函数模型及其应用(共2课时)

合集下载

高中数学必修一教案-函数模型的应用实例

高中数学必修一教案-函数模型的应用实例

《函数模型的应用实例》一、教学内容分析:本节课选自人民教育出版社A版的普通高中课程标准实验教科书·数学必修1中3.2.2函数模型的应用实例(第二课时).函数基本模型的应用是本章的重点内容之一,函数模型本身就来源于现实,并用于解决实际问题.本节课的内容是在《几类不同增长的函数模型》和《函数模型的应用实例(一)》内容之后,对于纯数学知识的几类函数及其性质和给定的函数模型应用有了一定的学习,本节课是对以上两节内容的延续与拓展,研究没有给定函数模型或没有确定性函数模型的实际问题进行建模和应用.这节课的内容继续通过一些实例来感受函数模型的建立和应用,逐步体会实际问题中构建函数模型的过程,本节课的函数模型的应用实例主要包括建立确定性函数模型解决问题及选择或建立拟合函数模型解决问题.例5所给的问题的特点是表中数学的变化是有特定规律的,运用表中的数据规律建立数学模型,注意变化范围和检验结果的合理性,同时使用这种有规律的简单数据实例提供了建立数学模型的方法.例6与例5有所区别,表中数据的变化规律特点不是和明显,需要自己根据对数据的理解选择模型,这反映一个较为完整的建立函数模型解决问题的过程,让学生逐步感受和明确这一点.整节课要求学生分析数据,比较各个函数模型的优劣,选择接近实际的函数模型,并应用函数模型解决实际问题.强化读图、读表能力;优化学生思维,提高学生探究和解决问题的能力;强化学生数学应用意识,感受数学的实用性;锻炼学生的吃苦精神,提高学生的团队合作能力.二、教学目标:知识与技能:1.会分析所给出数据,画出散点图.2.会利用选择或建立的函数模型.3.会运用函数模型解决实际问题.过程与方法:1.通过对给出的数据的分析,抽象出相应的确定性函数模型,并验证函数模型的合理性.2.通过收集到的数据作出散点图,并通过观察图像判断问题所适用的函数模型,在合理选择部分数据或计算机的拟合功能得出具体的满意的函数解析式,并应用模型解决实际问题.情感、态度和价值观:1.经历建立函数模型解决实际问题的过程,领悟数学源自生活,服务生活,体会数学的应用价值.2.培养学生的应用意识、创新意识和探索精神,优化学生的理性思维和求真务实的科学态度.3.提高学生探究学习新知识的兴趣,培养学生,勇于探索的科学态度.三、学生学情分析:1.已掌握了一些基本初等函数的相关知识,有相应的数学基础知识储备.2.在前面的学习中,初步体会了利用给定函数模型解决实际问题的经历,为本节课积累解决问题的经验.3.学生从文字语言向图像语言和符号语言转化较弱;应用意识和应用能力不强;抽象概括和局部处理能力薄弱.四、教学重点、难点重点:根据收集的数据作出散点图,并通过观察图像选择问题所适用的函数模型,利用演算或计算机数据建立具体的函数解析式.难点:怎样合理分析数据选择函数模型和建立具体的函数解析式.五、教学策略分析:基于新课程标准倡导以学生为主体进行探究性学习,教师应成为学生学习的引导者、组织者和合作者的教学理念和最近发展区理论,结合本节课的教学目标,采用如下教学方法:1.问题教学法.在例1的教学中,提出如何能更为直观的发现函数模型,引导学生思考,发现选择函数模型的重要方法,即散点图图像,从而让学生有收获,有成就感.在例2的解决过程中,提出一系列的问题串,学会对问题的剖析,直达问题的核心.使学生的学习过程成为在教师引导下的“再创造”过程,并使学生从中体会学习的兴趣.这样可以充分调动学生学习的主动性、积极性,使课堂气氛更加活跃,同时培养了学生自主学习,动手探究的能力.2.分组讨论法.在例2的教学中,遇到难以选择模型时,通过小组讨论,拓展思维,加强合作,解决问题;在获得函数模型后和课堂总结中,组织小组讨论,相互交流成果,扩大成果影响力.这样不仅能够培养学生对数学知识的探索精神和团队协作精神,更能让学生体验成功的乐趣,培养其学习的主动性.3.多媒体辅助教学法:在教学过程中,采用多媒体教学工具,通过动态演示有利于引起学生的学习兴趣,激发学生的学习热情,增大信息的容量,使内容充实、形象、直观,提高教学效率和教学质量。

函数模型及其应用

函数模型及其应用

函数概念与基本初等函数
选择函数模型的基本思想 (1)根据数据描绘出散点图; (2)将散点根据趋势“连接”起来,得到大致走势图象; (3)根据图象与常见的基本函数的图象进行联想对比,选择最佳 函数模型.但必须注意实际意义与基本图形的平移性相结合.
栏目 导引
第二章
函数概念与基本初等函数
[通关练习] 1.某公司为确定下一年度投入某种产 品的宣传费,需了解年宣传费 x(单位: 千元)对年销售量 y(单位:t)的影响. 根 据近 8 年的年宣传费 xi 和年销售量 yi(i =1,2,…,8)数据得到下面的散点图.则下列哪个作为年销 售量 y 关于年宣传费 x 的函数模型最适合( A.y=ax+b C.y=a· bx B.y=a+b x D.y=ax2+bx+c )
第二章
函数概念与基本初等函数
函数模型的应用
[典例引领] 1 已知炮弹发射后的轨迹在方程 y=kx- (1+k2)x2(k>0) 20 表示的曲线上,其中 k 与发射方向有 关.炮的射程是指炮弹落地点的横坐标. (1)求炮的最大射程; (2)设在第一象限有一飞行物(忽略其大小), 其飞行高度为 3.2 千 米,试问它的横坐标 a 不超过多少时,炮弹可以击中它?请说 明理由.
答案:B
栏目 导引
第二章
函数概念与基本初等函数
甲、乙两人在一次赛跑中,从同一地点出发,路程 S 与时间 t 的函数关系如图所示,则下列说法正确的是( )
A.甲比乙先出发 C.甲、乙两人的速度相同
答案:D
B.乙比甲跑的路程多 D.甲比乙先到达终点
栏目 导引
第二章
函数概念与基本初等函数
(教材习题改编)某公司为了业务发展制定了一个激励销售人 员的奖励方案,在销售额 x 为 8 万元时,奖励 1 万元.销售额 x 为 64 万元时, 奖励 4 万元. 若公司拟定的奖励模型为 y=alog4x +b.某业务员要得到 8 万元奖励,则他的销售额应为________ 万元.

《函数模型及其应用》教案

《函数模型及其应用》教案

芯衣州星海市涌泉学校函数模型及其应用教学目的:1.能根据图形、表格等实际问题的情境建立数学模型,并求解;进一步理解函数模型在解决简单的实际问题中的应用,理解函数模型在社会生活中的广泛应用2.在解决实际问题的过程中,培养学生数学地分析问题、探究问题、解决问题的才能,培养学生的应用意识,进步学习数学的兴趣. 教学重点:在解决以图、表等形式作为问题背景的实际问题中,读懂图表并求解. 教学难点: 对图、表的理解. 教学方法: 讲授法,尝试法. 教学过程: 一、情境创设矩形的长为4,宽为3,假设长增加x ,宽减少0.5x ,所得新矩形的面积为S . 〔1〕将S 表示成x 的函数;〔2〕求面积S 的最大值,并求此时x 的值. 二、学生活动 考虑并完成上述问题. 三、例题解析例1有一块半径为R 的半圆形钢板,方案剪裁成等腰梯形ABCD 的形状,它的下底AB 是⊙O 的直径,上底CD 的端点在圆周上,写出这个梯形周长y 和腰长x 间的函数关系式,并求出它的定义域.A BO C DE例2一家旅社有100间一样的客房,经过一段时间是是的经营理论,旅社经理发现每间客房每天的价格与住房率有如下关系:要使每天收入最高,每间客房定价为多少元?例3今年5月,荔枝上.由历年的场行情得知,从5月10日起的60天内,荔枝的场售价与上时间是是的关系大致可用如下列图的折线ABCD表示(场售价的单位为元/500g).请写出场售价S(t)(元)与上时间是是t(天)的函数关系式,并求出6月20日当天的荔枝场售价.练习:1.直角梯形OABC中,AB∥OC,AB=1,OC=BC=2,直线l:x=t截此梯形所得位于l左方图形的f(t)的大致图象为()状可能是()元一个销售,每天可卖200个.假设这种商品每涨价1元,〔2〕假设销售价必须为整数,要使利润最大,应如何定价?5.根据场调查,某商品在最近40天内的价格f(t)与时间是是t满足:l AC DBhH A B C DO 10 40 60f(t)=111(020)241(2040)t t t Nt t t N⎧+<∈⎪⎨⎪-+∈⎩≤,≤≤,,销售量g(t)与时间是是t满足:g(t)=14333t-+(0≤t≤40,t N),求这种商品日销售金额的最大值.四、小结利用图、表建模;分段建模.五、作业。

高一 函数模型及其应用(十中 )精品公开课

高一 函数模型及其应用(十中 )精品公开课

函数模型及其应用(2)江苏省苏州第十中学 王岳一、教学目标分析1.让学生能根据实际问题的情境建立函数模型,结合对函数性质的研究,给出问题的解答.2. 让学生切身感受数学建模的过程,体验一些实际问题的数学“建模”思想,从而培养学生的创新精神和实践能力. 二、学情分析学生学习了函数的图像及其性质,已经具有用函数知识解决这类实际问题的能力;另外,本班学生思维活跃,学习积极性高,已经形成对数学问题进行合作探究的意识与能力. 三、教学重点与难点教学重点:选择合适的变量来建立函数模型.教学难点:从实际问题中选取合适的变量来建立函数模型,并利用函数的相关性质来求解函数模型.四、教学过程:● 学情回顾:(3分钟,学生口述)函数模型:用函数知识对我们日常生活中普遍存在的成本最低﹑利润最高﹑产量最大﹑效益最好﹑用料最省等实际问题进行归纳加工,建立相关目标函数,确定变量的限制条件,运用函数思想方法求解,最后解决实际问题. 1.解应用题的一般步骤:2.解题关键一是实际问题数学化,即在理解的基础上,通过列表、画图、引入变量,建立直角坐标系等手段,把实际问题转化成数学问题,把文字语言翻译成数学符号语言; 二是对得到的函数模型进行解答,得出数学问题的解,注重数学能力的培养. ●学生活动:例1、现有100米长的篱笆,某农场主打算用来围建一个矩形羊圈(如图),问羊圈的长和宽各为多少时,面积最大?(15-20分钟)解:(学生)数学模型:设羊圈的一边长为x 米,另一边为(50-x )米,羊圈的面积为S ,则 ()225025625S x x x =-+=--+,当25x =时,max 625S =(平方米). 原理:周长一定的矩形,正方形面积最大.例2、农场主打算围建一个矩形羊圈(如图),矩形羊圈的面积为400m 2,那么怎样设计羊圈才能使用料最省?解:(学生) 设羊圈的一边长为x 米, 另一边为400x米,羊圈的周长为L ,则 400280L x x ⎛⎫=+≥ ⎪⎝⎭,(利用单调性) 当20x =时,min 80L = (米).x变题1 考虑到实际需要现将矩形羊圈用篱笆隔成两部分(如图),问此时应如何设计,才能使面积最大?解:(学生) 设羊圈的一边长为x 米, 羊圈的面积为S ,则 221003335012505022233x S x x x x -⎛⎫⎛⎫==-+=--+ ⎪ ⎪⎝⎭⎝⎭, 当503x =时,m ax 12503S =(平方米).变题2 矩形羊圈建造时一边利用原有的旧墙,另外三边用篱笆围成(如图),那么羊圈的长和宽各为多少时才能使面积最大?解:(学生) 设旧墙的边长为x 米, 羊圈的面积为S , 则 ()()2210011100501250222x S x xx x -==-+=--+,当50x =时,max 1250S = (平方米).若受到环境的影响,利用的旧墙的边长不能超过a (a >0)米. ①50a ≥时,当50x =时,max 1250S = (平方米).②050a <<时,当x a =时,2max 1502S a a =-+(平方米).例3、(2009年湖北)如图所示,围建一个面积为360m 2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m 的进出口,已知旧墙的维修费用为45元/m ,新墙的造价为180元/m ,如何设计才能使修建此矩形场地围墙的总费用最小,并求出最小总费用. 解:设旧墙的边长为x 米,修建总费用为y 元.23603604518022225360y x x x x x ⎛⎫=+⨯+-=+-⎪⎝⎭,()0x >. 当min 24,10440x y ==元.例4、如图, 某公园有一块等腰直角三角形的空地,其腰AB 长为2(百米),现决定在空地内筑一条笔直的小路DE (宽度不计),将该空地分成一个四边形和一个三角形,分别种植鲜花和绿草.(请同学们给修筑方案添加合适的限制条件)(分成面积相等的两部分)结合你添加的条件,设AD =x (百米), AE =t (百米), DE =y (百米), 试用x 表示t 和y ? 如果沿DE 铺设灌溉水管, 希望它最短, 那么DE 的位置应如何确定?如果沿DE 修建观光长廊, 希望它最长, 那么DE 的位置应如何确定?(15分钟) 解: 112AD E ABC S S ∆∆==,又12ADE S AD AE∆=,()2AD AE ∴= 定值AD =x (百米),则t =()2AE x=百米,y D E ∴===x0212202x x x <≤⎧⎪∴≤≤⎨<≤⎪⎩,[]1,2y x ∴=∈[]1,2y x ==∈令()[]21,2g x x x x=+∈,利用定义研究其单调性,得()()12g x 在上单调递减,在上单调递增,()()()()min max 123g x gg x g g ∴=====,∴当x =min 2y = ;当12x =或时,max y =.巩固练习:(6分钟)1. 某人准备用长为7m 的不锈钢材料做成下部为矩形,上部为半圆形的艺术窗框(如图7),试问如何设计,可以使得窗框围成的面积最大,以取得最佳采光效果?(π≈3)2. 如图8,某村计划建造一个室内面积为800m 2的矩形蔬菜温室,沿左、右两侧和后侧内墙各保留1m 宽的通道,沿前侧内墙保留3m 宽的空地.当矩形温室的边长各为多少时,蔬菜的种植面积最大?最大种植面积是多少?1.解:圆的半径为r ,则矩形的另一边长为752r -,设窗框的面积为y ,则()2227577727122222rr y r r r r π-=+=-+=--+,当1r =时,m ax 72y =(m 2)2.解:设矩形温室的左侧边长为a m ,后侧边长为b m ,则800ab =. 蔬菜的种植面积为 1600(4)(2)4288082()S a b ab b a a a=--=--+=-+当且仅当40,20a b == 时,max 648S =(m 2).课堂小结:(略)。

高中数学人教版:3.2--数学模型及其应用(共73张PPT)

高中数学人教版:3.2--数学模型及其应用(共73张PPT)

例3. 一辆汽车在某段路程中的行驶速度与时间的关系如图 所示.
(1) 求图中阴影部分的面积, 并说明所求面积的实际含义; (2) 假设这辆汽车的里程表在汽车行驶这段路程前的读数为 2004 km, 试建立汽车行驶这段路程时汽车里程表读数 s km与 时间 t h 的函数解析式, 并作出相应的图象.
所示.
(1) 求图中阴影部分的面积, 并说明所求面积的实际含义;
(2) 假设这辆汽车的里程表在汽车行驶这段路程前的读数为
2004 km, 试建立汽车行驶这段路程时汽车里程表读数 s km与
时间 t h 的函数解析式, 并作出相应的图象.
s/km
解: (2) 列表表示:
2350
2300
[0, 1)
s[1=, 2)
y4 5 2.3107 1.4295 1.1407 1.0461 1.0151 1.005
关于 x 呈指数型函数变化的变量是 y2 y4.
分析: y1, y2, y3 都是 增函数, 增长速度最快的 是 y2, 所以 y2 最有可能 是指数型函数.
y4 是减函数, 画出 图象如图: y4 也可能是 指数形函数.
y
2048
y=2x
幂函数 y = x3
对数函数 y = log2x
x
5
8 10 11 1231
2x 32 256 1024 2048 1024
1000
x3 125 512 1000 1231
log2x 2.32 3 3.32 3.46 512
随着 x 的增大, 2x 的图象 几乎垂直向上, 增速很大.
口人增数(长1)率5如95(61精果确以50到6各030年.0人508702口41)增, 5用9长867马率尔的660萨6平2斯均6人5值164口作增为62长2我88模国型6这643建5一立时69我5期49国的这人60772

函数模型及其应用教案

函数模型及其应用教案

函数模型及其应用教案一、教学目标1. 理解函数的概念,了解函数模型的产生和应用;2. 学习两种常见函数模型的基本形式和参数,并能解决实际问题应用;3. 认识函数模型在现实生活和工程实践中的重要作用;4. 提高学生分析和解决实际问题的能力。

二、教学重点1. 函数的概念与应用;2. 两种常见函数模型的基本形式与参数;3. 实际问题中函数模型的应用。

三、教学难点1. 函数模型在数学联系与实际应用展示之间的联系;2. 如何将实际问题转化为基本形式的函数模型。

四、教学方法1. 讲授教学法;2. 课堂互动式教学法;3. 问题式教学法。

五、教学准备1. 多媒体教学设备;2. 函数模型案例资料。

六、教学过程1. 引入函数是一种重要的数学概念,也是自然科学、经济学、工程技术等领域的基础。

而函数模型则是在实际问题中应用函数的过程中,通过对数据和经验的分析产生的数学模型,可用于预测、控制、优化等目的。

今天我们将学习两种常见函数模型及其应用。

2. 基础知识讲解(1)函数的概念函数是一个输入输出关系的特殊情况。

数学上定义一个函数是指一组数对,其中第一个数(称为自变量)从一个特定集合中取任意一个值,;第二个数(称为因变量或函数值)则从另一集合中取一个值,这个取值完全由第一个数决定。

(2)线性函数模型线性函数模型可以写为 y=a*x+b 的形式,其中 a 称为斜率,b称为截距。

它的应用非常广泛,比如经济学中的供给函数、消费函数,工程学中的动力学方程等等,都可以通过线性函数模型来描述。

(3)指数函数模型指数函数模型可以用 y=a^x+b 的形式表示,其中 a 称为底数,b 称为位移。

指数函数具有非常广泛的应用,在物理学、天文学、化学、生物学、经济学等领域中都有其用途,比如放射性衰变过程、细胞增殖过程、经济增长过程等等都可以使用指数函数模型来描述。

3. 练习将下列实际问题转化为线性函数模型或指数函数模型,并求出相应的参数或曲线。

高考文科数学《函数模型及其应用》课件

高考文科数学《函数模型及其应用》课件
121n0≥1232,1n0≤32,解得 n≤15.
故今后最多还能砍伐 15 年.
点 拨: 此类增长率问题,在实际问题中常可以用指数型函数模型 y=N(1+p)x(其 中 N 是基础数,p 为增长率,x 为时间)和幂型函数模型 y=a(1+x)n(其中 a 为基
础数,x 为增长率,n 为时间)的形式表示.解题时,往往用到对数运算.
直到达到规定人数 75 人为止.每团乘飞机,旅行社需付给航空公司包机 费 15 000 元.
(1)写出飞机票的价格关于人数的函数; (2)每团人数为多少时,旅行社可获得最大利润?
解:(1)设旅游团人数为 x 人,由题得 0<x≤75,飞机票价格为 y 元, 则 y=990000,-010<(x≤x-303,0),30<x≤75,
某纯净水制造厂在净化水过程中,每增加一次过滤可减少水 中杂质 20%,要使水中杂质减少到原来的 10%以下,则至少需过滤的次数
为________.(参考数据:lg2≈0.301 0)
解:设过滤次数为 x(x∈N*),原有杂质为 a,则 a(1-20%)x<a·10%,
所以 x>1-13lg2≈10.3,即至少需要过滤 11 次.故填 11.
当且仅当 x=40 x000,即 x=200 时取等号.故选 A.
(教材改编题)某家具的标价为 132 元,若降价以九折出售(即优惠 10%),
仍可获利 10%(相对进货价),则该家具的进货价是( )
A.105 元
B.106 元
C.108 元
D.118 元
解:设进货价为 a 元,由题意知 132×(1-10%)-a=10%·a, 解得 a=108.故选 C.
单调____ 函数
相对平稳

函数模型及其应用教案

函数模型及其应用教案

Modeling and Problem Solving——函数模型及其应用教案中澳课程部王晓叶学情分析:澳方MathB每次的Paper Test都分为两部分,其中Knowledge and Procedures(知识与过程)这个和普通高中数学相似,学生A/B率比较高,但是另外一部分Modeling and Problem Solving(建模与实际问题的解决)学生的A/B率不高。

这一部分内容题目普遍很长、生词量较多,并且都是将数学知识应用于实际生活中,所以大多数学生遇到此类题目都是放弃不做。

MathB这门课又特别注重实际生活问题的解决,而我们的学生这方面意识比较薄弱,抽象概括能力较弱。

所以,我们的教学任务是提高学生的考试成绩等级,提高OP成绩。

但是另一方面,12年级的学生大多数能灵活的使用图形计算器,具有一定的英语语言基础。

教学目标:1.了解函数模型在现实生活中的运用。

2.能够建立恰当的函数模型,并对函数模型进行简单的分析。

3.利用所得函数模型解释有关现象,对某些发展趋势进行预测。

教学重难点:1.建立合适的函数模型2.利用得到的函数模型解决实际问题教学过程一、引入案例、探索新知(如何确定最合适的函数模型)(18分钟)案例:根据《Daily Mail》报道,上个月一名中国留学生将自己车速飙到180公里/小时的录像传到了Instagram个人网页上,并以配以中文:“从Albany开回Perth,一路180公里/小时,将4.5小时的车程缩短到3.5小时。

”目前,他正在接受警方调查。

警察表示,视频显示这名男子在限速110公里/小时的高速公路开到了180公里/小时,他将面临巨额罚款、吊销驾照以及拘留。

Example1:The table below shows the relationship between the velocity of a car and the distance after it braking.Velocity 10 20 30 40 50 60 70 80 90 Distance 2 10 15 20 27 38 47 60 75a. Use the calculator to find the relationship between the velocity of a car and the distance after it braking.b. What’s the minimum safe following distance for a car travelling at 110 km/h on the motor way?澳洲法律常识项目罚款扣分超速少于10km/h 163澳元扣2分超速10km/h-20km/h 357澳元扣3分超速20km/h-30km/h 726澳元扣5分超速30km/h-40km/h 866澳元扣7分未系安全带341澳元扣3分闯红灯437澳元扣3分开车使用手机315澳元扣3分(设计意图:从生活案例引入新知,激发学生的学习兴趣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数模型及其应用(共2课时)
[教学目标]
通过实际问题的解答,了解利用数学方法处理实际问题的一般步骤.
[学法指导]
1.重点是根据已知条件建立函数关系式,难点是数学建模意识的逐步建立.
2.通过利用数学模型解决实际问题的过程,培养严谨的思维,强化分析问题和解决问题的能力.
例1,某计算机集团公司生产某种型号计算机的固定成本为200万元,生产每台计算机的可变成本为3000元,每台计算机的售价为5000元,分别写出总成本C(万元)、单位成本P(万元)、销售收入R(万元)以及利润L(万元)关于总产量X(台)的函数关系式。

例2,一家报刊推销员从报社买进报纸的价格是每份0.20元,卖出的价格是每份0.30元,卖不完的还可以以每份0.08元的价格退回报社.在一个月(以30天计算)有20天每天可卖出400份,其余10天只能卖250份,但每天从报社买进报纸的份数都相同,问应该从报社买多少份才能使每月所获得的利润最大?并计算每月最多能赚多少钱?
例3,在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)=f(x+1)-f(x),某公司每月最多生产100台报警系统装置,生产x台
(X∈N﹡)的收入函数为R(x)=3000x-20x2(单位:元),其成本函数为C(x)=500x+4000(单位:元),利润是收入与成本之差。

(1),求利润函数P(x)及边际利润函数MP(x);
(2)利润函数P(x)与边际函数MP(x)是否具有相同的最大值?
例4,某自来水厂的蓄电池中有水,每天零点开始由池中放水向居民供水,同时以每小时的速度向池中注水。

若小时内向居民供水总量为,问:每天几点时蓄水池中的存水量最少?
例5,物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T0,经过一定时间t后的温度是T,则,其中Ta表示环境温度,h称为半衰期。

现有一杯用88℃热水冲的速溶咖啡,放在24℃的房间中,如果咖啡降温到40℃需要20min,那么降温倒35℃时,需要多长时间(结果精确到0.1)?
例6,使用冰箱时排放的氟化物对臭氧有影响,若臭氧含量与时间具有关系式,其中是臭氧的初始量。

试求臭氧含量的最小值?
例7,某服装厂生产一种服装,每件服装的成本为元,出厂单价定为元.该厂为鼓励销售商订购,决定当一次订购量超过件时,每多订购一件,订购的全部服装的出厂单价就降低元.根据市场调查,销售商一次订购量不会超过件.
⑴设一次订购量为件,服装实际出厂单价为元,写出函数的表达式;
⑵当销售商一次订购了多少件服装时,该服装厂获得的利润最大,最大利润为多少?
例2,分析:本题所给条件较多,数量关系比较复杂,可以列表分析。

解法:设每天从报社买进x份(250≤x≤400).
数量(份)
价格(元)
金额(元)
买进
30
0.20
6x
卖出
20x+10×250
0.30
6x+750
退回
10(x-250)
0.08
0.8x-200
则每月获利润y=[(6x+750)+(0.8x-200)]-6x=0.8x+550(250≤x≤400).y在x[250,400]上是一次函数.
∴x=400元时,y取得最大值870元.
答:每天从报社买进400份时,每月获的利润最大,最大利润为870元.
评注:信息量大是数学应用题的一大特点,当所给条件错综复杂,一时难以理清关系时,可采用列表分析的方法,有些典型应用题也可以画出相应的图形,建立坐标系等.这里自变量x的取值范围[250,400]是由问题的实际意义决定的,建立函数关系式时应注意挖掘.
例4,【分析】由题意提炼数学模型是基本,但是根据实际意义找定义域是最重要的,“取整”“取正”是此类问题十分重要的细节,明确此事再利用各种方法求最值及列出不等式求解.【解法】⑴设点时(即从零点起后)池中的存水量为,则
∴当,即时取得最小值.
即每天早晨点时蓄水池中的存水量最少,仅剩.
⑵由
即时,池中存水将不多于,由知每天将出现供水紧张现象.
【评注】列出函数关系式注意自变量取“取正”,然后在定义域内找出所求范围,二次函数特点注意所求区间是否单调.
例7,【分析】服装厂售出一件服装的利润=实际出厂单价-成本,应注意实际问题中的定义域.
【解法】⑴当时,;
当时,.
所以.
⑵设销售商的一次订购量为件时,工厂获得的利润为元,
则.
当时,.
因此,当销售商一次订购了件服装时,该服装厂获得的利润是元.
【评注】解营销类问题需理解有关名词,掌握有关计算公式,并巧妙的建立函数关系式.本题数学模型为分段函数问题.。

相关文档
最新文档