.【详解】 解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2,解不等式②得:x≥2a -,∵不等式组恰有三个整数解,∴-1<2a -≤0,解得12a ≤<, 解分式方程132211y a y y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩, 解得12a >且1a ≠,则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2.故选择:A .【点睛】 本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.7.D解析:D【分析】先将分式方程化为整式方程,再将1x =代入求解即可.【详解】解:原式化简为81233ax a x +=-,将1x =代入得81233a a +=-解得-3a =.当a =-3时a -x=-3-1=-4≠0∴a =-3故选则:D .【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.8.D解析:D【分析】解不等式组得到a+2≤x ≤﹣3,利用不等式组有解且最多有4个整数解得到﹣7<a+2≤﹣3,解关于a 的不等式组得到整数a 为﹣8,﹣7,﹣6,﹣5,再解分式方程得到y =12a +且y ≠﹣3,利用分式方程的解为整数且12a +≠﹣3即可确定符合条件的所有整数a 的值. 【详解】 解:313212x x a x x +⎧+≥⎪⎪⎨+⎪-≥⎪⎩①②, 由①得:x ≤﹣3,由②得:x ≥a+2,∴a+2≤x ≤﹣3,因为不等式组有解且最多有4个整数解,所以﹣7<a+2≤﹣3,解得﹣9<a ≤﹣5,整数a 为﹣8,﹣7,﹣6,﹣5, 方程3233y a y y --++ 1=去分母得3y ﹣a +2=y +3, 解得y =12a +且y ≠﹣3, ∴12a +≠﹣3, 解得a ≠﹣7,当a =﹣8时,y =﹣3.5(不是整数,舍去),当a =﹣6时,y =﹣2.5(不是整数,舍去),当a =﹣5时,y =﹣2(是整数,符合题意),所以符合条件的所有整数a 为﹣5.故选:D .【点睛】本题考查了分式方程的解:求出使分式方程中令等号左右两边相等且分母不等于0的未知数的值,这个值叫方程的解.也考查了解一元一次不等式组的整数解.9.C解析:C【分析】对于①,计算M-N 的值可以判断M>N 还是M<N ;对于②,计算M N 的值,然后根据a 、b 满足的条件判断其大于0还是小于0.【详解】∵M =11a b a b +++,N = 1111a b +++, ∴M ﹣ N =11a b a b +++﹣( 1111a b +++) =22(1)(1)ab a b -++, ①当ab =1时,M ﹣N =0,∴M =N ,当ab >1时,2ab >2,∴2ab ﹣2>0,当a <0时,b <0,(a +1)(b +1)>0或(a +1)(b +1)<0,∴M ﹣N >0或M ﹣N <0,∴M >N 或M <N ;故①错误;②M •N =(11a b a b +++)•( 1111a b +++) =()()()()221111a a b b a b a b +++++++.∵a +b =0, ∴原式=()()2211a b a b +++ =224(1)(1)ab a b ++. ∵a ≠﹣1,b ≠﹣1,∴(a +1)2(b +1)2>0.∵a +b =0,∴ab ≤0,M •N ≤0,故②对.故选:C .【点睛】本题考查分式运算的应用,熟练掌握分式的运算法则是解题关键.10.D解析:D【分析】直接根据分母不变,分子相加运算出结果即可.【详解】解:A 、112a a a+=,故错误; B 、原式=2211()()a b a b +--=22()a b -,故错误; C 、原式=m n m n a ---=﹣2n a ,故错误; D 、原式=11a b a b---=0,故正确. 故选D .【点睛】 本题主要考查了分式的加减法,解题的关键是掌握运算法则,此题基础题,比较简单. 11.A解析:A【分析】通过变号,把分母变成同分母,相加即可.【详解】 原式=232a b c a b c c b a b c a b c a b c -+-+---+-+-+-, =23()(2)a b c a b c c b a b c -+--+--+-, =232a b c a b c c b a b c-+-+--++-, =0.故选:A【点睛】本题考查了分式的加减,先把分母通过变号变为同分母是解题关键.12.C解析:C【分析】先把除法变成乘法,然后约分即可.【详解】 解:2a b b b b a a b a a a a÷⨯=⋅⋅=, 故选:C .【点睛】本题考查了分式的乘除混合运算,解题的关键是熟练掌握乘除混合运算法则.二、填空题13.11【分析】根据转换器转换后输出3个新数得到关于xyz 的方程组解之即可【详解】解:根据题意得:则3(x+y+z )=xy+zx①4(x+y+z )=xy+yz②5(x+y+z )=yz+zx③①+②+③得 解析:113,112,11 【分析】 根据转换器转换后输出3个新数得到关于x 、y 、z 的方程组,解之即可【详解】解:根据题意得:111=3++x y z ,111=4++y z x ,111=5++z x y , 则3(x+y+z )=xy+zx①,4(x+y+z )=xy+yz②,5(x+y+z )=yz+zx③,①+②+③,得6(x+y+z )=xy+yz+zx ,④④﹣①,得3(x+y+z )=yz⑤,④﹣②,得2(x+y+z )=zx⑥,④﹣③,得x+y+z=xy⑦, ∴23x y =,z=2y , 把23x y =,z=2y 代入⑦,得y (2y ﹣11)=0, ∴y=112(由题意知y≠0), ∴x=113,z=11, ∴x=113,y=112,z=11 【点睛】本题考查了分式的混合运算、方程组的计算.解题关键是求出6(x+y+z )=xy+yz+zx ,进而用y 分别表示x 、z .14.4【分析】首先根据题意由二阶行列式得到一个分式方程解分式方程即得问题答案【详解】解:∵=1∴方程两边都乘以x ﹣1得:2+1=x ﹣1解得:x =4检验:当x =4时x ﹣1≠01﹣x≠0即x =4是分式方程的解析:4【分析】首先根据题意由二阶行列式得到一个分式方程,解分式方程即得问题答案 .【详解】解:∵211111xx --=1, ∴21111x x-=--, 方程两边都乘以x ﹣1得:2+1=x ﹣1,解得:x =4,检验:当x =4时,x ﹣1≠0,1﹣x≠0,即x =4是分式方程的解,故答案为:4.【点睛】本题考查分式方程与新定义实数运算的综合运用,通过观察所给运算式子归纳出运算规律并得到分式方程再求解是解题关键.15.-5【分析】根据平方差公式完全平方公式和分式运算的性质先化简代数式;再将代入到代数式计算即可得到答案【详解】∵∴故答案为:-5【点睛】本题考查了乘法公式分式运算代数式的知识;解题的关键是熟练掌握分式解析:-5【分析】根据平方差公式、完全平方公式和分式运算的性质,先化简代数式;再将2x =,3y =-代入到代数式计算,即可得到答案.【详解】22222-⋅++x y x x x xy y 2()()()x y x y x x x y +-=⋅+ x y x y-=+ ∵2x =,3y =- ∴22222-⋅++x y x x x xy y x y x y-=+ 2(3)23--=- 5=-故答案为:-5.【点睛】本题考查了乘法公式、分式运算、代数式的知识;解题的关键是熟练掌握分式运算、乘法公式的性质,从而完成求解.16.且【分析】先解分式方程得到x=a+1根据方程的解是负数列不等式a+1<0且a+20求解即可得到答案【详解】解:a+2=x+1x=a+1∵方程的解是负数x≠-1∴a+1<0且a+20解得a<-1且a-解析:1a <-且2a ≠-【分析】先解分式方程得到x=a+1,根据方程的解是负数,列不等式a+1<0,且a+2≠0,求解即可得到答案.【详解】 解:211a x +=+ a+2=x+1x=a+1, ∵方程的解是负数,x≠-1∴a+1<0,且a+2≠0,解得a<-1,且a ≠-2,故答案为:1a <-且2a ≠-.【点睛】此题考查解分式方程,根据分式方程的解的情况求参数的取值范围,解题中考虑分式的分母不等于0的情况.17.【分析】设A 型计算机的单价是x 万元/台则B 型计算机的单价是(x-024)万元/台根据单价=总价÷数量即可得出关于x 的分式方程此题得解【详解】解:设型计算机的单价是万元/台则型计算机的单价是万元/台根 解析:10281.6x x 0.24=- 【分析】设A 型计算机的单价是x 万元/台,则B 型计算机的单价是(x-0.24)万元/台,根据单价=总价÷数量即可得出关于x 的分式方程,此题得解.【详解】解:设A 型计算机的单价是x 万元/台,则B 型计算机的单价是()x 0.24-万元/台, 根据题意得:10281.6x x 0.24=-. 故答案为:10281.6x x 0.24=-. 【点睛】 本题考查了由实际问题抽象出分式方程,根据数量关系单价=总价÷数量列出关于x 的分式方程是解题的关键.18.2或1【分析】将分式方程化成整式方程按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可【详解】解:方程两边同时乘以(x ﹣2)得:1﹣mx =-1﹣2(x ﹣2)整理得:(2﹣m )x =2∵无解∴解析:2或1【分析】将分式方程化成整式方程,按照一元一次方程无解的条件及分式方程无解的条件求得m 的值即可.【详解】 解:方程11222mx x x-=---两边同时乘以(x ﹣2)得: 1﹣mx =-1﹣2(x ﹣2),整理得:(2﹣m )x =2,∵无解,∴当2﹣m =0,即m =2时,方程无解;当x ﹣2=0时,方程也无解,此时x =2,则2(2﹣m )=2,解得m =1.故答案为:2或1.【点睛】本题考查了分式方程的解,明确分式方程和整式方程无解的条件是解题的关键. 19.m >2且m≠3【分析】先给分式方程去分母化为整式方程用m 表示出方程的解再由解为正数求出m 的取值范围即可【详解】解:去分母得:3x ﹣m=2(x ﹣1)解得:x=m ﹣2∵分式方程的解是正数且x≠1∴m ﹣2解析:m >2且m≠3【分析】先给分式方程去分母化为整式方程,用m 表示出方程的解,再由解为正数求出m 的取值范围即可.【详解】解:去分母,得:3x ﹣m=2(x ﹣1),解得:x=m ﹣2,∵分式方程的解是正数,且x≠1,∴m ﹣2>0,且m ﹣2≠1,解得:m >2且m≠3,故答案为:m >2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.20.9【分析】根据零指数幂与负整数指数幂的运算法则进行求解【详解】故答案为:9【点睛】本题考查了零指数幂与负整数指数幂熟练掌握其运算法则是解题的关键解析:9【分析】根据零指数幂与负整数指数幂的运算法则进行求解.【详解】()30120201(8)1892-⎛⎫---=--=+= ⎪⎝⎭. 故答案为:9.【点睛】本题考查了零指数幂与负整数指数幂,熟练掌握其运算法则是解题的关键.三、解答题21.(1)4元;2.5元 (2)800个【分析】(1)设A 型口罩的单价为x 元,则B 型口罩的单价为( 1.5)x 元,根据“用8000元购买A型口罩的数量与用5000元购买B 型口罩的数量相同”列出方程并解答;(2)设增加购买A 型口罩的数量是m 个,根据“增加购买B 型口罩数量是A 型口罩数量的2倍,若总费用不超过7200元”列出不等式并解答即可.【详解】解:(1)设A 型口罩的单价为x 元,则B 型口罩的单价为()1.5x -元, 根据题意,得800050001.5x x =-. 解方程,得:4x =.经检验:4x =是原方程的根,且符合题意.所以 1.5 2.5x -=.答:A 型口罩的单价为4元,则B 型口罩的单价为2.5元.(2)设增加购买A 型口罩的数量是m 个,根据题意,得:2.5247200m m ⨯+≤.解不等式,得:800m ≤.答:增加购买A 型口罩的数量最多是800个.【点睛】本题主要考查了分式方程的应用和一元一次不等式的应用,分析题意,找到关键描述语,找到合适的数量关系是解决问题的关键.22.(1)70天;(2)a=10 .【分析】(1)设规定时间为x 天,根据题意可以得到关于x 的分式方程,解方程并检验即可得到解答;(2)由(1)可以得到甲乙两队每天的效率分别为114590,,因为效率与人数成正比,所以人数增加了多少,效率也增加了多少,根据这个可由已知列出关于a 的一元一次方程,解方程即可得到a 的值.【详解】解:(1)设规定时间为x 天,则由题意可得:()11110101202520x x x x ⎛⎫+⨯+-⨯= ⎪+-+⎝⎭, 解之得:x=70,经检验,x=70是原方程的解且符合题意,∴规定时间是70天 .答:规定时间是70天 .(2)由(1)可知甲乙两队每天的效率分别为114590,, ∴由题意可得:()()()()111220110%13%1%140%1904590a a ⎡⎤⨯+⨯⨯+++⨯++=⎢⎥⎣⎦, 解之可得:a=10.【点睛】本题考查分式方程和一元一次方程的综合运用,熟练掌握分式方程与一元一次方程的解法及工程问题中的数量关系是解题关键.23.(1)完成这项工程的规定时间是20天;(2)选择方案三,理由见解析.【分析】(1)设完成这项工程的规定时间为x 天,则甲工程队需x 天完成这项工程,乙工程队需(x+5)天完成这项工程,根据由甲、乙两队合作做4天,剩下的工程由乙队单独做,即可得出关于x 的分式方程,解之并检验后即可得出结论.(2)根据总费用=每天需付费用×工作天数,分别求出方案一、三需付的工程款,比较后即可得出结论.【详解】(1)设完成这项工程的规定时间为x 天, 由题意得1144155x x x x -⎛⎫++=⎪++⎝⎭. 解得:20x .经检验,20x 是原方程的解,且符合题意.答:完成这项工程的规定时间是20天.(2)选择方案三,理由如下:方案一:所需工程款为20 2.142⨯=(万元);方案二:超过了规定时间,不符合题意;方案三:所需工程款为4 2.120 1.538.4⨯+⨯=(万元).∵42>38.4,∴ 选择方案三.【点睛】本题考查了分式方程的应用,解题的关键是:(1)由甲、乙两队合作做4天,剩下的工程由乙队单独做,列出关于x 的分式方程;(2)根据数量关系列式计算.24.21x x +,14【分析】 根据分式的运算法则对原式进行化简,再把已知条件变形为化简算式可以利用的形式后代入求解即可 .【详解】 解:原式321121x x x x x -=÷--+21(1)1(1)(1)x x x x x -=⋅-+- 21x x=+. 由已知可得:24x x +=, 把上式代入经化简后的原式可得原式14=. 【点睛】本题考查分式的化简与求值,熟练掌握分式的运算方法与整体代入的思想方法是解题关键.25.224a a -,6【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出a 的值,代入计算即可求出值.【详解】 解:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭ ()22244422a a a a a a ---=÷-- ()()224224a a a a a --=⋅-- 224a a =-.∵a 与2,3构成ABC 的三边长,∴ 3232a -<<+,即15a <<.∵ a 为整数,∴ a 为2或3或4.当2a =时,分母20a -=(舍去);当4a =时,分母40a -=(舍去).故a 的值只能为3.∴当3a =时,222423436a a -=⨯-⨯=.【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键. 26.1x =-【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【详解】解:方程两边乘()2x -,得 632x x +=-.1x =-.检验:当1x =-时,20x -≠. 所以,原方程的解为1x =-.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.。

人教版初中数学八年级数学上册第五单元《分式》检测(答案解析)

人教版初中数学八年级数学上册第五单元《分式》检测(答案解析)

一、选择题1.计算:2x y x y x y xy-⋅-=( ) A .x B .y x C .y D .1x2.下列说法:①解分式方程一定会产生增根;②方程4102x -=+的根为2;③方程11224=-x x 的最简公分母为2(24)-x x ;④1111x x x+=+-是分式方程.其中正确的个数是( )A .1B .2C .3D .43.已知2340x x --=,则代数式24x x x --的值是( ) A .3 B .2 C .13 D .124.要使分式()()221x x x ++-有意义,x 的取值应满足( )A .1x ≠B .2x ≠-C .1x ≠或2x ≠-D .1x ≠且2x ≠- 5.下列说法正确的是( )A .分式242x x --的值为零,则x 的值为2± B .根据分式的基本性质,m n 可以变形为22mx nxC .分式32xy x y-中的,x y 都扩大3倍,分式的值不变 D .分式211x x ++是最简分式 6.化简2111313x x x x +⎫⎛-÷ ⎪---⎝⎭的结果是( ) A .2 B .23x - C .41x x -- D .21x - 7.已知1x =是分式方程2334ax a x +=-的解,则a 的值为( ) A .1- B .1 C .3 D .3-8.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5 B .6 C .7 D .89.下列计算正确的个数为( )①555•2a a a =;②5510b b b +=;③1644n n ÷=;④247••y y y y =;⑤()()23•x x x --=-;⑥()7214a a --=;⑦()()234214•a a a -=;⑧()242a a a ÷-=-;⑨()03.141π-=.A .2B .3C .4D .510.下列计算正确的是( )A .1112a a a += B .2211()()a b b a +--=0 C .m n a -﹣m n a+=0 D .11a b b a +--=0 11.下列各式中,无论x 取何值,分式都有意义的是( ). A .132x - B .213x + C .231x x + D .21x x + 12.若分式2132x x x --+的值为0,则x 的值为( ) A .1- B .0C .1D .±1 二、填空题13.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++.参考上面的方法,解决下列问题:(1)将1a a +变形为满足以上结果要求的形式:1a a =+_________; (2)①将321a a +-变形为满足以上结果要求的形式:321a a +=-_________;②若321a a +-为正整数,且a 也为正整数,则a 的值为__________. 14.若分式方程13322a x x x--=--有增根,则a 的值是________. 15.如图是一个数值转换器,每次输入3个不为零的数,经转换器转换后输出3个新数,规律如下:当输入数分别为x ,y ,z 时,对应输出的新数依次为11x y z ++,11y z x ++,11z x y++.例如,输入1,2,3,则输出65,34,23.那么当输出的新数为13,14,15时,输入的3个数依次为____.16.如果实数x、y满足方程组30233x yx y+=⎧⎨+=⎩,求代数式(xyx y++2)÷1x y=+_____.17.计算:22311x x x-=+-____________.18.已知方程3a1aa44a--=--,且关于x的不等式组x ax b>⎧⎪⎨⎪≤⎩只有4个整数解,那么b的取值范围是____________.19.分式2(1)(3)32m mm m---+的值为0,则m=______________.20.计算:()30120202-⎛⎫---=⎪⎝⎭______.三、解答题21.(1)先化简,再求值:22228424m mm m m m+-⎛⎫+÷⎪--⎝⎭,其中m满足2430m m++=.(2)如图,在等边ABC中,D.E分别在边BC、AC上,且//DE AB,过点E作EF DE⊥交BC的延长线于点F.若3cmCD=,求DF的长.22.武汉某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?23.解方程:(1)3311xx x+=--(2)23425525x x x +=-+- 24.解答下列各题: (1)计算:()()()2233221x x x x x -⋅++--+(2)计算:()()()33323452232183a b cac a b a c -⋅÷-÷ (3)解分式方程:11222x x x++=-- 25.列方程解应用题为了提高学生的身体素质,落实教育部门“在校学生每天体育锻炼时间不少于1小时”的文件精神,某校开展了“阳光体育天天跑活动”,初中男生、女生分别进行1000米和800米的计时跑步.在一次计时跑步中,某班一名女生和一名男生的平均速度相同,且这名女生跑完800米所用时间比这名男生跑完1000米所用时间少56秒,求这名女生跑完800米所用时间是多少秒.26.观察下列等式:111122=-⨯,1112323=-⨯,1113434=-⨯. 将以上三个等式左、右两边分别相加得:1111111131122334223344++=-+-+-=⨯⨯⨯ (1)若n 为正整数,猜想并填空:1(1)n n =+______. (2)计算111111223344520202021+++++⨯⨯⨯⨯⨯的结果为______. (3)解分式方程:11122(2)(3)(3)(4)1x x x x x x ++=------.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据分式乘法计算法则解答.【详解】解:2x y x y x y xy-⋅-=x ,故选:A .【点睛】此题考查分式的乘法计算法则,熟记计算法则是解题的关键.2.B解析:B【分析】根据分式方程的定义、解分式方程、增根的概念及最简公分母的定义解答.【详解】解:分式方程不一定会产生增根,故①错误; 方程4102x -=+的根为x=2,故②正确; 方程11224=-x x 的最简公分母为2x(x-2),故③错误; 1111x x x+=+-是分式方程,故④正确; 故选:B .【点睛】 此题考查分式方程的定义、解分式方程、增根的概念及最简公分母的定义,熟记各定义及正确解方程是解题的关键.3.D解析:D【分析】利用等式的性质对2340x x --=变形可得43x x-=,利用分式的性质对24x x x --变形可得141x x--,从而代入求值即可. 【详解】由条件2340x x --=可知,0x ≠, ∴430x x --=,即:43x x-=, 根据分式的性质得:21144411x x x x x x x==------, 将43x x-=代入上式得:原式11312==-, 故选:D .【点睛】 本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键.4.D解析:D【分析】根据分式有意义的条件得出x +2≠0且x ﹣1≠0,计算即可.【详解】解:要使分式()()221x x x ++-有意义,必须满足x +2≠0且x ﹣1≠0,解得:x ≠﹣2且x ≠1,故选:D .【点睛】本题考查了分式有意义的条件,能根据分式有意义的条件得出x +2≠0且x ﹣1≠0是解此题的关键.5.D解析:D【分析】直接利用分式的值为零的条件以及分式的基本性质、最简分式的定义分别分析得出答案.【详解】A 、分式242x x --的值为零,则x 的值为−2,故此选项错误; B 、根据分式的基本性质,等式m n =22mx nx(x≠0),故此选项错误; C 、分式32xy x y-中的x ,y 都扩大3倍,分式的值扩大为3倍,故此选项错误; D 、分式211x x ++是最简分式,正确; 故选:D .【点睛】 此题主要考查了分式的值为零的条件以及分式的基本性质、最简分式的定义,正确掌握相关定义和性质是解题关键.6.D解析:D【分析】利用乘法分配律计算即可【详解】解:原式=11(3)(3)3(1)(1)x x x x x x +⋅--⋅--+-=1-31x x --=21x -, 故选D .【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.7.D解析:D【分析】先将分式方程化为整式方程,再将1x =代入求解即可.【详解】解:原式化简为81233ax a x +=-,将1x =代入得81233a a +=-解得-3a =.当a =-3时a -x=-3-1=-4≠0∴a =-3故选则:D .【点睛】本题考查分式方程的解.会将分式方程化为整式方程,解题关键将方程的解代入转化为a 的方程.8.C解析:C【分析】 根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值.【详解】 解分式方程2311a x x +=--,得53a x -=, ∵分式方程2311a x x +=--的解为非负数, ∴503a -≥, 解得a ≤5,∵关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩, ∵不等式组的解集为2y <-,∴2a ≥-,∵x-1≠0,∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个,故选:C .【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.9.C解析:C【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,零指数幂及积的乘方可得答案.【详解】解:①5510•a a a =,故①错误;②5552b b b +=,故②错误;③2164444n n n n n ÷=÷=,故③错误;④247••y y y y =,故④正确;⑤()()23•x x x --=-,故⑤正确;⑥()7214a a --=,故⑥正确; ⑦()()23428614•a a a a a -=-⋅=-,故⑦错误; ⑧()242a a a ÷-=,故⑧错误;⑨()03.141π-=,故⑨正确,正确的有4个.故选:C .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,零指数幂及积的乘方,解题的关键是灵活运用运算法则. 10.D解析:D【分析】直接根据分母不变,分子相加运算出结果即可.【详解】解:A 、112a a a+=,故错误; B 、原式=2211()()a b a b +--=22()a b -,故错误;C 、原式=m n m n a ---=﹣2n a ,故错误; D 、原式=11a b a b---=0,故正确. 故选D .【点睛】 本题主要考查了分式的加减法,解题的关键是掌握运算法则,此题基础题,比较简单. 11.B解析:B【分析】根据分式有意义的条件:分母不等于0确定答案.【详解】A 、若3x-2≠0,即23x ≠时分式有意义,故该选项不符合题意; B 、∵230x +>,∴无论x 取何值,分式都有意义,故该项符合题意; C 、∵20x ≥,∴x ≠0时分式有意义,故该选项不符合题意;D 、若210x +≠即12x ≠-时分式有意义,故该选项不符合题意; 故选:B .【点睛】此题考查分式有意义的的条件:分母不等于0. 12.A解析:A【分析】根据分式值为零的条件列出方程和不等式,解方程和不等式得到答案.【详解】由题意得:|x|−1=0,x 2−3x+2≠0,解得,x =-1,故选:A .【点睛】本题考查的是分式为零的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键.二、填空题13.2或6【分析】(1)根据材料中分式转化变形的方法即可把变形为满足要求的形式;(2)①根据材料中分式转化变形的方法即可把变形为满足要求的形式;②令可先求出a 与x 是整数时的对应值再从所得结果中找出符合条 解析:111a -+ 531a +- 2或6【分析】(1)根据材料中分式转化变形的方法,即可把1a a +变形为满足要求的形式; (2)①根据材料中分式转化变形的方法,即可把321a a +-变形为满足要求的形式;②令325311a x a a +==+--,可先求出a 与x 是整数时的对应值,再从所得结果中找出符合条件的a ,x 的值,即可得出结论.【详解】 解:(1)1111111a a a a a +-==-+++; 故答案为:111a -+; (2)①323(1)553111a a a a a +-+==+---; 故答案为:531a +-; ②∵323(1)553111a a a a a +-+==+--- 令531x a =+-, 当x , a 都为整数时,11a -=±或15a -=±,解得a =2或a =0或a =6或a =-4,当a =2时,x =8;当a =0时,x =-2;当a =6时,x =4;当a =-4时,x =2;∵x , a 都为正整数,∴符合条件的a 的值为2或6.故答案为:2或6.【点睛】此题考查了分式的加减及求分式的值等知识,理解题意并熟练掌握分式的基本性质及运算法则是解本题的关键.14.【分析】分式方程去分母转化为整式方程由分式方程有增根求出x 的值代入整式方程计算即可求出a 的值【详解】去分母得:1-3x+6=-3a+x 由分式方程有增根得到x−2=0即x =2把x =2代入得:1-6+6 解析:13【分析】分式方程去分母转化为整式方程,由分式方程有增根求出x 的值,代入整式方程计算即可求出a 的值.【详解】去分母得:1-3x+6=-3a+x ,由分式方程有增根,得到x−2=0,即x =2,把x =2代入得:1-6+6=-3a+2,解得:a =13, 故答案为:13. 【点睛】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.15.11【分析】根据转换器转换后输出3个新数得到关于xyz 的方程组解之即可【详解】解:根据题意得:则3(x+y+z )=xy+zx①4(x+y+z )=xy+yz②5(x+y+z )=yz+zx③①+②+③得 解析:113,112,11 【分析】 根据转换器转换后输出3个新数得到关于x 、y 、z 的方程组,解之即可【详解】解:根据题意得:111=3++x y z ,111=4++y z x ,111=5++z x y , 则3(x+y+z )=xy+zx①,4(x+y+z )=xy+yz②,5(x+y+z )=yz+zx③,①+②+③,得6(x+y+z )=xy+yz+zx ,④④﹣①,得3(x+y+z )=yz⑤,④﹣②,得2(x+y+z )=zx⑥,④﹣③,得x+y+z=xy⑦, ∴23x y =,z=2y , 把23x y =,z=2y 代入⑦,得y (2y ﹣11)=0, ∴y=112(由题意知y≠0), ∴x=113,z=11, ∴x=113,y=112,z=11【点睛】本题考查了分式的混合运算、方程组的计算.解题关键是求出6(x+y+z )=xy+yz+zx ,进而用y 分别表示x 、z .16.1【分析】先进行分式计算再解方程组代入即可求解【详解】解:原式==xy+2x+2y 解方程组得:当x=3y=﹣1时原式=﹣3+6﹣2=1故答案为:1【点睛】此题考查了分式的化简求值熟练进行分式化简解出解析:1【分析】先进行分式计算,再解方程组,代入即可求解.【详解】解:原式=()22xy x y x y x y++⋅++=xy +2x +2y , 解方程组30233x y x y +=⎧⎨+=⎩得:31x y =⎧⎨=-⎩, 当x =3,y =﹣1时,原式=﹣3+6﹣2=1.故答案为:1.【点睛】此题考查了分式的化简求值,熟练进行分式化简,解出二元一次方程组是解本题的关键. 17.【分析】根据通分可化成同分母分式根据同分母分式的加减可得答案【详解】故答案为:【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键 解析:323x x x-- 【分析】根据通分,可化成同分母分式,根据同分母分式的加减,可得答案.【详解】()()()()()()()3313323111111x x x x x x x x x x x x x x x x-----==+-+-+--. 故答案为:323x x x--. 【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键. 18.【分析】分式方程去分母转化为整式方程求出整式方程的解得到a 的值经检验确定出分式方程的解根据已知不等式组只有4个整数解即可确定出b 的范围【详解】解:分式方程去分母得:3﹣a ﹣a2+4a =﹣1整理得:a解析:34b ≤<【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,经检验确定出分式方程的解,根据已知不等式组只有4个整数解,即可确定出b 的范围.【详解】解:分式方程去分母得:3﹣a ﹣a 2+4a =﹣1,整理,得:a 2﹣3a ﹣4=0,即(a ﹣4)(a +1)=0,解得:a =4或a =﹣1,经检验a =4是增根,故分式方程的解为a =﹣1,∴原不等式组的解集为﹣1<x ≤b ,∵不等式组只有4个整数解,∴3≤b <4,故答案为:3≤b <4.【点睛】此题考查了分式方程的解,以及一元一次不等式组的整数解,弄清题意是解本题的关键. 19.3【分析】要使分式的值为0必须分式分子的值为0并且分母的值不为0【详解】解:要使分式由分子解得:或3;而时分母;当时分母分式没有意义所以的值为3故答案为:3【点睛】本题主要考查了分式的值为零的条件要 解析:3【分析】要使分式的值为0,必须分式分子的值为0并且分母的值不为0.【详解】解:要使分式由分子(1)(3)0m m --=.解得:1m =或3;而3m =时,分母23220m m -+=≠;当1m =时分母2321320m m -+=-+=,分式没有意义.所以m 的值为3.故答案为:3.【点睛】本题主要考查了分式的值为零的条件,要注意分母的值一定不能为0,分母的值是0时分式没有意义.20.9【分析】根据零指数幂与负整数指数幂的运算法则进行求解【详解】故答案为:9【点睛】本题考查了零指数幂与负整数指数幂熟练掌握其运算法则是解题的关键解析:9【分析】根据零指数幂与负整数指数幂的运算法则进行求解.【详解】()30120201(8)1892-⎛⎫---=--=+= ⎪⎝⎭. 故答案为:9.【点睛】 本题考查了零指数幂与负整数指数幂,熟练掌握其运算法则是解题的关键.三、解答题21.(1)()212m +,1;(2)6cm 【分析】(1)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除法法则变形,约分得到最简结果,将已知方程变形后代入计算即可求出值(2) 先求得CD =DE ,然后由Rt △DEF 中30°所对的边等于斜边的一半进行求解即可.【详解】(1)解:原式()2(2)28(2)(2)(2)m m m m m m m m +-⎛⎫+=+÷⎪--+⎝⎭ ()()()()()()()()()()()2222822222222212m m m m m m m m m m m m m m m m +-=⨯-++--=⨯+-+-=+ 2430m m ++=∴22(2)44341m m m +=++=-+=∴原式1=;(2)∵ABC 是等边三角形,∴60B A ︒∠=∠=,∵//DE AB ,∴60EDC B ︒∠=∠=,60DEC A ︒∠=∠=,∴EDC △是等边三角形.∵EF DE ⊥,∴90DEF ︒∠=,∴9030F EDC ︒︒∠=-∠=;∴26cm DF DE ==.【点睛】本题有两个问题第(1)题考查了分式的化简求值,以及分式的乘除法,熟练掌握运算法则是解本题的关键. 第(2)题主要考查的是等边三角形的性质和30°所对的边等于斜边的一半,熟练掌握相关知识是解题的关键.22.(1)甲单独做需60天,乙单独做需30天;(2)应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【分析】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-,根据“若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完成”,即可得出关于x 的分式方程,解之并检验后即可得出结论;(2)分两种情况:①若剩下工程甲单独做还需(603m -)天,②若剩下工程乙单独做还需(30 1.5)m -天,列出不等式,即可求解.【详解】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-, 401110120x x ⎛⎫∴+-= ⎪⎝⎭,解得:60x =, 经检验60x =为原方程的解,∴甲单独做需60天,乙单独做需30天;(2)设甲、乙合作了m 天①若剩下工程甲单独做还需1120603160m m -=- 60324m m ∴+-≤,解得:18m ≥;②若剩下工程乙单独做还需112030 1.5130m m -=- 30 1.524m m ∴+-≤,解得:12m ≥由①②可知m 的最小值为12,所以应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【点睛】本题主要考查分式的实际应用以及一元一次不等的实际应用,找到等量关系和不等量关系,列出方程和不等式,是解题的关键.23.(1)3x =;(2)1x =【分析】(1)先去分母,再解整式方程求解,检验解是否为原方程的解即可;(2)先去分母,再解整式方程求解,检验解是否为原方程的解即可.【详解】解:(1)方程两边同乘1x -,得33(1)x x +=-,解得3x =,检验:当3x =时10x -≠,∴原分式方程的解为3x =;(2)方程两边同乘(5)(5)x x -+,得3(5)4(5)2x x ++-=,解得1x =,检验:当1x =时,(5)(5)0x x -+≠,∴原分式方程的解为1x =.【点睛】此题考查解分式方程,掌握解方程的步骤:先去分母,再解整式方程求解,检验解是否为原方程的解.24.(1)5x -;(2)19b ;(3)23x =【分析】(1)首先利用同底数幂的乘法法则、平方差公式、完全平方公式计算,然后合并同类项求出答案;(2)先算积的乘方、幂的乘方,再从左到右计算同底数幂的乘法除法求出答案;(3)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】解:(1)()()()2233221x x x x x -⋅++--+=223421x x x x +----=5x -;(2)()()()33323452232183a b cac a b a c -⋅÷-÷ =()()963345662721827a b c ac a b a c -⋅÷-÷=()()10664566541827a b c a b a c -÷-÷=()6666327a bc a c ÷ =19b ; (3)解分式方程:11222x x x++=-- 去分母得:1+2(x-2)=-(1+x ),去括号合并得,2x-3=-1-x ,移项合并得,3x=2,解得:23x =, 经检验23x =是分式方程的解. 【点睛】 此题主要考查了整式的混合运算,正确掌握运算法则是解题关键.也考查了解分式方程,去分母转化为整式方程是关键.25.这名女生跑完800米所用时间是224秒【分析】设这名女生跑完800米所用时间x 秒,由题意可得关于x 的分式方程,解分式方程并经过检验即可得到问题答案.【详解】解:设这名女生跑完800米所用时间x 秒,则这名男生跑完1000米所用时间(56)x +秒, 根据题意,得800100056x x =+. 解得:224=x .经检验,224=x 是所列方程的解,并且符合实际问题的意义.答:这名女生跑完800米所用时间是224秒.【点睛】本题考查分式方程的应用,根据题目中的数量关系正确地列出分式方程并求解是解题关键.26.(1)111n n -+;(2)20202021;(3)7x =. 【分析】(1)观察已知等式可得:连续整数乘积的倒数等于较小数的倒数与较大数的倒数的差,据此可得111(1)1n n n n =-++; (2)利用所得规律列出算式1111111223320202021-+-+++-,再两两相消即可得112021-,计算后可得结果; (3)由所得规律对分式方程进行整理,可变形为111112232431x x x x x x +-+-=------,最终化简为1241x x =--,求解此方程即可. 【详解】 解:(1)∵111122=-⨯,1112323=-⨯,1113434=-⨯, ∴当n 为正整数时,111(1)1n n n n =-++.故答案为:111n n -+. (2)111111223344520202021+++++⨯⨯⨯⨯⨯ 111111112233420202021=-+-+-+- 112021=- 20202021=. 故答案为:20202021. (3)原方程变形为:111112232431x x x x x x +-+-=------, ∴1241x x =--, 去分母,得:12(4)x x -=-,解得7x =,经检验,7x =是原方程的解.【点睛】本题考查了数字的变化规律及解分式方程,解题的关键是理解题意,找出数字的变化规律,并准确运用所得规律求解分式方程.。

上海市南中学八年级数学上册第五单元《分式》测试卷(含答案解析)

上海市南中学八年级数学上册第五单元《分式》测试卷(含答案解析)

一、选择题1.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( ) A .扩大到原来的3倍 B .缩小到原来的13 C .保持不变 D .无法确定 2.化简221x x x ++÷(1-11x +)的结果是( ) A .11x + B .11x - C .x+1 D .x-13.关于x 的一元一次不等式组31,224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my y y y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9 B .10 C .13 D .144.世界上数小的开花结果植物是激大利亚的出水浮萍,这种植物的果实像一个微小的无花架,质做只有0.000000076克,0.000000076用科学记数法表示正确的是( ) A .-60.7610⨯ B .-77.610⨯ C .-87.610⨯ D .-97.610⨯ 5.如果a ,b ,c ,d 是正数,且满足a +b +c +d =2,11a b c b c d ++++++11a c d a b d+++++=4,那么d a a b c b c d ++++++b c a c d a b d+++++的值为( ) A .1 B .12 C .0 D .46.计算:2x y x y x y xy-⋅-=( ) A .x B .y x C .y D .1x7.PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A .50.2510-⨯B .60.2510-⨯C .72.510-⨯D .62.510-⨯8.若a 与b 互为相反数,则22201920212020a b ab+=( ) A .-2020 B .-2 C .1 D .29.下列式子的变形正确的是( )A .22b b a a= B .22+++a b a b a b = C .2422x y x y x x --= D .22m n n m-=- 10.已知a 、b 为实数且满足a ≠﹣1,b ≠﹣1,设M =11a b a b +++,N =1111a b +++,则下列两个结论( ) ①ab =1时,M =N ;ab >1时,M <N .②若a +b =0,则M •N ≤0.A .①②都对B .①对②错C .①错②对D .①②都错 11.下列各式计算正确的是( )A .33x x y y= B .632m m m = C .22a b a b a b +=++ D .32()()a b a b b a -=-- 12.化简214a 2a 4---的结果为( ) A .1a 2+ B .a 2+ C .1a 2- D .a 2-二、填空题13.对于两个不相等的实数a ,b ,我们规定符号{}min ,a b 表示a ,b 中的较小的值,如{}min 2,42=.(1){}min 2,3--=__________________.(2)方程{}3min 2,322x x x --=---的解为_________________. (3)方程131min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_________________. 14.若关于x 的分式方程233x m x x=---的解为正数,则常数m 的取值范围是______. 15.已知13x x-=,则21x x ⎛⎫+= ⎪⎝⎭________. 16.已知实数a 、b 满足32a b =,则a b a b +-_________. 17.下列计算:①3100.0001-=;②()00.00011=;③()()352x x x --÷-=-;④22133aa-=;⑤()()321m m m m a a a -÷=-.其中运算正确的有______.(填序号即可) 18.已知215a a+=,那么2421a a a =++________. 19.计算:()222333a b a b --⋅=_______________.20.计算:()30120202-⎛⎫---= ⎪⎝⎭______. 三、解答题21.先化简:2214(1)221x x x x •-+--+,再选一个合适的数作为x 的值代入求值. 22.先化简,再求值:(x ﹣1﹣21x x +)÷221x x x ++,其中x =3. 23.(1)计算:22y x x y x y-++ (2)解方程:4322x x x=+-- 24.先化简,再求值:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中a 与2,3构成ABC 的三边长,且a 为整数.25.解方程:312(2)x x x x -=-- 26.先化简,再求值:2222631121x x x x x x x ++-÷+--+,其中2x =-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案.【详解】222(3)93333()x x x x y x y x y==⨯+++, 故分式的值扩大到原来的3倍,故选:A .【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键. 2.A解析:A【分析】首先把括号里因式进行通分,然后把除法运算转化成乘法运算,进行约分化简.【详解】解:原式=22211(1)1(1)1(1)1x x x x x x x x x +-+÷=⋅=++++ , 故选A.【点睛】本题考查了分式的混合运算,能正确根据分式的运算法则进行化简是解题的关键. 3.A解析:A【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可.【详解】 解:31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得x≤2m+2,解②得x≤4,∵不等式组31224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4,∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my y y y--+=--有整数解, ∴m=1,3,5,∵y-2≠0,∴y≠2, ∴322m ≠-,∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9.故选A .【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键. 4.C解析:C【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】0.000000076=87.610-⨯,故选:C【点睛】此题考查了科学记数法,注意n 的值的确定方法,当原数小于1时,n 是负整数,n 等于原数左数第一个非零数字前0的个数,按此方法即可正确求解5.D解析:D【分析】根据a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++,将所求式子变形便可求出.【详解】∵a +b +c +d =2,11114a b c b c d b c d b c d +++=++++++++, ∴d a b c a b c b c d a c d a b d+++++++++++ =2()2()2()2()a b c b c d a c d a b d a b c b c d a c d a b d-++-++-++-+++++++++++++ =2a b c ++﹣1+2b c d ++﹣1+2a c d ++﹣1+2a b d++﹣1 =2×(1111a b c b c d a c d a b d+++++++++++)﹣4 =2×4﹣4=8﹣4=4,故选:D .本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.6.A解析:A【分析】根据分式乘法计算法则解答.【详解】 解:2x y x y x y xy-⋅-=x , 故选:A .【点睛】此题考查分式的乘法计算法则,熟记计算法则是解题的关键.7.D解析:D【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】0.0000025=62.510-⨯,故选:D .【点睛】此题考查了科学记数法,注意n 的值的确定方法:当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.8.B解析:B【分析】a 与b 互为相反数,由相反数的定义与性质得22=,a b a b -=,将代数式中字母统一成b,合并约分即可.【详解】∵a 与b 互为相反数,∴22=,a b a b -=,222222019202120192021220202020a b b b ab b++==--, 故选择:B .【点睛】本题考查分式求值问题,掌握相反数的定义与性质,会利用相反数将代数式的字母统一为b 是解题关键.9.C【分析】根据分式的性质逐一判断即可.【详解】解:A. 22b b a a=不一定正确; B. 22+++a b a b a b=不正确; C.2422x y x y x x --=分子分母同时除以2,变形正确; D. 22m n n m-=-不正确; 故选:C .【点睛】本题考查分式的基本性质,掌握分式的基本性质是解题的关键.10.C解析:C【分析】对于①,计算M-N 的值可以判断M>N 还是M<N ;对于②,计算M N 的值,然后根据a 、b 满足的条件判断其大于0还是小于0.【详解】∵M =11a b a b +++,N = 1111a b +++, ∴M ﹣ N =11a b a b +++﹣( 1111a b +++) =22(1)(1)ab a b -++, ①当ab =1时,M ﹣N =0,∴M =N ,当ab >1时,2ab >2,∴2ab ﹣2>0,当a <0时,b <0,(a +1)(b +1)>0或(a +1)(b +1)<0,∴M ﹣N >0或M ﹣N <0,∴M >N 或M <N ;故①错误;②M •N =(11a b a b +++)•( 1111a b +++) =()()()()221111aa b b a b a b +++++++.∵a +b =0,∴原式=()()2211ab a b +++ =224(1)(1)ab a b ++. ∵a ≠﹣1,b ≠﹣1,∴(a +1)2(b +1)2>0.∵a +b =0,∴ab ≤0,M •N ≤0,故②对.故选:C .【点睛】本题考查分式运算的应用,熟练掌握分式的运算法则是解题关键.11.D解析:D【分析】根据分式的基本性质进行判断即可得到结论.【详解】解:A 、33x y 是最简分式,所以33x x y y≠,故选项A 不符合题意; B 、624m m m=,故选项B 不符合题意; C 、22a b a b++是最简分式,所以22a b a b a b +≠++,故选项C 不符合题意; D 、3322()()()()a b a b a b b a a b --==---,正确, 故选:D .【点睛】此题考查了分式的约分,以及最简分式的判断,分式的约分关键是找公因式,约分时,分式分子分母出现多项式,应先将多项式分解因式后再约分,最简分式即为分式的分子分母没有公因式.12.A解析:A【分析】根据分式的减法可以解答本题.【详解】解:()()214a 241a 2a 4a 2a 2a 2+--==--+-+, 故选:A .【点睛】本题考查异分母分式的减法运算,解答本题的关键是明确公分母.二、填空题13.-3【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程求解即可;(3)根据题中的新定义化简求出分式方程的解检验即可【详解】解:(1)根据题意;(2)原方程为:去分母得解得:经检验是该解析:-3 34x =0x = 【分析】(1)模仿题干可直接给出答案;(2)先将原式转化为分式方程,求解即可;(3)根据题中的新定义化简,求出分式方程的解,检验即可.【详解】解:(1)根据题意,{}min 2,33--=-; (2)原方程为:3322x x x-=---, 去分母得33(2)x x +=--, 解得:34x =,经检验34x =是该方程的根, 故{}3min 2,322x x x --=---的解为:34x =; (3)当1322x x <--时,x >2,方程变形得:11222x x x -=---, 去分母得:1=x-1-2x+4,解得:x=2,不符合题意; 当1322x x >--时,即x <2,方程变形得:31222x x x -=---, 解得:x=0,经检验x=0是分式方程的解,综上,所求方程的解为x=0. 故答案为:-3,34x =,0x =. 【点睛】本题考查新定义的实数运算,解分式方程.能将题目新定义的运算化为一般运算是解题关键.14.且【分析】分式方程去分母转化为整式方程由分式方程的解为正数确定出a 的范围即可【详解】解:∵∴∴∵方程的解为正数则∴∵∴;∴常数的取值范围是且;故答案为:且【点睛】此题考查了分式方程的解分式有意义的条 解析:6m <且3m ≠-【分析】分式方程去分母转化为整式方程,由分式方程的解为正数确定出a 的范围即可.【详解】解:∵233x m x x=---, ∴62x x m =--, ∴63m x -=, ∵方程的解为正数,则603m x -=>, ∴6m <, ∵633m x -=≠, ∴3m ≠-;∴常数m 的取值范围是6m <且3m ≠-;故答案为:6m <且3m ≠-.【点睛】此题考查了分式方程的解,分式有意义的条件,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.15.13【分析】把已知等式两边分别平方适当变形后再将所求代数式展开整体代入求解【详解】解:∵∴即∴故答案为:13【点睛】此题主要考查了分式的求值以及完全平方公式正确运用公式是解题关键解析:13【分析】把已知等式两边分别平方适当变形后,再将所求代数式展开整体代入求解.【详解】解:∵13x x-=, ∴2211()29x x x x -=+-=,即22111x x +=, ∴22211211213x x x x ⎛⎫+=++=+= ⎪⎝⎭,故答案为:13.【点睛】此题主要考查了分式的求值以及完全平方公式,正确运用公式是解题关键.16.5【分析】根据已知用b 表示a 然后把a 的值代入所求的代数式分子分母约掉b 后可以得到解答【详解】∴∴故答案为:5【点睛】本题考查分式的化简与求值熟练掌握分式化简与求值的各种方法是解题关键解析:5【分析】根据已知用b 表示a ,然后把a 的值代入所求的代数式,分子分母约掉b 后可以得到解答.【详解】 32a b =, ∴32a b = ∴32532b ba b a b b b ++==--, 故答案为:5.【点睛】本题考查分式的化简与求值,熟练掌握分式化简与求值的各种方法是解题关键. 17.②⑤【分析】根据负整数指数幂零指数幂同底数幂的除法法则进行计算逐个判断即可【详解】解:;故①计算错误;;②计算正确;;故③计算错误;;故④计算错误故⑤计算正确故答案为:②⑤【点睛】本题考查同底数幂的解析:②⑤.【分析】根据负整数指数幂、零指数幂、同底数幂的除法法则进行计算,逐个判断即可.【详解】解:3110=0.0011000-=;故①计算错误; ()00.00011=;②计算正确; ()()22352()1x x x x x --=-÷=-=-;故③计算错误; 2233a a-=;故④计算错误 ()()333221(1)=(1)mm m m m m m m a a a a a a -÷=-⨯÷=--,故⑤计算正确故答案为:②⑤.【点睛】本题考查同底数幂的除法,积的乘方以及零指数幂,负整数指数幂的计算,掌握运算法则正确计算是解题关键.18.【分析】将变形为=5a 根据完全平方公式将原式的分母变形后代入=5a 即可得到答案【详解】∵∴=5a ∴故答案为:【点睛】此题考查分式的化简求值完全平方公式根据已知等式变形为=5a 将所求代数式的分母变形为 解析:124【分析】 将215a a+=变形为21a +=5a ,根据完全平方公式将原式的分母变形后代入21a +=5a ,即可得到答案.【详解】 ∵215a a+=, ∴21a +=5a , ∴2421a a a =++()()2222222221242451a a a a a a a a ===-+- 故答案为:124. 【点睛】 此题考查分式的化简求值,完全平方公式,根据已知等式变形为21a +=5a ,将所求代数式的分母变形为22(1)a a +-形式,再代入计算是解题的关键. 19.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b ----+-===故答案为:3a b . 【点睛】本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.20.9【分析】根据零指数幂与负整数指数幂的运算法则进行求解【详解】故答案为:9【点睛】本题考查了零指数幂与负整数指数幂熟练掌握其运算法则是解题的关键解析:9【分析】根据零指数幂与负整数指数幂的运算法则进行求解.【详解】()30120201(8)1892-⎛⎫---=--=+= ⎪⎝⎭. 故答案为:9.【点睛】 本题考查了零指数幂与负整数指数幂,熟练掌握其运算法则是解题的关键.三、解答题21.21x x +-,-2 【分析】 先把括号内通分,再把分子与分母因式分解和除法运算化为乘法运算,约分后得到原式=21x x +-,由于x 不能取1,2,所以把可把x =0代入计算. 【详解】解:原式=221(2)(2)2(1)x x x x x -++-⋅-- =21(2)(2)2(1)x x x x x -+-⋅-- =21x x +-, 当x=0时,原式=-2.【点睛】本题考查了分式的化简求值:先把分式的分子或分母因式分解(有括号,先算括号),然后约分得到最简分式或整式,然后把满足条件的字母的值代入计算得到对应的分式的值. 22.14,3x x +-- 【分析】根据分式的减法和除法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】解:原式=(x ﹣1﹣21x x +)÷221x x x ++ =22(1)(1)()111x x x x x x x ⎡⎤-++-⋅⎢⎥⎣⎦++ =2221(1)1x x x x x--+⋅+ =1x x+- 当x =3时,原式=31433+-=-. 【点睛】本题主要考查分式的化简求值,熟练掌握分式的减法和除法法则,是解题的关键. 23.(1)y x -;(2)5x =.【分析】(1)根据分式运算的性质,结合平方差公式计算,即可得到答案;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解.【详解】(1)22y x x y x y-++, =22y x x y-+, =()()x y x y x y +--+,=()x y y x --=-,y x =-;(2)4322x x x=+--, 去分母得()4=32x x --,去括号得436x x =--,移项合并得210x =,系数化1得5x =,当x=5时,25230x -=-=≠,所以x=5是原方程的解.【点睛】本题考查了分式的混合运算及解分式方程,能正确根据分式的运算法则进行化简以及掌握解分式方程的方法是解答此题的关键,注意解分式方程要验根.24.224a a -,6【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出a 的值,代入计算即可求出值.【详解】 解:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭ ()22244422a a a a a a ---=÷-- ()()224224a a a a a --=⋅-- 224a a =-.∵a 与2,3构成ABC 的三边长,∴ 3232a -<<+,即15a <<.∵ a 为整数,∴ a 为2或3或4.当2a =时,分母20a -=(舍去);当4a =时,分母40a -=(舍去).故a 的值只能为3.∴当3a =时,222423436a a -=⨯-⨯=.【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键. 25.32x =【分析】 按照解分式方程的步骤先去分母,再解整式方程,最后检验即可.【详解】解:方程两边乘()2x x -,得()223x x x --=. 解得32x =, 检验:当32x =时,()20x x -≠. ∴原分式方程的解为32x =. 【点睛】本题考查了分式方程的解法,熟练掌握分式方程解题步骤是解题关键,注意:解分式方程一定要检验.26.21x +,-2 【分析】 先将分式的分子分母因式分解,同时将除法转化为乘法,再计算分式的乘法,最后计算分式的减法即可.【详解】 解:2222631121x x x x x x x ++-÷+--+ 222(3)(1)1(1)(1)3x x x x x x x +-=-⋅++-+ 22(1)11x x x x -=-++ 21x =+, 当2x =-时,原式222211===--+-. 【点睛】 本题主要考查分式的化简求值,熟练掌握分式混合运算顺序和运算法则是解题的关键.。

(常考题)人教版初中数学八年级数学上册第五单元《分式》检测题(答案解析)

(常考题)人教版初中数学八年级数学上册第五单元《分式》检测题(答案解析)

一、选择题1.关于x 的一元一次不等式组31,224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my y y y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9B .10C .13D .14 2.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >- B .1m ≠ C .1m D .1m >-且1m ≠3.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ay y y ++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4B .5C .6D .3 4.关于x 的分式方程5222m x x +=--有增根,则m 的值为( ) A .2m =B .2m =-C .5m =D .5m =- 5.化简分式2xy x x +的结果是( ) A .y x B .1y x + C .1y + D .y x x + 6.关于代数式221a a +的值,以下结论不正确的是( ) A .当a 取互为相反数的值时,221a a +的值相等 B .当a 取互为倒数的值时,221a a +的值相等 C .当1a >时,a 越大,221a a+的值就越大 D .当01a <<时,a 越大,221a a+的值就越大 7.下列运算正确的是( ) A .236a a a ⋅= B .22a a -=-C .572a a a ÷=D .0(2)1(0)a a =≠ 8.小红用15元买售价相同的软面笔记本,小丽用24元买售价相同的硬面笔记本(两人的钱恰好用完)已知每本硬面笔记本比软面笔记本贵3元,且小红和小丽买到相同数量的笔记本.设硬面笔记本每本售价为x 元,根据题意可列出的方程为( )A .1524x x 3=+B .1524x x 3=- C .1524x 3x =+ D .1524x 3x =- 9.下列计算正确的是( ) A .22a a a ⋅=B .623a a a ÷=C .2222a b ba a b -=-D .3339()28a a-=- 10.若分式()22222x y x y a x a y ax ay+-÷-+的值等于5,则a 的值是( ) A .5 B .-5 C .15 D .15- 11.从7-、5-、3-、1-、3、6这六个数中,随机抽取一个数,记为k ,若数k 使关于x 的分式方程3211k x x +=--的解为非负数,那么这6个数中所有满足条件的k 的值之和是( )A .4-B .0C .3D .6 12.若220.3,3a b --=-=-,213c -⎛⎫=- ⎪⎝⎭,013d ⎛⎫=- ⎪⎝⎭,则( ) A .a b c d <<< B .b a c d <<< C .b a d c <<< D .a b d c <<<二、填空题13.已知3m n +=.则分式222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭的值是_________. 14.计算:111x x---的结果是________. 15.计算:1 2+123⨯+134⨯+145⨯+…+()1n 1n -+()1n n 1+=______. 16.2112111a a a a +-+--=___________. 17.下列计算:①3100.0001-=;②()00.00011=;③()()352x x x --÷-=-;④22133aa -=;⑤()()321m m m m a a a -÷=-.其中运算正确的有______.(填序号即可)18.计算:()222333a b a b --⋅=_______________.19.计算:11|1|3-⎛⎫-= ⎪⎝⎭______.20.计算:051)-+=__.三、解答题21.(11201(2)(3)2π-⎛⎫---+ ⎪⎝⎭(2)化简:2(2)()x x y x y --+ 22.水果店在批发市场购买某种水果销售,第一次用2000元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用2496元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)第一次水果的进价是每千克多少元?(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元? 23.某人承包1125平方米的铺地砖任务,计划在一定的时间内完成,按计划工作3天后,提高了工作效率,使每天铺地砖的面积为原计划的1.5倍,结果提前4天完成了任务,则原计划每天铺地多少平方米?24.雪梨是石家庄市某地的特色时令水果.雪梨上市后,水果店的老板用2400元购进一批雪梨,很快售完;老板又用3750元购进第二批雪梨,所购件数是第一批的32倍,但进价比第一批每件多了5元.(1)求第一批雪梨每件进价是多少元?(2)老板以每件225元的价格销售第二批雪梨,售出80%后,为了尽快售完,剩下的决定打折促销,要使得第二批雪梨的销售利润为2460元,剩余的雪梨每件售价应该打几折?(利润=售价-进价)25.今年双11期间开州区紫水豆干凭借过硬的质量、优质的口碑大火,豆干店的王老板用2500元购进一批紫水豆干,很快售完;王老板又用4400元购进第二批紫水豆干,所购数量是第一批的2倍,由于进货量增加,进价比第一批每千克少了3元.(1)第一批紫水豆干每千克进价多少元?(2)该老板在销售第二批紫水豆干时,售价在第二批进价的基础上增加了%a ,售出80%后,为了尽快售完,决定将剩余紫水豆干在第二批进价的基础上每千克降价325a 元进行促销,结果第二批紫水豆干的销售利润为1520元,求a 的值.(利润=售价-进价)26.解分式方程:63122x x x -=--.【参考答案】***试卷处理标记,请不要删除一、选择题1.A【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可.【详解】 解:31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得x≤2m+2,解②得x≤4,∵不等式组31224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4,∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my y y y --+=--有整数解, ∴m=1,3,5,∵y-2≠0,∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9.故选A .【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键. 2.D解析:D分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可.【详解】去分母得:m-1=2x-2,解得:x=12+m , 由方程的解为正数,得到12+m >0,且12+m ≠1, 解得:1m >-且1m ≠,故答案为:1m >-且1m ≠【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 3.A解析:A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩, ∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解, ∴2015a +<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a =, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3∴所有满足条件的整数a 的值之和是4,故选A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.4.D解析:D先把分式方程化为整式方程,再把增根代入整式方程,即可求解.【详解】5222m x x+=-- 去分母得:52(2)x m +-=-,∵关于x 的分式方程5222m x x+=--有增根,且增根x=2, ∴把x=2代入52(2)x m +-=-得,5m =-,即:m=-5, 故选D .【点睛】本题主要考查分式方程的增根,掌握分式方程增根的定义:使分式方程的分母为零的根,叫做分式方程的增根,是解题的关键.5.B解析:B【分析】先把分子因式分解,再约分即可.【详解】 解:22(1)1xy x x y y x x x+++==. 故选:B .【点睛】 本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.6.D解析:D【分析】根据相反数的性质,倒数的性质以及不等式的性质来解决代数式的值即可;【详解】当a 取互为相反数的值时,即取m 和-m ,则-m+m=0,当a 取m 时,①222211=m a a m ++ ,当a 取-m 时,②()()222222111a m m a m m +=-+=+- , ①=②,故A 正确; B 、当a 取互为倒数的值时,即取m 和1m ,则11m m ⨯= , 当a 取m 时,①222211=m a a m ++,当a 取1m时,②2222221111m 1m a m a m ⎛⎫+=+=+ ⎪⎝⎭⎛⎫ ⎪⎝⎭ ①=②,故B 正确;C 、可举例判断,由a >1得,取a=2,3(2<3) 则22112=424++< 22113=939++ , 故C 正确; D 、可举例判断,由01a <<得,取a=12,13(12>13) 2222111111=4+=924391123⎛⎫⎛⎫+++ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭< , 故D 错误;故选:D .【点睛】本题考查了相反数的性质,倒数的性质,不等式的性质和代数式求值的知识,正确理解题意是解题的关键.7.D解析:D【分析】运用同底数幂乘法、负整数次幂、同底数幂除法以及零次幂的知识逐项排查即可.【详解】解:A. 235a a a ⋅=,故A 选项不符合题意; B. 221a a -=,故B 选项不符合题意; C. 572a a a -÷=,故C 选项不符合题意;D. 0(2)1(0)a a =≠,故D 选项符合题意.故填:D .【点睛】本题主要考查了同底数幂乘法、负整数次幂、同底数幂除法、零次幂等的知识点,灵活运用相关运算法则是解答本题的关键.8.D解析:D【分析】由设硬面笔记本每本售价为x 元,可得软面笔记本每本售价为()x 3-元,根据小红和小丽买到相同数量的笔记本列得方程.【详解】解:设硬面笔记本每本售价为x 元,则软面笔记本每本售价为()x 3-元, 根据题意可列出的方程为:1524x 3x=-. 故选:D .【点睛】此题考查分式方程的实际应用,正确理解题意找到题中的等量关系,由此列得方程是解题的关键. 9.C解析:C【分析】A 、B 两项利用同底数幂的乘除法即可求解,C 项利用合并同类项法则计算即可,D 项利用分式的乘方即可得到结果,即可作出判断.【详解】解:A 、原式=a 3,不符合题意;B 、原式=a 4,不符合题意;C 、原式=-a 2b ,符合题意;D 、原式=3278a -,不符合题意, 故选:C .【点睛】此题考查了分式的乘方,合并同类项,以及同底数幂的乘除法,熟练掌握运算法则是解本题的关键. 10.C解析:C【分析】先进行分式除法,化简后得到关于a 的式子,列方程即可求解.【详解】 解:()22222x y x y a x a y ax ay+-÷-+ ()22()(()=))(a x y a x x y y y x x y ++-⨯-+, 1=a, 根据题意,15a=,解得,15a =, 经检验,15a =是原方程的解, 故选C【点睛】本题考查了分式的除法和分式方程的解法,正确化简分式,列出分式方程,是解决问题的关键.11.C解析:C【分析】先对分式方程进行求解,即用含k 的代数式表示分式方程的解,然后根据题意可进行求解.【详解】 解:由3211k x x +=--可得:52x k =+, ∵分式方程的解为非负数,且1x ≠, ∴502k +≥且512k +≠,解得:5k ≥-且3k ≠- ∴满足条件的有5-、1-、3、6,∴它们的和为51363--++=;故选C .【点睛】 本题主要考查分式方程及一元一次不等式的解法,熟练掌握分式方程及一元一次不等式的解法是解题的关键.12.D解析:D【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案.【详解】 解:21000.39a -=-=-,2193b -==--,2913c -⎛⎫=- ⎪⎭=⎝,0113d ⎛⎫=-= ⎪⎝⎭, ∵10011999-<-<<, ∴a b d c <<<, 故选D .【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键.二、填空题13.【分析】根据分式运算法则即可求出答案【详解】解:===当m+n=-3时原式=故答案为:【点睛】本题考查分式解题的关键是熟练运用分式的运算法则本题属于基础题型 解析:13【分析】根据分式运算法则即可求出答案.【详解】 解:222m n m n n m m ⎛⎫+--÷- ⎪⎝⎭=22(2)m n m mn n m m+-++÷ =2()m n m m m n +⋅-+ =1m n-+, 当m+n=-3时, 原式=13故答案为:13 【点睛】本题考查分式,解题的关键是熟练运用分式的运算法则,本题属于基础题型. 14.【分析】先把分式化成同分母再根据同分母分式相加减分母不变分子相加减即可得出答案【详解】解:===故答案为【点睛】本题考查了分式的加减熟练掌握运算法则是解题的关键 解析:21x x-. 【分析】先把分式化成同分母,再根据同分母分式相加减,分母不变,分子相加减,即可得出答案.【详解】 解:111x x ---=()111111x x x x x x------- =2111x x x x-+-+- =21x x- 故答案为21x x-. 【点睛】本题考查了分式的加减.熟练掌握运算法则是解题的关键.15.【分析】通过观察可发现规律:则原式=即可计算出结果【详解】故答案为:【点睛】本题考查分式的运算解题的关键是发现已知式子的规律 解析:1n n + 【分析】通过观察可发现规律:()11111n n n n =-++,则原式= 11111111112233411n n n n -+-+-+⋯+-+--+,即可计算出结果. 【详解】()()111111111111111111223344511223341111n n n n n n n n n n n ++++⋯++=-+-+-+⋯+-+-=-=⨯⨯⨯-+-+++ 故答案为:1n n +. 【点睛】本题考查分式的运算,解题的关键是发现已知式子的规律. 16.0【分析】先通分再分母不变分子相减即可求解【详解】故答案为:0【点睛】本题考查了分式加减运算的法则熟记法则是解题的关键解析:0【分析】先通分,再分母不变,分子相减即可求解.【详解】2211211201111a a a a a a a a -++-+-==+---. 故答案为:0.【点睛】本题考查了分式加减运算的法则,熟记法则是解题的关键.17.②⑤【分析】根据负整数指数幂零指数幂同底数幂的除法法则进行计算逐个判断即可【详解】解:;故①计算错误;;②计算正确;;故③计算错误;;故④计算错误故⑤计算正确故答案为:②⑤【点睛】本题考查同底数幂的解析:②⑤.【分析】根据负整数指数幂、零指数幂、同底数幂的除法法则进行计算,逐个判断即可.【详解】 解:3110=0.0011000-=;故①计算错误; ()00.00011=;②计算正确; ()()22352()1x x x x x --=-÷=-=-;故③计算错误; 2233a a -=;故④计算错误 ()()333221(1)=(1)mm m m m m m m a a a a a a -÷=-⨯÷=--,故⑤计算正确 故答案为:②⑤.【点睛】本题考查同底数幂的除法,积的乘方以及零指数幂,负整数指数幂的计算,掌握运算法则正确计算是解题关键.18.【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方负整数指数幂计算即可【详解】原式=故答案为:【点睛】本题主要考查了单项式乘单项式幂的乘方与积的乘方负整数指数幂属于基础计算题 解析:3a b【分析】根据单项式乘单项式计算法则以及幂的乘方与积的乘方,负整数指数幂,计算即可.【详解】原式=44334343113333a a b a b a b a b b ----+-===故答案为:3a b . 【点睛】本题主要考查了单项式乘单项式,幂的乘方与积的乘方,负整数指数幂,属于基础计算题.19.【分析】根据实数的性质即可化简求解【详解】解:故答案为:【点睛】本题主要考查了实数的运算解题的关键是掌握负指数幂的运算解析:4【分析】根据实数的性质即可化简求解.【详解】解:1|131(14)3--==-故答案为:4【点睛】本题主要考查了实数的运算,解题的关键是掌握负指数幂的运算. 20.【分析】分别计算绝对值和0次幂再计算和即可【详解】解:原式=5+1=6故答案为:6【点睛】此题主要考查了实数运算解题的关键是熟练掌握绝对值及零次幂的性质解析:【分析】分别计算绝对值和0次幂,再计算和即可.【详解】解:原式=5+1=6.故答案为:6.【点睛】此题主要考查了实数运算,解题的关键是熟练掌握绝对值及零次幂的性质.三、解答题21.(1)8;(2)24y xy --【分析】(1)先计算算术平方根,乘方,零次幂及负整数指数幂,再计算加减法;(2)先计算单项式乘以多项式及完全平方公式,再合并同类项.【详解】解:(1)原式3412=+-+8=;(2)原式22222x xy x y xy =----24y xy =--.【点睛】此题考查实数的混合运算及整式的混合运算,掌握实数算术平方根,乘方,零次幂及负整数指数幂计算法则,以及整式的单项式乘以多项式及完全平方公式计算法则是解题的关键.22.(1)第一次水果进价是每千克4元;(2)该水果店在这两次销售中,总体上是盈利,且盈利3104元【分析】(1)设第一次水果的进价是每千克x元,则第二次水果的进价是每千克1.2x元,根据数量=总价÷单价结合第二次比第一次多购进20千克,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)利用数量=总价÷单价可求出第一次购进水果数量,由总利润=每千克利润×销售数量可求出第一次购进水果的销售利润,同理可求出第二次购进水果的销售利润,将二者相加即可得出结论.【详解】解:(1)设第一次水果进价为每千克x元,则第二次水果进价为每千克1.2x元.依题意列方程得,20002496201.2 x x+=解得,4x=经检验,4x=是方程的根,且符合题意.∴第一次水果进价是每千克4元.(2)第一次售完水果盈利为:()20009425004-⨯=(元)第二次售完水果盈利为:()()200010 4.81005 4.8(20100)6044-⨯+-⨯+-=(元)25006043104+=(元)∴该水果店在这两次销售中,总体上是盈利,且盈利3104元.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.23.原计划每天铺地75平方米.【分析】设原计划每天铺x平方米,根据题意即可列出方程进行求解.【详解】解:设原计划每天铺地平方米,根据题意锝:112511253341.5xx x-⎛⎫-+=⎪⎝⎭解得:75x=经检验,75x=是原方程的解.答:原计划每天铺地75平方米.【点睛】此题主要考查分式方程的应用,解题的关键是根据题意列出方程.24.(1)120元;(2)六折【分析】(1)设第一批雪梨每件进价是x元,则第二批每件进价是(x+5)元,再根据等量关系:第二批仙桃所购件数是第一批的32倍,列方程解答; (2)设剩余的雪梨每件售价打y 折,由利润=售价﹣进价,根据第二批的销售利润为2460元,可列方程求解.【详解】解:(1)设第一批雪梨每件进价为x 元, 依题意列方程,得24003375025x x +⋅=,解方程,得120x =.经检验,120x =是原分式方程的解,且符合实际题意.答:第一批雪梨每件进价为120元;(2)设剩余的雪梨每件售价打y 折, 依题意列方程,得()22580%225180%0.137502460y ++⨯⨯+⨯⨯-⨯-=3750375012051205. 解得y =6.答:剩余的雪梨每件售价应该打六折.【点睛】本题考查分式方程、一元一次方程的应用,关键是根据数量作为等量关系列出分式方程,根据利润作为等量关系列出一元一次方程求解.25.(1)第一批紫水豆干每千克进价是25元;(2)a 的值是50.【分析】(1)设第一批紫水豆干每千克进价是x 元,则第二批每件进价是(x-3)元,再根据等量关系:第二批所购数量是第一批的2倍列方程求解即可;(2)根据第一阶段的利润+第二阶段的利润=1520列方程求解即可.【详解】解:(1)设第一批紫水豆干每千克进价x 元, 根据题意,得:2500440023x x ⨯=-, 解得:x=25,经检验,x=25是原方程的解且符合题意;答:第一批紫水豆干每千克进价是25元.(2)第二次进价:25-3=22(元),第二次紫水豆干的实际进货量:4400÷22=200千克,第二次进货的第一阶段出售每千克的利润为:22×a %元, 第二次紫水豆干第二阶段销售利润为每千克325a -元, 由题意得:322%20080%200(180%)152025a a ⨯⨯⨯-⨯-=, 解得:a =50,即a 的值是50.【点睛】本题考查了分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.26.1x =-【分析】分式方程整理后,去分母转化为整式方程,求出整式方程的解得到 x 的值,经检验即可得到分式方程的解【详解】解:方程两边乘()2x -,得632x x +=-.1x =-.检验:当1x =-时,20x -≠.所以,原方程的解为1x =-.【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.。

上海市八年级数学上册第五单元《分式》测试题(有答案解析)

上海市八年级数学上册第五单元《分式》测试题(有答案解析)

一、选择题1.关于分式2634m nm n--,下列说法正确的是()A.分子、分母中的m、n均扩大2倍,分式的值也扩大2倍B.分子、分母的中m扩大2倍,n不变,分式的值扩大2倍C.分子、分母的中n扩大2倍,m不变,分式的值不变D.分子、分母中的m、n均扩大2倍,分式的值不变2.如果关于x的分式方程6312233ax xx x--++=--有正整数解,且关于y的不等式组521510yy a-⎧≥-⎪⎨⎪+->⎩至少有两个整数解,则满足条件的整数a的和为()A.2 B.3 C.6 D.113.化简分式2xy xx+的结果是()A.yxB.1yx+C.1y+D.y xx+4.若方程21224kx x-=--有增根,则k=()A.4-B.14-C.4 D.145.如图,若a为负整数,则表示2a111a a1⎛⎫÷-⎪-+⎝⎭的值的点落在()A.段①B.段②C.段③D.段④6.若整数a使得关于x的不等式组3(1)32(1)x ax x>⎧⎨-+>+⎩的解集为2x>,且关于x的分式方程21111axx x+=---的解为整数,则符合条件的所有整数a的和是()A.2-B.1-C.1 D.27.在同一平面内,我们把两条直线相交将平面分得的区域数记为1a,三条直线两两相交最多将平面分得的区域数记为2a,四条直线两两相交最多将平面分得的区域数记为()3,,1a n⋅⋅⋅+条直线两两相交最多将平面分得的区域数记为na,若121111011111n a a a ++⋅⋅⋅+=---,则n =( ) A .10 B .11 C .20 D .218.若数a 使关于x 的分式方程2311a x x+=--的解为非负数,且使关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩的解集为2y <-,则符合条件的所有整数a 的个数为( ) A .5 B .6 C .7 D .89.下列计算正确的个数为( )①555•2a a a =;②5510b b b +=;③1644n n ÷=;④247••y y y y =;⑤()()23•x x x --=-;⑥()7214a a --=;⑦()()234214•a a a -=;⑧()242a a a ÷-=-;⑨()03.141π-=.A .2B .3C .4D .510.2222x y x y x y x y -+÷+-的结果是( ) A .222()x y x y ++ B .222()x y x y +- C .222()x y x y -+ D .222()x y x y ++ 11.已知227x ,y ==-,则221639y x y x y ---的值为( ) A .-1B .1C .-3D .3 12.计算a b a b a ÷⨯的结果是() A .a B .2a C .2b a D .21a 二、填空题13.科学家使用冷冻显微术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.00000000022米.将0.00000000022用科学记数法表示为__________.14.计算:112a a-=________. 15.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a ,第2幅图中“□”的个数为2a ,第3幅图中“□”的个数为3a ,……,以此类推,若123201922222020n a a a a +++⋅⋅⋅+=(n 为正整数),则(1)5a =________;(2)n 的值为________.16.要使分式2x x 1+有意义,那么x 应满足的条件是________ . 17.已知114y x-=,则分式2322x xy y x xy y +---的值为______. 18.计算3224423y x x y⎛⎫-⋅ ⎪⎝⎭的结果是________. 19.已知关于x 的方程321x m x -=-的解是正数,则m 的取值范围为____________. 20.已知:4a b +=,2210a b +=,求11a b+=______. 三、解答题21.解分式方程:(1)13x -+2=43x x --; (2)()3211x x x x +---= 0 22.己知A 、B 两地相距240千米,甲从A 地去B 地,乙从B 地去A 地,甲比乙早出发3小时,两人同时到达目的地.已知乙的速度是甲的速度的2倍.(1)甲每小时走多少千米?(2)求甲乙相遇时乙走的路程.23.先化简,再求值:2246221121x x x x x x ++⎛⎫-÷⎪---+⎝⎭,其中x 取-1、+1、-2、-3中你认为合理的数.24.水果店在批发市场购买某种水果销售,第一次用2000元购进若干千克,并以每千克9元出售,很快售完.由于水果畅销,第二次购买时,每千克的进价比第一次提高了20%,用2496元所购买的水果比第一次多20千克,以每千克10元售出100千克后,因出现高温天气,水果不易保鲜,为减少损失,便降价50%售完剩余的水果.(1)第一次水果的进价是每千克多少元?(2)该水果店在这两次销售中,总体上是盈利还是亏损?盈利或亏损了多少元? 25.先化简,再求值.(1)22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x 是9的平方根; (2)2222221211⎛⎫-+-÷ ⎪-+-⎝⎭a a a a a a a ,然后从-1,0,1,2中选一个合适的数作为a 的值代入求值.26.计算:(1)化简:()()22n m n m n -++;(2)解分式方程:2132163x x x -=---.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据分式的基本性质即可求出答案.【详解】解:A 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,故该说法不符合题意;B 、22623=23432m n m n m n m n⨯--⨯--,故分子、分母的中m 扩大2倍,n 不变,分式的值没有扩大2倍,故该说法不符合题意; C 、226212=32438m n m n m n m n-⨯--⨯-,故分子、分母的中n 扩大2倍,m 不变,分式的值发生变化,故该说法不符合题意; D 、22262(26)26=23242(34)34m n m n m n m n m n m n⨯-⨯⨯--=⨯-⨯⨯--,故分子、分母中的m 、n 均扩大2倍,分式的值不变,此说法正确,符合题意;故选:D .【点睛】本题考查分式的基本性质,解题的关键是熟练运用分式的基本性质,本题属于基础题型. 2.B解析:B【分析】根据分式方程的解为正整数解,即可得出a =0,1,2,5,11,根据不等式组的解集为a−1<4,即可得出a <5,找出a 的所有的整数,将其相加即可得出结论.【详解】解:∵分式方程有解,∴解分式方程得x =121a +, ∵x≠3, ∴121a +≠3,即a≠3, 又∵分式方程有正整数解,∴a =0,1,2,5,11,又∵不等式组至少有2个整数解,∴解不等式组得51y y a ≤⎧⎨-⎩>, ∴a−1<4,解得,a <5,∴a =0,1,2,∴0+1+2=3,故选:B .【点睛】本题考查了一元一次不等式组的整数解、分式方程的解,有一定难度,注意分式方程中的解要满足分母不为0的情况. 3.B解析:B【分析】先把分子因式分解,再约分即可.【详解】 解:22(1)1xy x x y y x x x+++==. 故选:B .【点睛】 本题考查了分式的约分,解题关键是先把分子因式分解,再和分母约分.4.B解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义, ∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可. 5.C解析:C【分析】将所给式子化简,根据a 为负整数,确定化简结果的范围,再从所给图中可得正确答案.【详解】 解:2a 111a a 1⎛⎫÷- ⎪-+⎝⎭=()()a a 111a 1a a 1a 1+⎛⎫÷- ⎪+-++⎝⎭=()()aa 1a 1a a 1÷+-+ =()()a a 11a 1a a+⋅+- =11a -; ∵a 为负整数,且a 1≠-,∴1a -是大于1的正整数, 则1101a 2<<-. 故选C .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等. 6.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,故选:D .【点睛】 本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.7.C解析:C【分析】根据直线相交得到交点个数的规律,再利用裂项法进行有理数的运算即可解题.【详解】根据题意得,2条直线最多将平面分成4个区域1=4a ,3条直线最多将平面分成7个区域2=7a ,4条直线最多将平面分成11个区域3=11a ,5条直线最多将平面分成16个区域4=16a则11=3=1+2a -, 21=6=1+2+3a -,31=10=1+2+3+4a -,41=15=1+2+3+4+5a - 1=1+2+3+4+51n a n ∴-++12111111n a a a ∴++⋅⋅⋅+--- 111=1+21+2+31+2+3++(n+1)++⋅⋅⋅+ 111=(1+2)2(1+3)3(1+n+1)(n+1)222++⋅⋅⋅+⨯⨯11122334(1)(2)n n ⎡⎤=+++⎢⎥⨯⨯++⎣⎦ 1111112233412n n ⎡⎤=-+-++-⎢⎥++⎣⎦ 11222n ⎡⎤=-⎢⎥+⎣⎦ 2n n =+ 121111011111n a a a ++⋅⋅⋅+=--- 10211n n ∴=+ 2101211n ∴-=+ 21211n ∴=+ 222n ∴+= 20n ∴=经检验n=20是原方程的根故选:C .【点睛】本题考查相交线,是重要考点,难度一般,掌握相关知识是解题关键.8.C解析:C【分析】根据分式方程2311a x x+=--的解为非负数求得a>5,根据不等式组的解集为2y <-,求得2a ≥-,利用分式的分母不等于0得到x ≠1,即可得到a 的取值范围25a -≤≤,且x ≠1,根据整数的意义得到a 的整数值.【详解】 解分式方程2311a x x +=--,得53a x -=, ∵分式方程2311a x x +=--的解为非负数, ∴503a -≥, 解得a ≤5,∵关于y 的不等式组213202y y y a +⎧->⎪⎪⎨-⎪≤⎪⎩,得2y y a <-⎧⎨≤⎩, ∵不等式组的解集为2y <-,∴2a ≥-,∵x-1≠0,∴x ≠1,∴25a -≤≤,且x ≠1,∴整数a 为:-2、-1、0、1、3、4、5,共有7个,故选:C .【点睛】此题考查根据分式方程的解的情况求未知数的取值范围,根据不等式组的解集情况求未知数的取值范围,确定不等式的整数解,正确理解题意并计算是解题的关键.9.C解析:C【分析】根据同底数幂的乘法底数不变指数相加,同底数幂的除法底数不变指数相减,零指数幂及积的乘方可得答案.【详解】解:①5510•a a a =,故①错误;②5552b b b +=,故②错误;③2164444n n n n n ÷=÷=,故③错误;④247••y y y y =,故④正确;⑤()()23•x x x --=-,故⑤正确;⑥()7214a a --=,故⑥正确;⑦()()23428614•a a a a a -=-⋅=-,故⑦错误;⑧()242a a a ÷-=,故⑧错误;⑨()03.141π-=,故⑨正确,正确的有4个.故选:C .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,零指数幂及积的乘方,解题的关键是灵活运用运算法则. 10.C解析:C【分析】根据分式的除法法则计算即可.【详解】2222x y x y x y x y -+÷+-()()22x y x y x y x y x y +--=⨯++222()x y x y -=+ 【点睛】此题考查分式的除法法则:先把除式的分子分母颠倒位置,再化为最简分式即可. 11.B解析:B【分析】先通分,再把分子相加减,把x 、y 的值代入进行计算即可.【详解】原式=()()16333y x y x y x y --+- =()()3633x y y x y x y +-+-=()()333x y x y x y -+- =13x y+, 当227x ,y ==-,原式=112221=-, 故选B .【点睛】 本题考查的是分式的化简求值,分式求值题中比较多的题型主要有三种:转化已知条件后整体代入求值;转化所求问题后将条件整体代入求值;既要转化条件,也要转化问题,然后再代入求值.12.C解析:C【分析】先把除法变成乘法,然后约分即可.【详解】解:2a b b b ba ab a a a a÷⨯=⋅⋅=,故选:C.【点睛】本题考查了分式的乘除混合运算,解题的关键是熟练掌握乘除混合运算法则.二、填空题13.2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示一般形式为a×10−n与较大数的科学记数法不同的是其所使用的是负指数幂指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解解析:2×10-10【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000000022=2.2×10−10,故答案为:2.2×10−10.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14.【分析】根据异分母分式加减法法则计算即可【详解】原式故答案为:【点睛】本题考查了分式的加减—异分母分式的减法关键是掌握分式加减的计算法则解析:12a.【分析】根据异分母分式加减法法则计算即可.【详解】原式211 222a a a =-=.故答案为:12a.【点睛】本题考查了分式的加减—异分母分式的减法,关键是掌握分式加减的计算法则. 15.4038【分析】先根据已知图形得出代入方程中再将左边利用裂项化简解分式方程可得答案【详解】由图形知:∴∵∴故填:30;【点睛】本题考查图形的变化规律解题的关键是根据已知图形得到以及裂项的规律解析:4038【分析】先根据已知图形得出()1n a n n =+,代入方程中,再将左边利用()11111n n n n =-++裂项化简,解分式方程可得答案.【详解】由图形知:112a =⨯,223a =⨯,334a =⨯,∴ ()1n a n n =+,556=30a =⨯,∵123201922222020n a a a a +++⋅⋅⋅+=, ∴2222122334201920202020n +++⋅⋅⋅+=⨯⨯⨯⨯, 1111121223201920202020n ⎛⎫-+-+⋅⋅⋅+-= ⎪⎝⎭, 4038n =,故填:30;4038.【点睛】本题考查图形的变化规律,解题的关键是根据已知图形得到()1n a n n =+,以及裂项的规律()11111n n n n =-++. 16.【分析】根据分式有意义的条件是分母不等于零可得答案【详解】由题意得:解得:故答案为:【点睛】本题主要考查了分式有意义的条件关键是掌握分式有意义的条件是分母不等于零解析:1x ≠-【分析】根据分式有意义的条件是分母不等于零可得答案.【详解】由题意得:10x +≠,解得:1x ≠-,故答案为:1x ≠-.【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零. 17.【分析】先根据题意得出x-y=4xy 然后代入所求的式子进行约分就可求出结果【详解】∵∴x-y=4xy ∴原式=故答案为:【点睛】此题考查分式的基本性质正确对已知式子进行化简约分正确进行变形是关键 解析:112【分析】先根据题意得出x-y=4xy ,然后代入所求的式子,进行约分就可求出结果.【详解】 ∵114y x-=, ∴x-y=4xy ,∴原式=2()383112422x y xy xy xy x y xy xy xy -++==---, 故答案为:112 . 【点睛】此题考查分式的基本性质,正确对已知式子进行化简,约分,正确进行变形是关键. 18.【分析】先算乘方再算乘除即可得到答案【详解】解:故答案为:【点睛】本题考查分式的化简求值属于基础题 解析:26y x- 【分析】先算乘方,再算乘除即可得到答案.【详解】 解:3224423y x x y⎛⎫-⋅ ⎪⎝⎭ 6234483y x x y=-⋅ 26y x=-. 故答案为:26y x-. 【点睛】本题考查分式的化简求值,属于基础题.19.m >2且m≠3【分析】先给分式方程去分母化为整式方程用m 表示出方程的解再由解为正数求出m 的取值范围即可【详解】解:去分母得:3x ﹣m=2(x﹣1)解得:x=m ﹣2∵分式方程的解是正数且x≠1∴m ﹣2解析:m >2且m≠3【分析】先给分式方程去分母化为整式方程,用m 表示出方程的解,再由解为正数求出m 的取值范围即可.【详解】解:去分母,得:3x ﹣m=2(x ﹣1),解得:x=m ﹣2,∵分式方程的解是正数,且x≠1,∴m ﹣2>0,且m ﹣2≠1,解得:m >2且m≠3,故答案为:m >2且m≠3.【点睛】本题考查了分式方程的解、解一元一次不等式,熟练掌握分式方程的解法是解答的关键,注意分式的分母不能为零.20.【分析】根据a2+b2=(a+b )2-2ab 把相应数值代入即可求解【详解】解:∵a+b=4∴a2+b2=(a+b )2-2ab=10即42-2ab=10解得ab=3∴故答案为:【点睛】本题主要考查了完 解析:43【分析】根据a 2+b 2=(a+b )2-2ab ,把相应数值代入即可求解.【详解】解:∵a+b=4,∴a 2+b 2=(a+b )2-2ab=10,即42-2ab=10,解得ab=3. ∴1143a b a b ab ++== 故答案为:43. 【点睛】 本题主要考查了完全平方公式以及分式的运算,熟记公式是解答本题的关键.三、解答题21.(1)x =1;(2)无解【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程无解;【详解】解:(1)去分母得:1+2(x ﹣3)=x ﹣4,解得:x =1,经检验x =1是分式方程的解;(2)去分母,得3x-(x+2)=0,解得:x=1,经检验x=1是分式方程的增根,∴原分式方程无解.【点睛】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x 的值后不要忘记检验.22.(1)40千米;(2)80千米【分析】(1)设甲每小时走x 千米,则乙每小时走2x 千米,根据题意列出分式方程,即可求解; (2)设相遇时甲出发t 小时,根据相遇时甲乙路程和为240千米列出方程,求解即可.【详解】解:(1)设甲每小时走x 千米,则乙每小时走2x 千米, 根据题意可得:24024032x x -=, 解得40x =,经检验得40x =是原分式方程的解,∴甲每小时走40千米;(2)设相遇时甲出发t 小时,由(1)可得乙每小时走80千米,根据题意可得:()40803240t t +-=,解得4t =,此时乙走的路程为()804380⨯-=千米.【点睛】本题考查分式方程的应用,根据题意找出等量关系,并列出方程是解题的关键. 23.22(1)x x -+;3x =-;4 【分析】先算分式的减法运算,再把除法化为乘法,进行约分化简,再代入求值,即可.【详解】原式2462(1)2(1)(1)(1)(1)(1)x x x x x x x x ⎡⎤+++=-÷⎢⎥+-+--⎣⎦224(1)(1)(1)(2)x x x x x +-=⋅+-+ ()211x x -=+221x x -=+ 当3x =-时,原式2(3)2431⨯--==-+. 【点睛】 本题主要考查分式的化简求值,掌握分式的混合运算法则,是解题的关键.24.(1)第一次水果进价是每千克4元;(2)该水果店在这两次销售中,总体上是盈利,且盈利3104元【分析】(1)设第一次水果的进价是每千克x 元,则第二次水果的进价是每千克1.2x 元,根据数量=总价÷单价结合第二次比第一次多购进20千克,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)利用数量=总价÷单价可求出第一次购进水果数量,由总利润=每千克利润×销售数量可求出第一次购进水果的销售利润,同理可求出第二次购进水果的销售利润,将二者相加即可得出结论.【详解】解:(1)设第一次水果进价为每千克x 元,则第二次水果进价为每千克1.2x 元. 依题意列方程得,2000249620 1.2x x+= 解得,4x =经检验,4x =是方程的根,且符合题意. ∴第一次水果进价是每千克4元.(2)第一次售完水果盈利为:()20009425004-⨯=(元) 第二次售完水果盈利为:()()200010 4.81005 4.8(20100)6044-⨯+-⨯+-=(元) 25006043104+=(元)∴该水果店在这两次销售中,总体上是盈利,且盈利3104元.【点睛】本题考查了分式方程的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列式计算.25.(1)3x ;±1;(2)1a a +,2a =,值为32【分析】 (1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=212(2)2(2)x x x x x x +-+-⎛⎫⨯ ⎪--⎝⎭ =23(2)2(2)x x x x -⨯-- =3x, ∵x 是9的平方根, ∴3x =±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义, ∴2a =,此时原分式32=. 【点睛】本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键.26.(1)24m mn +;(2)x=1【分析】(1)根据单项式乘多项式法则和完全平方公式,即可得到结果;(2)通过去分母,把分式方程化为整式方程,即可求解.【详解】(1)原式=22222mn n m mn n -+++=24m mn +;(2)2132163x x x -=--- 213213(21)x x x -=--- 2(21)3x x --=-423x x --=-55=xx=1,经检验,x=1是方程的解,∴x=1.【点睛】本题主要考查整式的混合运算以及解分式方程,熟练掌握完全平方公式以及解分式方程的步骤,是解题的关键.。

(常考题)人教版初中数学八年级数学上册第五单元《分式》测试题(有答案解析)

(常考题)人教版初中数学八年级数学上册第五单元《分式》测试题(有答案解析)

一、选择题1.关于x 的一元一次不等式组31,224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,且关于y 的分式方程13122my y y y--+=--有整数解,则符合条件的所有整数m 的和为( ) A .9 B .10 C .13 D .142.若关于x 的一元一次不等式组()()1112232321x x x a x ⎧-≤-⎪⎨⎪-≥-⎩恰有3个整数解,且使关于y 的分式方程3133y ay y y ++=--有正整数解,则所有满足条件的整数a 的值之和是( ) A .4 B .5 C .6 D .33.若关于x 的分式方程3211m x x =---有非负实数解,且关于x 的不等式组102x x m +≥⎧⎨+≤⎩有解,则满足条件的所有整数m 的和为( ) A .9- B .8-C .7-D .6- 4.已知2340x x --=,则代数式24x x x --的值是( ) A .3 B .2 C .13 D .125.要使分式()()221x x x ++-有意义,x 的取值应满足( )A .1x ≠B .2x ≠-C .1x ≠或2x ≠-D .1x ≠且2x ≠- 6.若方程21224k x x -=--有增根,则k =( ) A .4-B .14-C .4D .14 7.化简2111313x x x x +⎫⎛-÷⎪---⎝⎭的结果是( ) A .2 B .23x - C .41x x -- D .21x - 8.“五一”江北水城文化旅游节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每名同学比原来少分摊3元车费.设原来参加游览的学生共x 人.则所列方程是( )A .18018032x x -=-B .18018032x x-=+C .18018032x x -=-D .18018032x x -=+ 9.下列计算正确的是( )A .1112a a a+= B .2211()()a b b a +--=0 C .m n a -﹣m n a +=0 D .11a b b a+--=0 10.下列各式中正确的是( )A .263333()22=x x y y B .222224()=++a a a b a bC .22222()--=++x y x y x y x y D .333()()()++=--m n m n m n m n 11.当1x 0-<<时, 1x -,0x ,2x 的大小顺序是( ) A .102x x x -<< B .012x x x -<< C .021x x x -<< D .120x x x -<< 12.已知有理数a ,b 满足:1ab =,1111M a b =+++,11a b N a b=+++,则M ,N 的关系为( ) A .M N >B .M N <C .M N =D .M ,N 的大小不能确定二、填空题 13.已知实数a 、b 满足32a b =,则a b a b +-_________. 14.若关于x 的方程1322m x x x -+=--的解是正数,则m =____________. 15.如果实数x 、y 满足方程组30233x y x y +=⎧⎨+=⎩,求代数式(xy x y ++2)÷1x y =+_____. 16.PM2.5是指大气中直径小于或等于2.5微米(0.0000000025千米)的颗粒物,也称为可入肺颗粒物.2.5微米用科学记数法表示为________千米.17.已知关于x 的分式方程211a x +=+的解是负数,则a 的取值范围_____________. 18.计算35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=__.19.要使分式2x x 1+有意义,那么x 应满足的条件是________ . 20.计算:262393x x x x -÷=+--______. 三、解答题 21.已知:M =12x +,N =21x x +.(1)当x 等于几时M =N ?(2)当x >0时,判断M 与N 的大小关系.22.(1)计算:(-14)-2-)0+(-5)9×(-0.28); (2)因式分解:(1-a )2+4(a-1);(3)计算:(x+3)2-(x+2)(x-1). 23.小红到离家2100米的学校参加艺术节联欢会,到学校时发现演出道具忘在家中,此时距联欢会开始还有45分钟,于是她马上步行回家取道具,随后骑自行车返回学校.已知小红骑自行车到学校比她从学校步行到家用时少20分钟,且骑自行车的平均速度是步行平均速度的3倍.(1)小红步行的平均速度(单位:米/分)是多少?(2)小红能否在联欢会开始前赶到学校?(通过计算说明你的理由)24.武汉某道路工程项目,若由甲、乙两工程队合作20天可完工;若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完工.(1)求甲、乙两工程队单独完成此项工程各需要多少天?(2)如果甲、乙工程队合作施工时对道路交通有影响,独施工时对交通无影响且要求整个工期不能超过24天,问如何安排两队施工,对道路交通的影响会最小?25.“圣诞节”前期,某水果店用1000元购进一批苹果进行销售,由于销售良好,该店又以2500元购进同一种苹果,第二次进货价格比第一次每千克贵了1元,第二次所购进苹果的数量恰好是第一次购进苹果数量的2倍.求该水果店第一次购进苹果的单价.26.先化简,再求值:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭,其中a 与2,3构成ABC 的三边长,且a 为整数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】不等式组整理后,根据已知解集确定出m 的范围,分式方程去分母转化为整式方程,根据分式方程有整数解确定出整数m 的值,进而求出之和即可.【详解】 解:31224x m x x x ⎧-≤+⎪⎨⎪-≤⎩①②,解①得x≤2m+2,解②得x≤4,∵不等式组31224x m x x x⎧-≤+⎪⎨⎪-≤⎩的解集为4x ≤,∴2m+2≥4,∴m≥1.13122my y y y--+=--, 两边都乘以y-2,得my-1+y-2=3y , ∴32y m =-, ∵m≥1,分式方程13122my y y y --+=--有整数解, ∴m=1,3,5,∵y-2≠0,∴y≠2, ∴322m ≠-, ∴m≠72, ∴m=1,3,5,符合题意,1+3+5=9.故选A .【点睛】此题考查了解分式方程,解一元一次不等式组,熟练掌握各自的解法是解本题的关键. 2.A解析:A【分析】不等式组整理后,根据已知解集确定出a 的范围,分式方程去分母转化为整式方程,由分式方程有正整数解,确定出a 的值,求出之和即可.【详解】关于x 的一元一次不等式组整理得:325x a x ≤⎧⎪+⎨≥⎪⎩,∵325x a x ≤⎧⎪+⎨≥⎪⎩恰有3个整数解, ∴2015a +<≤,即:23a -<≤, 关于y 的分式方程3133y ay y y ++=--,整理得:6y a =, ∵3133y ay y y ++=--有正整数解且63a≠, ∴满足条件的整数a 的值为:1,3∴所有满足条件的整数a 的值之和是4,故选A .【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握求一元一次不等式组的解以及解分式方程的步骤,是解题的关键.3.D解析:D【分析】 先根据方程3211m x x =---有非负实数解,求得5m ≥-,由不等式组102x x m +≥⎧⎨+≤⎩有解求得3m ≤,得到m 的取值范围53m -≤≤,再根据10x -≠得3m ≠-,写出所有整数解计算其和即可.【详解】 解:3211m x x =--- 解得:52m x +=, ∵方程有非负实数解, ∴0x ≥即502m +≥, 得5m ≥-;∵不等式组102x x m +≥⎧⎨+≤⎩有解, ∴12x m -≤≤-,∴21m -≥-,得3m ≤,∴53m -≤≤,∵10x -≠,即502m +≠, ∴3m ≠-, ∴满足条件的所有整数m 为:-5,-4,-2,-1,0,1,2,3,其和为:-6,故选:D .【点睛】此题考查利用分式方程解的情况求参数,根据不等式组的解的情况求参数,正确掌握方程及不等式组的解的情况确定m 的取值范围是解题的关键.4.D解析:D【分析】利用等式的性质对2340x x --=变形可得43x x-=,利用分式的性质对24x x x --变形可得141x x--,从而代入求值即可. 【详解】由条件2340x x --=可知,0x ≠, ∴430x x --=,即:43x x-=, 根据分式的性质得:21144411x x x x x x x==------, 将43x x-=代入上式得:原式11312==-, 故选:D .【点睛】 本题主要考查分式的化简求值,熟练掌握分式的运算是解题的关键.5.D解析:D【分析】根据分式有意义的条件得出x +2≠0且x ﹣1≠0,计算即可.【详解】解:要使分式()()221x x x ++-有意义,必须满足x +2≠0且x ﹣1≠0,解得:x ≠﹣2且x ≠1,故选:D .【点睛】本题考查了分式有意义的条件,能根据分式有意义的条件得出x +2≠0且x ﹣1≠0是解此题的关键.6.B解析:B【分析】先根据题意对原分式方程去分母,化为整式方程,然后根据增根的情况代入整式方程求解即可.【详解】去分母得:()()22421x k x --+=, 整理得:22290x kx k ---=,∵原分式方程有增根,∴240x -=,解得增根即为:2x =±,当2x =时,代入整式方程得:82290k k ---=,解得: 14k =-, 当2x =-时,代入整式方程无意义, ∴14k =-故选:B【点睛】本题考查分式方程的增根,熟记增根是使最简公分母为零的数同时是对应整式方程的解,两者缺一不可. 7.D解析:D【分析】利用乘法分配律计算即可【详解】解:原式=11(3)(3)3(1)(1)x x x x x x +⋅--⋅--+-=1-31x x --=21x -, 故选D .【点睛】本题主要考查了分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则. 8.D解析:D【分析】设原来参加游览的学生共x 人,增加2人后的人数为(x+2)人,用租价180元除以人数,根据后来每名同学比原来少分摊3元车费列方程.【详解】设原来参加游览的学生共x 人,由题意得18018032x x -=+, 故选:D .【点睛】此题考查分式的实际应用,正确理解题意是解题的关键.9.D解析:D【分析】直接根据分母不变,分子相加运算出结果即可.【详解】解:A 、112a a a+=,故错误; B 、原式=2211()()a b a b +--=22()a b -,故错误; C 、原式=m n m n a ---=﹣2n a ,故错误; D 、原式=11a b a b---=0,故正确. 故选D .【点睛】 本题主要考查了分式的加减法,解题的关键是掌握运算法则,此题基础题,比较简单. 10.D解析:D【分析】根据分式的乘法法则计算依次判断即可.【详解】A 、2633327()28=x x y y ,故该项错误; B 、22224()()=++a a a b a b ,故该项错误; C 、222()()()--=++x y x y x y x y ,故该项错误; D 、333()()()++=--m n m n m n m n ,故该项正确; 故选:D .【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键.11.D解析:D【分析】 根据负整数指数幂的运算法则可得110x x-=<,根据非零数的零次幂可得0x 1=,根据平方的结果可得20x 1<<,从而可得结果.【详解】解:∵1x 0-<<,∴20x 1<<,0x 1=,11x0x-=<, ∴120x x x -<<.故选:D .【点睛】本题主要考查了代数式的大小比较,需结合幂的运算法则进行求解. 12.C解析:C【分析】先通分,再利用作差法可比较出M 、N 的大小即可.【详解】解:∵1111M a b=+++ ()()1111b a a b +++=++()()211b aa b ++=++,()()()()()()1121111a b b a a ab b N a b a b +++++==++++, ∴()()()()221111b a a ab b M N a b a b ++++-=-++++()()2211a b a ab b a b ++---=++ ()()2211aba b -=++,∵1ab =,∴220ab -=,∴0M N -=,即M N .故选:C.【点睛】本题考查的是分式的加减法及分式比较大小的法则,分式比较大小可以利用作差法、作商法等.二、填空题13.5【分析】根据已知用b 表示a 然后把a 的值代入所求的代数式分子分母约掉b 后可以得到解答【详解】∴∴故答案为:5【点睛】本题考查分式的化简与求值熟练掌握分式化简与求值的各种方法是解题关键解析:5【分析】根据已知用b 表示a ,然后把a 的值代入所求的代数式,分子分母约掉b 后可以得到解答.【详解】 32a b =, ∴32a b = ∴32532b ba b a b b b ++==--, 故答案为:5.【点睛】本题考查分式的化简与求值,熟练掌握分式化简与求值的各种方法是解题关键. 14.m <5且m≠1【分析】将分式方程去分母转化为整式方程表示出x 根据x 为正数列出关于m 的不等式求出不等式的解集即可确定出m 的范围【详解】解:关于的方程的解是正数且解得m <5且m≠1故答案为:m <5且m≠ 解析:m <5且m≠1【分析】将分式方程去分母转化为整式方程,表示出x ,根据x 为正数列出关于m 的不等式,求出不等式的解集即可确定出m 的范围.【详解】解:1322m x x x-+=-- ()m+32=-1-x x5-m x=2关于x 的方程1322m x x x-+=--的解是正数, 5-m 02>且5-m 22≠ 解得m <5且m≠1,故答案为:m <5且m≠1【点睛】此题考查了分式方程的解,得出关于m 的不等式是解题的关键,注意任何时候考虑分母不为0.15.1【分析】先进行分式计算再解方程组代入即可求解【详解】解:原式==xy+2x+2y 解方程组得:当x=3y=﹣1时原式=﹣3+6﹣2=1故答案为:1【点睛】此题考查了分式的化简求值熟练进行分式化简解出解析:1【分析】先进行分式计算,再解方程组,代入即可求解.【详解】解:原式=()22xy x y x y x y++⋅++=xy +2x +2y , 解方程组30233x y x y +=⎧⎨+=⎩得:31x y =⎧⎨=-⎩, 当x =3,y =﹣1时,原式=﹣3+6﹣2=1.故答案为:1.【点睛】此题考查了分式的化简求值,熟练进行分式化简,解出二元一次方程组是解本题的关键. 16.【分析】科学记数法的表示形式为a×10n 的形式其中1≤|a|<10n 为整数确定n 的值时要看把原数变成a 时小数点移动了多少位n 的绝对值与小数点移动的位数相同当原数绝对值>1时n 是正数;当原数的绝对值<解析:92.510-⨯【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】2.5微米=92.510-⨯千米,故答案为:92.510-⨯.【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数小于1时,n 等于原数左数第一个非零数字前零的个数,按此方法即可正确求解.17.且【分析】先解分式方程得到x=a+1根据方程的解是负数列不等式a+1<0且a+20求解即可得到答案【详解】解:a+2=x+1x=a+1∵方程的解是负数x≠-1∴a+1<0且a+20解得a<-1且a-解析:1a <-且2a ≠-【分析】先解分式方程得到x=a+1,根据方程的解是负数,列不等式a+1<0,且a+2≠0,求解即可得到答案.【详解】 解:211a x +=+ a+2=x+1x=a+1, ∵方程的解是负数,x≠-1∴a+1<0,且a+2≠0,解得a<-1,且a ≠-2,故答案为:1a <-且2a ≠-.【点睛】此题考查解分式方程,根据分式方程的解的情况求参数的取值范围,解题中考虑分式的分母不等于0的情况.18.【分析】首先计算积的乘方再计算中括号内的同底数幂的乘法最后计算单项式除以单项式即可得出答案【详解】解:===故答案为:【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式熟练掌握运算法则是解答此 解析:7a .【分析】首先计算积的乘方,再计算中括号内的同底数幂的乘法,最后计算单项式除以单项式即可得出答案.【详解】解:35232()()()a a a ⎡⎤-÷-⋅-⎣⎦=1526()a a a -÷-=158()a a -÷-=7a .故答案为:7a .【点睛】此题主要考查了同底数幂的乘法以及单项式除以单项式,熟练掌握运算法则是解答此题的关键. 19.【分析】根据分式有意义的条件是分母不等于零可得答案【详解】由题意得:解得:故答案为:【点睛】本题主要考查了分式有意义的条件关键是掌握分式有意义的条件是分母不等于零解析:1x ≠-【分析】根据分式有意义的条件是分母不等于零可得答案.【详解】由题意得:10x +≠,解得:1x ≠-,故答案为:1x ≠-.【点睛】本题主要考查了分式有意义的条件,关键是掌握分式有意义的条件是分母不等于零. 20.1【分析】先将分母因式分解再将除法转化为乘法再根据法则计算即可【详解】故答案为:1【点睛】本题主要考查了分式的混合运算解题的关键是掌握分式的混合运算顺序和运算法则解析:1【分析】先将分母因式分解,再将除法转化为乘法,再根据法则计算即可.【详解】262393x x x x -÷+-- 633(3)(3)2x x x x x -=+⋅++- 333x x x =+++ 33x x +=+ 1=.故答案为:1.【点睛】本题主要考查了分式的混合运算,解题的关键是掌握分式的混合运算顺序和运算法则.三、解答题21.(1)x =1时,M =N ;(2)M ≥N【分析】(1)由题意,令1221x x x +=+,然后解分式方程,即可得到答案; (2)利用作差法进行计算,即可得到答案.【详解】解:(1)1221 x xx+=+,∴(x+1)2=4x,∴(x-1)2=0,∴x=1 ;当x=1时,x+1≠0,方程的解是x=1即当x=1时,M=N;(2)M﹣N=12x+﹣21xx+=2(1)2(1)xx-+∵x>0,∴(x﹣1)2≥0,2(x+1)>0,∴2 (1)2(1)xx-+≥0,∴当x>0时,M≥N.【点睛】本题考查了解分式方程,分式的混合运算,解题的关键是熟练掌握解分式方程的方法进行解题.22.①20;②(a-1)(a+3);③5x+11.【分析】(1)根据负指数幂,零指数幂及乘方法则计算即可;(2)提取公因式(a-1),进而分解因式即可;(3)先运用完全平方公式与多项式的乘法去括号,然后合并同类项.【详解】解原式=16-1+5×(-5×0.2)8=20(2)原式=(a-1)2+4(a-1)=(a-1)(a-1+4)=(a-1)(a+3)(3)原式=x2+6x+9-(x2+x-2)=x2+6x+9-x2-x+2=5x+11.【点睛】本题考查了负指数幂,零指数幂及乘方法则,提取公因式法分解因式及整式的混合运算,熟练运用运算性质是解题的关键.23.(1)70米/分;(2)能,见解析【分析】(1)设小红步行的平均速度为x米/分,则骑自行车的平均速度为3x米/分.由小红骑自行车到学校比她从学校步行到家用时少20分钟为等量关系建立方程求出其解即可;(2)根据(1)求出的结论计算小红往返的时间之和与45分钟作比较就可以得出结论.【详解】(1)解:设小红步行的平均速度是x 米/分,则骑自行车的平均速度是3x 米/分. 根据题意,得21002100203x x-=, 方程两边同乘最简公分母3x ,得6300210060x -=,解得70x =.检验:把70x =代入最简公分母3x ,得33700x =⨯≠,因此,70x =是原方程的根.答:小红步行的平均速度是70米/分.(2)由(1),得70x =,3210x =,所以小红骑自行车的速度是210米/分,于是,小红回家取道具共花时间:2100210030104070210+=+=(分), 由于4045<,因此,小红能在联欢会开始前赶到学校.【点睛】本题是一道行程问题的应用题,考查了列分式方程解实际问题,分式方程的解法,解答时小红骑自行车到学校比她从学校步行到家用时少20分钟为等量关系建立方程是关键. 24.(1)甲单独做需60天,乙单独做需30天;(2)应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【分析】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-,根据“若甲工程队先单独施工40天,再由乙工程队单独施工10天也可完成”,即可得出关于x 的分式方程,解之并检验后即可得出结论;(2)分两种情况:①若剩下工程甲单独做还需(603m -)天,②若剩下工程乙单独做还需(30 1.5)m -天,列出不等式,即可求解.【详解】(1)设甲单独做需x 天,则甲的工作效率为1x ,乙的工作效率为1120x-, 401110120x x ⎛⎫∴+-= ⎪⎝⎭,解得:60x =, 经检验60x =为原方程的解,∴甲单独做需60天,乙单独做需30天;(2)设甲、乙合作了m 天①若剩下工程甲单独做还需1120603160m m -=- 60324m m ∴+-≤,解得:18m ≥;②若剩下工程乙单独做还需112030 1.5130m m -=- 30 1.524m m ∴+-≤,解得:12m ≥由①②可知m 的最小值为12,所以应安排甲乙合作12天,然后再由乙队单独施工12天,对道路交通影响了会最小.【点睛】本题主要考查分式的实际应用以及一元一次不等的实际应用,找到等量关系和不等量关系,列出方程和不等式,是解题的关键.25.4元【分析】利用第二次进货价格比第一次每千克贵了1元,设该水果店第一次购买苹果的单价为x 元,第二次进货价格(x+1)元,利用等量关系:第二次所购进苹果的数量恰好是第一次购进苹果数量的2倍构造方程.解之即可.【详解】解:设该水果店第一次购买苹果的单价为x 元,则1000250021x x ⨯=+, 解得:4x =,经检验,4x =是分式方程的根,答:该水果店第一次购买苹果的单价是4元.【点睛】本题考查可化为一元一次方程解应用题,掌握列方程解应用题的方法和进价、花费钱数与水果数量之间关系,抓住第二次进货价格比第一次每千克贵了1元设未知数,抓住第二次所购进苹果的数量恰好是第一次购进苹果数量的2倍构造方程是解题关键.26.224a a -,6【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,确定出a 的值,代入计算即可求出值.【详解】解:2442244a a a a a a -⎛⎫-÷ ⎪--+⎝⎭ ()22244422a a a a a a ---=÷-- ()()224224a a a a a --=⋅-- 224a a =-.∵a 与2,3构成ABC 的三边长, ∴ 3232a -<<+,即15a <<. ∵ a 为整数,∴ a 为2或3或4.当2a =时,分母20a -=(舍去); 当4a =时,分母40a -=(舍去). 故a 的值只能为3.∴当3a =时,222423436a a -=⨯-⨯=.【点睛】此题主要考查了分式的化简求值,正确化简分式是解题关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题1.将分式2+x x y中的x ,y 的做同时扩大到原来的3倍,则分式的值( ) A .扩大到原来的3倍 B .缩小到原来的13 C .保持不变 D .无法确定2.分式293x x --等于0的条件是( ) A .3x =B .3x =-C .3x =±D .以上均不对 3.若关于x 的方程121m x -=-的解为正数,则m 的取值范围是( ) A .1m >- B .1m ≠ C .1m D .1m >-且1m ≠4.计算:2x y x y x y xy-⋅-=( ) A .xB .y xC .yD .1x 5.计算()3222()m m m -÷⋅的结果是( ) A .2m - B .22m C .28m - D .8m -6.若整数a 使得关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩的解集为2x >,且关于x 的分式方程21111ax x x+=---的解为整数,则符合条件的所有整数a 的和是( ) A .2- B .1- C .1 D .2 7.若数a 关于x 的不等式组()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥-+⎩恰有三个整数解,且使关于y 的分式方程13y 2a 2y 11y--=---的解为正数,则所有满足条件的整数a 的值之和是( ) A .2B .3C .4D .5 8.分式242x x -+的值为0,则x 的值为( ) A .2-B .2-或2C .2D .1或2 9.计算221(1)(1)x x x +++的结果是( ) A .1 B .1+1x C .x +1 D .21(+1)x 10.从7-、5-、3-、1-、3、6这六个数中,随机抽取一个数,记为k ,若数k 使关于x 的分式方程3211k x x +=--的解为非负数,那么这6个数中所有满足条件的k 的值之和是( ) A.4- B .0 C .3 D .611.22()-n b a(n 为正整数)的值是( ) A .222+nn b a B .42n n b aC .212+-n n b aD .42-n n b a 12.下列各式中,无论x 取何值,分式都有意义的是( ).A .132x -B .213x +C .231x x +D .21x x + 二、填空题13.若关于x 的分式方程233x m x x=---的解为正数,则常数m 的取值范围是______. 14.当x _______时,分式22x x -的值为负. 15.223(3)a b -=______,22()a b ---=______.16.101()()2π-+-=______,011(3.14)2--++=______.17.化简分式:2121211a a a a +⎛⎫÷+= ⎪-+-⎝⎭_________. 18.如图,将形状大小完全相同的“□”按照一定规律摆成下列图形,第1幅图中“□”的个数为1a ,第2幅图中“□”的个数为2a ,第3幅图中“□”的个数为3a ,……,以此类推,若123201922222020n a a a a +++⋅⋅⋅+=(n 为正整数),则(1)5a =________;(2)n 的值为________.19.对于两个不相等的实数a ,b ,我们规定符号Min{,}a b 表示a ,b 中的较小的值,如Min{3,4}3=,按照这个规定,方程135Min ,2222x x x x -⎧⎫=-⎨⎬---⎩⎭的解为_____________.20.已知1112a b -=,则ab a b-的值是________. 三、解答题21.某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为30元,用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同. (1)求每件甲种、乙种玩具的进价分别是多少元?(2)商场计划购进甲、乙两种玩具共50件,其中甲种玩具不低于22件,商场决定此次进货的总资金不超过750元,求商场共有几种进货方案?22.先化简,再求值:213(1)211x x x x x +--÷-+-,其中4x =-. 23.小强家距学校3000米,某天他步行去上学,走到路程的一半时发现忘记带课本,此时离上课时间还有23分钟,于是他立刻步行回家取课本,随后小强爸骑电瓶车送他去学校.已知小强爸骑电瓶车送小强到学校比小强步行到学校少用24分钟,且小强爸骑电瓶车的平均速度是小强步行的平均速度的5倍,小强到家取课本与小强爸启动电瓶车等共用4分钟.(1)求小强步行的平均速度与小强爸骑电瓶车的平均速度;(2)请你判断小强上学是否迟到,并说明理由.24.已知:240x x +-=,求代数式321121x x x x x x -⎛⎫-÷ ⎪--+⎝⎭的值. 25.先化简,再求值.(1)22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中x 是9的平方根; (2)2222221211⎛⎫-+-÷ ⎪-+-⎝⎭a a a a a a a ,然后从-1,0,1,2中选一个合适的数作为a 的值代入求值.26.先化简,再求值:21123369a a a a a ⎛⎫+÷ ⎪-+-+⎝⎭,其中2a =-.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】将x 变为3x ,y 变为3y 计算后与原式比较即可得到答案.【详解】222(3)93333()x x x x y x y x y==⨯+++, 故分式的值扩大到原来的3倍,故选:A .【点睛】此题考查分式的基本性质,正确掌握积的乘方运算,分解因式是解题的关键. 2.B解析:B【分析】根据分式等于0的条件:分子为0,分母不为0解答.【详解】由题意得:290,30x x -=-≠,解得x=-3,故选:B .【点睛】此题考查分式的值等于0的条件,熟记计算方法是解题的关键. 3.D解析:D【分析】分式方程去分母转化为整式方程,表示出解,由解为正数确定出m 的范围即可.【详解】去分母得:m-1=2x-2,解得:x=12+m , 由方程的解为正数,得到12+m >0,且12+m ≠1, 解得:1m >-且1m ≠,故答案为:1m >-且1m ≠【点睛】此题考查了分式方程的解,以及解一元一次不等式,熟练掌握运算法则是解本题的关键. 4.A解析:A【分析】根据分式乘法计算法则解答.【详解】 解:2x y x y x y xy-⋅-=x , 故选:A .【点睛】此题考查分式的乘法计算法则,熟记计算法则是解题的关键.5.C解析:C【分析】先分别计算积的乘方运算,再利用单项式除以单项式法则计算即可.【详解】解:()3222()m m m -÷⋅ =()468m m -÷=()468m m -÷ =28m -,故选:C .【点睛】本题考查单项式除以单项式,积的乘方运算.在做本题时需注意运算顺序,先计算积的乘方,再算除法.6.D解析:D【分析】先分别解不等式组里的两个不等式,根据解集为2x >,得出a 的范围,根据分式方程的解为整数即得到a 的值,结合a 的范围即可求得符合条件的所有整数a 的和.【详解】解:关于x 的不等式组3(1)32(1)x a x x >⎧⎨-+>+⎩①② 解不等式①得,x a >;解不等式②得,2x >;∵不等式组的解集为2x >,∴a≤2, 解方程21111ax x x+=---得:21x a =- ∵分式方程的解为整数,∴11a -=±或2±∴a=0、2、-1、3又x≠1, ∴211a≠-,∴a≠-1, ∴a≤2且a≠-1,则a=0、2,∴符合条件的所有整数a 的和=0+2=2,故选:D .【点睛】本题考查了分式方程的解以及解一元一次不等式组,根据分式方程的解为整数结合不等式组有解,找出a 的值是解题的关键.7.A解析:A【分析】先解不等式得出解集x≤2且x≥2a -,根据其有两个整数解得出0<2a -≤1,解之求得a 的范围;解分式方程求出y =2a −1,由解为正数且分式方程有解得出2a −1>0且2a - 1≠1,解之求得a 的范围;综合以上a 的范围得出a 的整数值,从而得出答案.【详解】 解:()()11223321x x x a x ⎧-≤-⎪⎨⎪-≥--⎩①②,解不等式①得:x≤2,解不等式②得:x≥2a -,∵不等式组恰有三个整数解,∴-1<2a -≤0,解得12a ≤<, 解分式方程132211y a y y--=---, 得:21y a =-,由题意知210211a a ->⎧⎨-≠⎩, 解得12a >且1a ≠, 则满足12a ≤<,12a >且1a ≠的所有整数a 的值是2, 所有满足条件的整数a 的值之和为2.故选择:A .【点睛】 本题主要考查解一元一次不等式组和求方程的正数解,解题的关键是根据不等式组整数解和方程的正数解得出a 的范围,再求和即可.8.C解析:C【分析】分式的值为零时,分子等于零,分母不等于零.【详解】解:依题意,得x 2-4=0,且x+2≠0,所以x 2=4,且x≠-2,解得,x=2.故选:C .【点睛】本题考查了求一个数的平方根,分式的值为零的条件.若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.9.B解析:B【分析】根据同分母分式加法法则计算.【详解】221(1)(1)x x x +++=211(1)1x x x +=++, 故选:B .【点睛】此题考查同分母分式加法,熟记加法法则是解题的关键.10.C解析:C【分析】先对分式方程进行求解,即用含k 的代数式表示分式方程的解,然后根据题意可进行求解.【详解】 解:由3211k x x +=--可得:52x k =+, ∵分式方程的解为非负数,且1x ≠, ∴502k +≥且512k +≠,解得:5k ≥-且3k ≠- ∴满足条件的有5-、1-、3、6,∴它们的和为51363--++=;故选C .【点睛】 本题主要考查分式方程及一元一次不等式的解法,熟练掌握分式方程及一元一次不等式的解法是解题的关键.11.B解析:B【分析】根据分式的乘方计算法则解答.【详解】2422()-=nn n b b a a. 故选:B .【点睛】此题考查分式的乘方计算法则:等于分子、分母分别乘方,熟记法则是解题的关键. 12.B解析:B【分析】根据分式有意义的条件:分母不等于0确定答案.【详解】A 、若3x-2≠0,即23x ≠时分式有意义,故该选项不符合题意; B 、∵230x +>,∴无论x 取何值,分式都有意义,故该项符合题意; C 、∵20x ≥,∴x ≠0时分式有意义,故该选项不符合题意;D 、若210x +≠即12x ≠-时分式有意义,故该选项不符合题意; 故选:B .【点睛】此题考查分式有意义的的条件:分母不等于0. 二、填空题13.且【分析】分式方程去分母转化为整式方程由分式方程的解为正数确定出a 的范围即可【详解】解:∵∴∴∵方程的解为正数则∴∵∴;∴常数的取值范围是且;故答案为:且【点睛】此题考查了分式方程的解分式有意义的条 解析:6m <且3m ≠-【分析】分式方程去分母转化为整式方程,由分式方程的解为正数确定出a 的范围即可.【详解】解:∵233x m x x=---, ∴62x x m =--, ∴63m x -=, ∵方程的解为正数,则603m x -=>,∴6m <, ∵633m x -=≠, ∴3m ≠-;∴常数m 的取值范围是6m <且3m ≠-;故答案为:6m <且3m ≠-.【点睛】此题考查了分式方程的解,分式有意义的条件,以及解一元一次不等式,熟练掌握运算法则是解本题的关键.14.且【分析】分式有意义x2≠0分式的值为负数只有分子x-2<0由此求x 的取值范围【详解】解:依题意得解得x <2且x≠0故答案为:x <2且x≠0【点睛】本题考查了分式的值求分式的值必须同时满足分母不为0解析:2x <且0x ≠【分析】分式有意义,x 2≠0,分式的值为负数,只有分子x-2<0,由此求x 的取值范围.【详解】解:依题意,得2200x x -<⎧⎨≠⎩解得x <2且x≠0,故答案为:x <2且x≠0.【点睛】本题考查了分式的值.求分式的值,必须同时满足分母不为0.15.【分析】(1)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算然后根据负指数次幂的意义化成正指数次幂即可【详解】;【点睛】本 解析:6627a b 42a b【分析】(1)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可;(2)首先利用积的乘方以及幂的乘方法则计算,然后根据负指数次幂的意义化成正指数次幂即可.【详解】()632266627327a a b a b b --==; 422422()a a b a b b----==. 【点睛】本题考查了负整数指数幂,利用了积的乘方等于乘方的积,单项式的乘法,负整数指数幂与正整数指数幂互为倒数.16.【分析】根据零指数幂和负整数指数幂等知识点进行解答幂的负指数运算先把底数化成其倒数然后将负整指数幂当成正的进行计算任何非0数的0次幂等于1【详解】2+1=3;【点睛】本题是考查含有零指数幂和负整数指 解析:12【分析】根据零指数幂和负整数指数幂等知识点进行解答,幂的负指数运算,先把底数化成其倒数,然后将负整指数幂当成正的进行计算.任何非0数的0次幂等于1.【详解】101()()2π-+-=2+1=3; 011(3.14)2--++1112=-++12= 【点睛】本题是考查含有零指数幂和负整数指数幂的运算.根据零指数幂和负整数指数幂等知识点进行解答即可. 17.【分析】先计算括号内的加法再将除法化为乘法再计算乘法即可【详解】解:===故答案为:【点睛】本题考查分式的混合运算掌握运算顺序和每一步的运算法则是解题关键 解析:11a - 【分析】先计算括号内的加法,再将除法化为乘法,再计算乘法即可.【详解】 解:2121211a a a a +⎛⎫÷+ ⎪-+-⎝⎭=2112211a a a a a +-+÷-+- =211(1)1a a a a +-⋅-+ =11a -, 故答案为:11a -. 【点睛】本题考查分式的混合运算.掌握运算顺序和每一步的运算法则是解题关键.18.4038【分析】先根据已知图形得出代入方程中再将左边利用裂项化简解分式方程可得答案【详解】由图形知:∴∵∴故填:30;【点睛】本题考查图形的变化规律解题的关键是根据已知图形得到以及裂项的规律解析:4038【分析】先根据已知图形得出()1n a n n =+,代入方程中,再将左边利用()11111n n n n =-++裂项化简,解分式方程可得答案.【详解】由图形知:112a =⨯,223a =⨯,334a =⨯,∴ ()1n a n n =+,556=30a =⨯, ∵ 123201922222020n a a a a +++⋅⋅⋅+=, ∴2222122334201920202020n +++⋅⋅⋅+=⨯⨯⨯⨯, 1111121223201920202020n ⎛⎫-+-+⋅⋅⋅+-= ⎪⎝⎭, 4038n =,故填:30;4038.【点睛】本题考查图形的变化规律,解题的关键是根据已知图形得到()1n a n n =+,以及裂项的规律()11111n n n n =-++. 19.【分析】根据题中的新定义化简求出分式方程的解检验即可【详解】当<时>2方程变形得:=−2去分母得:1=解得:(不符合题意舍去);当>即<2方程变形得:=−2去分母得:3=解得:经检验是分式方程的解综 解析:4x =-【分析】根据题中的新定义化简,求出分式方程的解,检验即可.【详解】 当12x -<32x -时,x >2,方程变形得:12x -=52x x --−2, 去分母得:1=()522x x ---,解得:=2x -(不符合题意,舍去); 当12x ->32x -,即x <2,方程变形得:32x -=52x x --−2,去分母得:3=()522x x ---,解得:4x =-,经检验4x =-是分式方程的解,综上,所求方程的解为4x =-.故填:4x =-.【点睛】此题考查了解分式方程,以及实数的运算,弄清题中的新定义是解本题的关键. 20.-2【分析】先把所给等式的左边通分再相减可得再利用比例性质可得再利用等式性质易求的值【详解】解:∵∴∴即∴故答案为:-2【点睛】本题考查了分式的加减法代数式求值解题的关键是通分得出是解题关键解析:-2【分析】 先把所给等式的左边通分,再相减,可得12b a ab -=,再利用比例性质可得()2ab a b =--,再利用等式性质易求ab a b -的值. 【详解】解:∵1112a b -=, ∴12b a ab -=, ∴()2ab b a =-,即()2ab a b =--, ∴2ab a b=--. 故答案为:-2.【点睛】 本题考查了分式的加减法,代数式求值,解题的关键是通分,得出12b a ab -=是解题关键. 三、解答题21.(1)甲,乙两种玩具分别是16元/件,14元/件;(2)4种【分析】(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件,然后根据用80元购进甲种玩具的件数与用70元购进乙种玩具的件数相同列分式方程求解,注意结果要检验; (2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,然后利用甲种玩具不低于22件,商场决定此次进货的总资金不超过750元列不等式求解,从而确定y 的取值【详解】解:(1)设甲种玩具进价x 元/件,则乙种玩具进价为(30﹣x )元/件依题意得:80x =7030x- 解得:x =16, 经检验x =16是原方程的解.∴30﹣x =14.甲,乙两种玩具分别是16元/件,14元/件;(2)设购进甲种玩具y 件,则购进乙种玩具(50﹣y )件,依题意得: 16y +14(50-y )≤750,解得:y≤25,又∵y≥22∴22≤y≤25因为y 为非负整数,∴y 取22,23,24, 25共有4种方案.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式组.22.1x x -;45【分析】 分式的混合运算,注意先算乘除,然后算加减,有小括号先算小括号里的,然后代入求值即可.【详解】 解:213(1)211x x x x x +--÷-+- =2221(1)1(1)3x x x x x x -+-+-⨯-- =222111(1)3x x x x x x -+---⨯-- 2231(1)3x x x x x --=⨯-- 2(3)1(1)3x x x x x --=⨯-- 1x x =- 当4x =-时,原式441415x x -===---. 【点睛】 本题考查分式的混合运算,分式的化简求值,掌握运算顺序和计算法则正确计算是解题关键.23.(1)小强步行的平均速度为100米/分钟,小强爸骑电瓶车的平均速度为500米/分钟;(2)小强不能按时到校,将会迟到,理由见解析【分析】(1)设小强步行的平均速度为xm/分钟,骑电瓶车的平均速度为5xm/分钟,根据题意可得,小强爸骑电瓶车送小强到学校比小强步行到学校少用24分钟,据此列方程求解; (2)计算出小强从步行回家到骑车回到学校所用的总时间,然后和23进行比较即可.【详解】解:(1)设小强步行的平均速度为x 米/分钟,则小强爸骑电瓶车的平均速度为5x 米/分钟,根据题意得:30003000245x x-=, 解得100x =,经检验,100x =是分式方程的解,且符合题意,∴5500x =,即小强步行的平均速度为100米/分钟,小强爸骑电瓶车的平均速度为500米/分钟; (2)由(1)得,小强半途步行返家所需时间为3000210015÷÷=分钟,小强爸骑电瓶车送小强到学校所需时间为30005006÷=分钟,所以,从小强半途步行返家到小强爸骑电瓶车送他到学校共用时间为154625++=分钟23>分钟,故小强不能按时到校,将会迟到.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.24.21x x +,14【分析】 根据分式的运算法则对原式进行化简,再把已知条件变形为化简算式可以利用的形式后代入求解即可 .【详解】 解:原式321121x x x x x -=÷--+ 21(1)1(1)(1)x x x x x -=⋅-+- 21x x=+. 由已知可得:24x x +=, 把上式代入经化简后的原式可得原式14=. 【点睛】本题考查分式的化简与求值,熟练掌握分式的运算方法与整体代入的思想方法是解题关键.25.(1)3x ;±1;(2)1a a +,2a =,值为32【分析】(1)先化简,后把x=3或x=-3分别代入求值;(2)先化简,根据分母不能为零的原则,选择数值代入计算即可.【详解】(1)原式=212(2)2(2)x x x x x x +-+-⎛⎫⨯ ⎪--⎝⎭ =23(2)2(2)x x x x -⨯-- =3x, ∵x 是9的平方根, ∴3x =±,∴原式=±1.(2)原式=2(1)(1)(1)(1)(1)(1)a a a a a a a ⎛⎫-++-⨯ ⎪-+⎝⎭ 1a a+=, 由题意当1,1,0a =-时,原分式没有意义, ∴2a =,此时原分式32=. 【点睛】本题考查了分式的化简求值,选值时,确保每一个分式有意义是解题的关键. 26.33a a -+,-5 【分析】 把括号内通分,并把除法转化为乘法,约分化简后,再把2a =-代入计算即可.【详解】解:原式=()()()()2336933332a a a a a a a a a ⎡⎤+--++⨯⎢⎥+-+-⎣⎦=()()()232332a a a a a -⨯+- =33a a -+,当2a=-时,原式=235 23--=--+.【点睛】本题考查了分式的混合运算,熟练掌握分式的运算法则是解答本题的关键.分式的混合运算,要注意运算顺序,式与数有相同的混合运算顺序;先算乘除,再算加减,有括号的先算括号里面的;最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.。

相关文档
最新文档