1中考中的最值问题
中考最值问题大全

中考最值问题解题策略垂线段最短在最值问题中的应用模型一点到直线的所有线段中,垂线段最短点P在直线l外,过点P作l的垂线PH,垂足为H,则点P到直线l的最短距离为线段PH的长,即“垂线段最短”.1、如图,⊙O的半径为5,弦AB=6,M是AB上任意一点,则线段OM的取值围是_______________。
2、如图,在锐角△ABC中,BC=4,∠ABC=45°,BD平分∠ABC,M、N分别是BD、BC上的动点,则CM+MN的最小值是________.3. 如图,在Rt△AOB中,OA=OB=32,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则线段PQ的最小值为________.模型二“胡不归”问题基本模型:两定一动,动点在定直线上问题:点A为直线l上一定点,点B为直线外一定点,P为直线l上一动点,要使22AP+BP 最小.解决:过点A作∠NAP=45°,过点P作PE⊥AN,在直角三角形中将22AP转化为PE,使得22AP+BP=PE+BP,然后利用“两点之间线段最短”将“折”变“直”,再利用“垂线段最短”转化为求BF的长度.此类题的解题步骤:第一步:以系数不为1的线段的定端点为顶点作一个角,使其正弦值等于此线段的系数(注意题目中有无特殊角);第二步:过动点作第一步中角的边的垂线,构造直角三角形;第三步:根据两点之间线段最短,将“折”变“直”,再利用“垂线段最短”找到最小值的位置.4. 如图,菱形ABCD中,∠ABC=60°,边长为3,P是对角线BD上的一个动点,则12BP+PC的最小值是( )A BOMA. 3B.332 C. 3 D.3325. 如图,在△ACE 中,CA =CE ,∠CAE =30°,⊙O 经过点C ,且圆的直径AB 在线段AE 上,设点D 是线段AC 上任意一点(不含端点),连接OD ,当12CD +OD 的最小值为6时,求⊙O 的直径AB的长.6、如图6-2-4,二次函数y =ax 2+2ax +4与x 轴交于点A 、B ,与y 轴交于点C ,tan ∠CBO =2.⑴此二次函数的解析式为:______________________________________;⑵动直线l 从与直线AC 重合的位置出发,绕点A 顺时针方向旋转,到与直线AB 重合时终止运动,直线l 与线段BC 交于点D ,P 是线段AD 的中点.①直接写出点P 所经过的路线长_________________________________________.②点D 与B 、C 不重合时,过点D 作DE ⊥AC , DF ⊥AB 于点F ,连接PE 、PF ,在旋转过程中,∠EPF 的大小是否发生变化?若不变,求∠EPF 的度数;若变化,请说明理由.③在②的条件下,连接EF ,求EF 的最小值.ABOP x y C DABOxy C图6-2-47.如图6-2-5,等边△ABC 的边长为3,N 为AC 的三等分点,三角形边上的动点M 从点A 出发,沿A →B →C 的方向运动,到达点C 时停止.设点M 运动的路程为x ,MN 2=y ,则y 与x 的函数图象大致是()8.如图6-2-6,O 为原点,每个小方格的边长为1个单位长度,A 、B 是第一象限横、纵坐标均为整数的两点,且OA =OB⑴则A 、B 两点的坐标分别为__________、______________;⑵画出线段AB 绕点O 旋转一周所形成的图形,并求出其面积(结果保留π).9.如图6-2-7①和6-2-7②,在△ABC 中,AB =13,BC =14,cos ∠ABC =513探究:如图6-2-7①,AH ⊥BC 于点H ,AH =____________,AC =___________,△ABC 的面积S △ABC =___________________.拓展如图6-2-7②,点D 在AC 上(可与点A ,C 重合),分别过点A 、C 作直线BD 的垂线,垂足为E ,F .设BD =x ,AE =m ,CF =n (当点D 与A 重合时,我们认为S △ABD =0)⑴用x ,m 或n 的代数式表示S △ABD 及S △CBD ;⑵求(m +n )与x 的函数关系式,并求(m +n )的最大值及最小值; ⑶对给定的一个x 值,有时只能确定唯一的点D ,指出这样的x 的取值围.AB CD图6-2-5图6-2-6C对称性质在最值问题中的应用模型一两点一线类型1 异侧和最小值问题问题:两定点A、B位于直线l异侧,在直线l上找一点P,使PA+PB值最小.问题解决:结论:根据两点之间线段最短,PA+PB的最小值即为线段AB长.类型2 同侧和最小值问题问题:两定点A、B位于直线l同侧,在直线l上找一点P,使得PA+PB值最小.问题解决:结论:将两定点同侧转化为异侧问题,PA+PB最小值为AB′.类型3 同侧差最小值问题问题:两定点A、B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值最小.问题解决:结论:根据垂直平分线上的点到线段两端点的距离相等,当PA=PB时,|PA-PB|=0.类型4 同侧差最大值问题问题:两定点A、B位于直线l同侧,在直线l上找一点P,使得|PA-PB|的值最大.问题解决:结论:根据三角形任意两边之差小于第三边,|PA-PB|≤AB,则|PA-PB|的最大值为线段AB 的长.类型5 异侧差最大值问题问题:两定点A、B位于直线l异侧,在直线l上找一点P,使得|PA-PB|的值最大.问题解决:结论:将异侧点转化为同侧,同类型4,|PA-PB|的最大值为AB′.1.如图,正方形ABCD的边长为8,点M在边DC上,且DM=2,点N是对角线AC上一动点,则线段DN+MN的最小值为________.2.如图,点C的坐标为(3,y),当△ABC的周长最小时,则y的值为________.3.如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15°,P为射线CD上的动点,则|PA-PB|的最大值为________.A BCDPEAB CDPNAC BDEP图6-1-1③图6-1-1④图6-1-1⑤4、如图6-1-1④,已知菱形ABCD 的两条对角线分别为6和8,M 、N 分别是BC 、CD 的中点,P 是对角线BD 上一点,则PM +PN 的最小值= .5、如图6-1-1⑤,在Rt △ABC 中,∠C =90°,∠B =60°,点D 是BC 边上的点,CD =3,将△ABC 沿直线AD 翻折,使点C 落在AB 边上的点E 处,若点P 是直线AD 上的动点,则△PEB 的周长的最小值是 .6.(1)如图6-1-2①,在等边△ABC 中,AB =6,点E 是AB 的中点,AD 是高,在AD 上找一点P ,使PB +PE 的值最小,最小值为 .(2)如图6-1-2②,⊙O 的半径为2,点A 、B 、C 在⊙O 上,OA ⊥OB ,∠AOC =60°,P 是OB 上一动点,则PA +PC 的最小值是 ;(3)如图6-1-2③,点D 、E 分别是△ABC 的AC 、AB 边的中点,BC =6,BC 边上的高为4,P 在BC 边上,则△PDE 周长的最小值为 .7.(1)如图6-1-3①,Rt △OAB 的顶点A 在x 轴的正半轴上,顶点B 的坐标为(3,3),点C 的坐标为(1,0),点P 为斜边OB 上的一动点,则PA +PC 的最小值为 . (2)如图6-1-3② ,菱形ABCD 中AB =2,∠A =120°,点P ,Q ,K 分别为线段BC ,C图6-1-2① 图6-1-2② 图6-1-2③CD ,BD 上的任意一点,则PK +QK 的最小值为 .M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是 .8.(1)如图6-1-4①,∠AOB =45°,P 是∠AOB 一点,PO =10,Q 、R 分别是OA 、OB上的动点,则△PQR 周长的最小值是 . (2)如图6-1-4②,点A (a ,1)、B (-1,b )都在双曲线y =3x (x <0)上,点P 、Q分别是x 轴、y 轴上的动点,当四边形PABQ 的周长取最小值时,PQ 在直线的解析式是( ).A .y =xB .y =x +1C .y =x +2D .y =x +3(3)如图6-1-3③,锐角△ABC 中,AB =42,∠BAC =45°,AD 平分∠BAC ,C BP 图6-1-3②图6-1-3③ABOPRQab 图6-1-4①图6-1-59. 如图6-1-5已知,直线a ∥b ,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB =a 上找一点MMN ⊥a 且AM +MN +NB 的长度和最短,则此时AM +NB =( A .6 B .8 C .10 D .1210、如图6-1-13③,一次函数y =-2x +4的图象与x 、y 轴分 别交于点A ,B ,D 为AB 的中点,C 、A 关于原点对称.P 为OB 上一动点,请直接写出︱PC -PD ︱的围:__________________.11.如图6-1-14,在平面直角坐标系xOy 中,已知点A (0,1),B (1,2),点P 在x 轴上运动,当点P 到A 、B 两点距离之差的绝对值最大时,点P 的坐标是____________________. 12.在⊙O 所在的平面上有一点A ,它到⊙O 的最近距离是3,最远距离是7,则⊙O 的半径为________________.13.在A 、B 均在面积为1的小正方形组成的网格的格点上,建立平面直角坐标坐标系如图6-1-15,若P 是x 轴上使得︱PA -PB ︱的值最大的点,OP =__________________.14.如图6-1-16,抛物线y =ax 2+bx -4a 经过A (-1,0)、C (0,4)两点,与x 轴交于另一点B .⑴抛物线及对称轴分别为________________________________;⑵点D 所在抛物线的对称轴上,求︱DB -DC ︱的最大值.模型二 一点两线类型1 一定点与两条直线上两动点问题问题:点P 在∠AOB 的部,在OB 上找一点D ,在OA 上找一点C ,使得△PCD 周长最小.图6-1-14图6-1-15图6-1-13③问题解决:结论:要使△PCD周长最小,即PC+PD+CD值最小,根据两点之间线段最短,将三条线段转化到同一直线上即可,则△PCD周长最小为线段的长.类型2 两定点与两条直线上两动点问题问题:点P、Q在∠AOB的部,在OB上找点D,在OA上找点C,使得四边形PQDC周长最小.问题解决:结论:将问题转化为类型1即可,PC+CD+DQ的最小值为线段P’Q ’长,则四边形PQDC的周长的最小值为P’Q’+PQ的值.1.如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N使△AMN的周长最小,则∠AMN+∠ANM的度数为________.2.如图,在直角坐标系中,已知A(-3,-1),B(-1,-3),若D是x轴上一动点,C是y轴上的一个动点,则四边形ABCD的周长的最小值是________.模块四“小虫爬行问题”A′B′C′D′例6-1-2(1)如图6-1-6①,已知长方体的长为AC =2cm ,宽BC =1cm ,高AA ′=4cm ,一只蚂蚁沿长方体的表面从A 点爬到B ′点的最短路径是多少?【规律】“小小相加凑一边时路径最短.” (2)如图6-1-6②,圆柱形杯高为12cm 、底面 周长为18cm ,在杯离杯底4cm 的点C 处有一滴 蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离 为多少cm ?【规律】“一点一点外要用轴对称.” 练习:1.(1)如图6-1-7①,长方体的长宽高分别为15、10、20,点B 离点C 的距离为5,一只A(2)6-1-7②,底面半径为3cm 的圆锥的主视图是个正三角形,C 是母线OB 的中点,则从圆锥表面从A 到C 的最短距离等于 cm .(3)6-1-7③,圆柱高8cm ,底面半径2cm ,一只蚂蚁从点A 爬到点B 处吃食,爬行的最短路程(π取3)是( )cm .A .20B .10C .14D .无法确定(4)如图6-1-7④,ABCDEFGH 是个无上底长方体容器,M 在容器侧,位于侧棱BF 上,已知AB =5,BF =9,FM =3,则从外部的点A 到部的点M 的最短距离等于 . 2.如图6-1-8,是一个三级台阶,它的每一级的长、宽、高分别为20dm ,3dm ,2dm ,A 和B 是这个台阶两相对的端点,A 点有一只昆虫想到B 点去吃可口的食物,则昆虫沿着台阶爬到B 点的最短路程是多少dm ?模块五 折叠最值【规律】折叠背景下的最值问题,考查的是动手操作能力、合图6-1-7④图6-1-7 ③图6-1-7②图6-1-8A C ′ 蚂蚁蜜蜂A D ′情推理能力.方法是:(1)在折叠中感受大小变化规律,(2)通过特殊位置求最值.1、如图6-1-9,折叠矩形纸片ABCD,使B点落在AD上一点E处,折痕的两端点M、N 分别在AB、BC上(含端点),且AB=6,BC=10,设AE=x,则x的取值围是 .【规律】A、E重合时x最小为0,折痕的两端点在AB、CD上,不合题意,向下移动N 到C时,得x的最小值,继续沿BC向B移动N,使M上移至A时,得到满足条件的x最大值;2.动手操作:在矩形纸片ABCD中,AB=3,AD=5,如图6-1-11,折叠纸片,使点A落在BC边上的A′处,折痕为PQ,当点A′在BC边上移动时,折痕的端点P、Q也随之移动.若限定点P、Q分别在AB、AD边上移动,则点A′在BC边上可移动的最大距离为 .模块六圆中最长弦是直径解法归一:求对角是直角的双直角四边形中对角线的最小值、或圆中线段最小值时常用它.1、如图6-3-1,等腰直角△ABC斜边长为4,D为是斜边AB的中点,直角∠FDE分别交AC、BC于F、E,则线段EF的最小值是_________________.2.如图6-3-2,AB是⊙O的一条弦,点C是⊙O上一动点,且∠ACB=30°,点E、F分别是AC、BC的中点,直线EF与⊙O交点G、H两点,若⊙O的半径为6,则GE+FH的最大值为____________.模块七、求两正数和的最小值[9]解法:①由(a-b)2≥0得a2+b2≥2ab,当且仅当a=b时成立;②对任意正数m,n可设m=a2、n=b2(a、b为正数),则有m+n=a2+b2≥2ab=2即m+n≥2m=n时等号成立.这是高中两个最重要的不等式.求两个正数和的最小值时就用它,并且只有这两个正数相等时和才取最小值.1、阅读理解:对任意实数a,b,∵(2≥0,∴a-b≥0,∴a+b≥a=b时,等号成立.根据上述容,回答下列问题:⑴若m>0,只有m=____时m+1m有最小值______________;⑵若n>0,只有n=_____时n+2n有最小值_____________;图6-1-9图6-1-11B′A′D′C′P′QA′图6-3-2图6-3-1⑶若x >0,只有x =______时,8x 2+22x有最小值___________________; 2、如图6-4-1,AB 为半圆O 的直径,C 为半圆上与点A 、B不重合的任意一点,过点C 作CD ⊥AB ,垂足为D ,AD =a ,DB =b .请用本题图验证a +b ≥并指出等号成立时的条件.3、如图6-4-2,已知A (-3,0),B (0,-4),P 为双曲线y =12x(x >0)上任意一点,过点P 作PC ⊥x 轴于点C ,PD ⊥y 轴于点D ,求四边形ABCD 的面积的最小值,并说明此时四边形ABCD 的形状.4、公式:对于任意正数a 、b ,总有a +b ≥,并且只有当a =b 时,等号成立.直接应用或变形应用⑴已经y 1=x (x >0),y 2=1x(x >0),则当x =____________时,y 1 +y 2取得最小值___________.⑵已知函数y =x +ax(a >0,x >0),当x =______________时,该函数有最小值_____________.⑶已知函数y 1=x +1与函数y 2=(x +1)2+4,当x >-1时,求21yy 的最小值,并指出相应的x 的值.实际应用已知某汽车的一次运输成本包含以下三个部分:一是固定费用,共360元;二是燃油费费,每千米为1.6元;三是折旧费,它与路程的平方成正比,比例系数为0.001.设汽车一次运输的路程为x 千米,求当x 为多少时,该汽车平均每千米的运输成本最低?最低是多少元?模块八 二次函数最值解法归一:“二次整数ax 2+bx +c 最值”完全可以借助二次函数y =ax 2+bx +c 最值解决,解决方案有三:一用配方法,二用顶点公式,三图象法.(注:a ,b ,c 为常数,且a ≠0) 1、 ⑴x 2-2x +6的最小值是_______________________; ⑵二次函数y =-x 2+6x 的最大值是______________________. 2、如图6-6-1,在矩形ABCD 中,AB =2,AD =3,P 是B图6-4-1DEBC上任意一点(P不与B、C重合),过点P作AP⊥PE交CD于点E.设BP为x,CE为y,当x取何值时,y的值最大?最大值是多少?3、如图6-6-2,已知抛物线y=ax2+bx+4经过点B(1,0),C (5,0),交纵轴于点A,对称轴l与x轴相交于点M.⑴请直接写出抛物线的解析式,对称轴及点A的坐标;⑵在此抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.4、如图6-6-3,把一边长为4的正方形ABCD折叠,使B点落在AD上的E处,折痕为MN,设AE=x,问x为何值时,折起的四边形MNFE面积最小,并求出这个最小面积的值.图6-6-2 图6-6-3模块九 几何探究最值类[8]1、请阅读下列材料:问题:如图6-7-1①,圆柱的高AB 和它的底面半径均为5dm ,BC 是底面直径,求一只蚂蚁从A 点出发沿圆柱表面爬行到点C 的最短路线.小明设计了两条路线:路线1:走圆柱表面最短路线(即图6-7-1②侧面展开图中的线段AC ). 路线2:走圆柱高线与度面直径(即图6-7-1①中的AB +BC 的长)设路线1的长度为l 1,设路线2的长度为l 2,则l 12=AC 2=AB 2+2BDC l 22=(AB +BC )2,将AB =5,BC =10,半圆弧BDC 长5π代入上面的式子得(请你帮小明完成下面的计算):l 12=AC 2= ;l 22=(AB +BC )2= ; l 12-l 22= . ∴l 12>l 22 ∴l 1>l 2 ∴选择路线2较短.(1)小明对上述问题结论有些疑惑,于是他把条件改成:“圆柱的底面半径为1dm ,高AB 为5dm ”继续按前面的路线进行计算(请你帮小明完成下面的计算): 路线1:l 12=AC 2= ;路线2:l 22=(AB +BC )2= ;∵l 12 l 22,∴l 1 l 2(填>或<),所以选择路线 (填1或2)较短. (2)请你帮小明继续研究:在一般情况下,当圆柱的底面半径为r ,高为h 时,应如何选择上面的两条路线才能使蚂蚁从点A 出发沿圆柱表面爬行到C 点的路线最短.2、在河岸l 同侧有A 、B 两个村庄,A 、B 到l 的距离分别是3km 和2km ,AB =akm (a >1)现计划在河岸上建一抽水站P 向两个村庄供水.方案设计:某班数学兴趣小组设计了两种管道铺设方案:图6-7-2①是方案一的示意图,设该方案中管道长度为d ,且d 1=PB +BA (km )(其中PB ⊥l 于P 点);图6-7-2②是方案二的示意图,设该方案中管道长度为d 2,且d 2=PA +PB (km )(其中点A ′与点A 关于l 对称,A ′B 与l 交于点P ).观察与计算(1)在方案一中,d 1= km (用含a 的式子表示);(2)在方案二中,组长小宇为了计算d 2的长,作了如图6-7-2③的辅助线,请你按小宇同学的思路C图6-7-1①图6-7-1②沿AB 剪开 摊平图6-7-2①图6-7-2②图6-7-2③P计算,d 2= km (用含a 的式子表示). 探索归纳:(1)①当a =4时,比较大小:d 1 d 2(填“>”或“=”或“<”);②当a =6时比较大小:d 1 d 2(填“>”或“=”或“<”);(2)请你就a (当a >1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二? 3、(1)如图6-7-3①,把矩形AA ′ B ′ B 卷成以AB 为高的圆柱形,则点A与 重合,点B与 重合.探究与发现(2)如图6-7-3②所示,若圆柱的底面周长是30cm ,高是40cm ,从圆柱底部A 处沿侧面缠绕一圈丝线到顶部B 处作装饰,则这条丝线的最小长度是 cm ;(丝线的粗细忽略不计)(3)若用丝线从图6-7-3②圆柱底部A 处沿侧面缠绕4圈直到顶部B 处(如图6-7-3③所示),则至少需要多长丝线? 创新与应用:(4)如图6-7-3④,现有一圆柱形的玻璃杯,准备在杯子的外侧缠绕一层装饰带,为使带子的两端沿AE 、CF 方向进行裁剪,如图6-7-3⑤,若带子宽度为1.5厘米,杯子的半径为6厘米,裁剪角为α,则sin α= .4、如图6-7-4①是一个三棱柱包装盒,它的底面是边长为10cm 的正三角形,三个侧面都是矩形.现将宽为15cm 的彩色矩形纸带AMCN 裁剪成一个平行四边形ABCD (如图6-7-4②),然后用这条平行四边形纸带按如图6-7-4③的方式把这个三棱柱包装盒的侧面进行包贴(要求包贴时没有重合部分),纸带在侧面缠绕三圈,正好将这个三棱柱包装盒的侧面全部包贴满.(1)请计算图6-7-4②中裁剪的角度∠BAD ;′图6-7-4②图6-7-4①B C ′′ 图6-7-3⑤图6-7-4B 图6-7-3④BB A B ′’′ ’′图6-7-3① 图6-7-3②图6-7-3③(2)计算按图6-7-4③方式包贴这个三棱柱包装盒所需的矩形纸带的长度.。
中考数学最值问题总结(含强化训练)

中考数学最值问题总结(含强化训练)在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。
一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。
二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a=-2时,y 有最小值。
y ac b a min =-442; ②若a <0当x b a=-2时,y 有最大值。
y ac b a max =-442。
2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。
4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。
6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。
8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。
中考数学最值—阿氏圆问题(解析+例题)

中考数学最值——阿氏圆问题(点在圆上运动)(PA+k·PB型最值)【问题背景】与两个定点距离之比为一个不为0的常数的点的轨迹是一个圆,这个圆为阿氏圆。
这个定理叫阿波罗尼斯定理。
【知识储备】①三角形三边关系:两边之和大于第三边;两边之差小于第三边。
②两点之间线段最短。
③连接直线外一点和直线上各点的所有线段中,垂线段最短。
【模型分析】①条件:已知A、B为定点,P为 O上一动点,OPOB=k(0<k<1)。
②问题:P在何处时,PA+k·PB的值最小。
③方法:连接OP,OB,在OB上取点C,使OCOP =k,可得△POC∽△BOP,所以CPPB=OPOB=k,所以得CP=k·PB。
所以PA+k·PB=PA+CP≥AC,当P为AC与 O的交点时,PA+k·PB的最小值为AC。
总结:构造母子三角形相似若能直接构造△相似计算的,直接计算,不能直接构造△相似计算的,先把k提到括号外边,将其中一条线段的系数化成,再构造△相似进行计算。
【经典例题】已知∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点.(1)求12AP BP+的最小值为。
(2)求13AP BP+的最小值为。
【巩固训练】练习1:如图,点A、B在⊙O 上,且OA=OB=6,且OA⊥OB,点C是OA的中点,点D在OB 上,且OD=4,动点P在⊙O 上,则2PC+PD的最小值为;练习2:如图,在Rt△ABC中,∠ACB=90°,D为AC的中点,M为BD的中点,将线段AD绕A点任意旋转(旋转过程中始终保持点M为BD的中点),若AC=4,BC=3,那么在旋转过程中,线段CM长度的取值范围是__________。
练习3:Rt △ABC 中,∠ACB=90°,AC=4,BC=3,点D 为△ABC 内一动点,满足CD=2,则AD+32BD 的最小值为_______.练习4:如图,菱形ABCD 的边长为2,锐角大小为60°,⊙A 与BC 相切于点E ,在⊙A 上任取一点P ,则PB+23PD 的最小值为________.练习5:如图,已知菱形ABCD 的边长为4,∠B=60°,圆B 的半径为2,P 为圆B 上一动点,则PD+21PC 的最小值为_________.练习6:如图,等边△ABC 的边长为6,内切圆记为⊙O ,P 是圆上动点,求2PB+PC 的最小值.值。
中考数学中的最值问题求法

中考数学中的最值问题求法考点一:利用对称求最值问题1.基本知识点:①两点之间线段最短;②点到直线的距离最短。
2.求最值问题的类型ABCD的边长为6,点E在BC上,CE=2.点M是对角线BD上的一个动点,则EM+CM的最小值是()A.62B.35C.213D.413【分析】要求ME+MC的最小值,ME、MC不能直接求,可考虑通过作辅助线转化ME,MC的值,从而找出其最小值求解.【解答】解:如图,连接AE交BD于M点,∵A、C关于BD对称,∴AE就是ME+MC的最小值,∵正方形ABCD中,点E是BC上的一定点,且BE=BC﹣CE=6﹣2=4,∵AB=,∴AE==2,∴ME+MC的最小值是2.故选:C.2.(2022•资阳)如图,正方形ABCD的对角线交于点O,点E是直线BC上一动点.若AB =4,则AE+OE的最小值是()A.42B.25+2C.213D.210【分析】本题为典型的将军饮马模型问题,需要通过轴对称,作点A关于直线BC的对称点A',再连接A'O,运用两点之间线段最短得到A'O为所求最小值,再运用勾股定理求线段A'O的长度即可.【解答】解:如图所示,作点A关于直线BC的对称点A',连接A'O,其与BC的交点即为点E,再作OF⊥AB交AB于点F,∵A与A'关于BC对称,∴AE=A'E,AE+OE=A'E+OE,当且仅当A',O,E在同一条线上的时候和最小,如图所示,此时AE+OE=A'E+OE=A'O,∵正方形ABCD,点O为对角线的交点,∴,∵A与A'关于BC对称,∴AB=BA'=4,∴F A'=FB+BA'=2+4=6,在Rt△OF A'中,,故选:D.3.(2022•菏泽)如图,在菱形ABCD中,AB=2,∠ABC=60°,M是对角线BD上的一个动点,CF=BF,则MA+MF的最小值为()A.1B.2C.3D.2【分析】当MA+MF的值最小时,A、M、F三点共线,即求AF的长度,根据题意判断△ABC为等边三角形,且F点为BC的中点,根据直角三角形的性质,求出AF的长度即可.【解答】解:当A、M、F三点共线时,即当M点位于M′时,MA+MF的值最小,由菱形的性质可知,AB=BC,又∵∠ABC=60°,∴△ABC为等边三角形,∵F点为BC的中点,AB=2,∴AF⊥BC,CF=FB=1,∴在Rt△ABF中,AF==.故选:C.4.(2022•广安)如图,菱形ABCD的边长为2,点P是对角线AC上的一个动点,点E、F 分别为边AD、DC的中点,则PE+PF的最小值是()A.2B.3C.1.5D.5【分析】如图,取AB的中点T,连接PT,FT.首先证明四边形ADFT是平行四边形,推出AD=FT=2,再证明PE+PF=PT+PF,由PF+PT≥FT=2,可得结论.【解答】解:如图,取AB的中点T,连接PT,FT.∵四边形ABCD是菱形,∴CD∥AB,CD=AB,∵DF=CF,AT=TB,∴DF=AT,DF∥AT,∴四边形ADFT是平行四边形,∴AD=FT=2,∵四边形ABCD是菱形,AE=DE,AT=TB,∴E,T关于AC对称,∴PE=PT,∴PE+PF=PT+PF,∵PF+PT≥FT=2,∴PE+PF≥2,∴PE+PF的最小值为2.故选:A.5.(2022•赤峰)如图,菱形ABCD,点A、B、C、D均在坐标轴上.∠ABC=120°,点A (﹣3,0),点E是CD的中点,点P是OC上的一动点,则PD+PE的最小值是()3 A.3B.5C.22D.32【分析】根据题意得,E点关于x轴的对称点是BC的中点E',连接DE'交AC与点P,此时PD+PE有最小值,求出此时的最小值即可.【解答】解:根据题意得,E点关于x轴的对称点是BC的中点E',连接DE'交AC与点P,此时PD+PE有最小值为DE',∵四边形ABCD是菱形,∠ABC=120°,点A(﹣3,0),∴OA=OC=3,∠DBC=60°,∴△BCD是等边三角形,∴DE'=OC=3,即PD+PE的最小值是3,故选:A .6.(2022•安顺)已知正方形ABCD 的边长为4,E 为CD 上一点,连接AE 并延长交BC 的延长线于点F ,过点D 作DG ⊥AF ,交AF 于点H ,交BF 于点G ,N 为EF 的中点,M为BD 上一动点,分别连接MC ,MN .若91=∆∆FCEDCG S S ,则MC +MN 的最小值为 .【分析】由正方形的性质,可得A 点与C 点关于BD 对称,则有MN +CM =MN +AM ≥AN ,所以当A 、M 、N 三点共线时,MN +CM 的值最小为AN ,先证明△DCG ∽△FCE ,再由=,可知=,分别求出DE =1,CE =3,CF =12,即可求出AN .【解答】解:如图,连接AM ,∵四边形ABCD 是正方形, ∴A 点与C 点关于BD 对称, ∴CM =AM ,∴MN +CM =MN +AM ≥AN ,∴当A 、M 、N 三点共线时,MN +CM 的值最小, ∵AD ∥CF , ∴∠DAE =∠F ,∵∠DAE +∠DEH =90°, ∵DG ⊥AF ,∴∠CDG +∠DEH =90°, ∴∠DAE =∠CDG , ∴∠CDG =∠F , ∴△DCG ∽△FCE , ∵=,∴=,∵正方形边长为4,∴CF=12,∵AD∥CF,∴==,∴DE=1,CE=3,在Rt△CEF中,EF2=CE2+CF2,∴EF==3,∵N是EF的中点,∴EN=,在Rt△ADE中,EA2=AD2+DE2,∴AE==,∴AN=,∴MN+MC的最小值为,故答案为:,7.(2022•内江)如图,矩形ABCD中,AB=6,AD=4,点E、F分别是AB、DC上的动点,EF∥BC,则AF+CE的最小值是.【分析】延长BC到G,使CG=EF,连接FG,则四边形EFGC是平行四边形,得CE =FG,则AF+CE=AF+FG,可知当点A、F、G三点共线时,AF+CE的值最小为AG,利用勾股定理求出AG的长即可.【解答】解:延长BC到G,使CG=EF,连接FG,∵EF∥CG,EF=CG,∴四边形EFGC是平行四边形,∴CE=FG,∴AF+CE=AF+FG,∴当点A、F、G三点共线时,AF+CE的值最小为AG,由勾股定理得,AG===10,∴AF+CE的最小值为10,故答案为:10.8.(2022•贺州)如图,在矩形ABCD中,AB=8,BC=6,E,F分别是AD,AB的中点,∠ADC的平分线交AB于点G,点P是线段DG上的一个动点,则△PEF的周长最小值为.【分析】如图,在DC上截取DT,使得DT=DE,连接FT,过点T作TH⊥AB于点H.利用勾股定理求出FT=,EF=5,证明PE+PF=PF+PT≥FT,可得结论.【解答】解:如图,在DC上截取DT,使得DT=DE,连接FT,过点T作TH⊥AB于点H.∵四边形ABCD是矩形,∴∠A=∠ADT=90°,∵∠AHT=90°,∴四边形AHTD是矩形,∵AE=DE=AD=3.AF=FB=AB=4,∴AH=DT=3,HF=AF﹣AH=4﹣3=1,HT=AD=6,∴FT===,∵DG平分∠ADC,DE=DT,∴E、T关于DG对称,∴PE=PT,∴PE+PF=PF+PT≥FT=,∵EF===5,∴△EFP的周长的最小值为5+,故答案为:5+.9.(2022•娄底)菱形ABCD的边长为2,∠ABC=45°,点P、Q分别是BC、BD上的动点,CQ+PQ的最小值为.【分析】连接AQ,作AH⊥BC于H,利用SAS证明△ABQ≌△CBQ,得AQ=CQ,当点A、Q、P共线,AQ+PQ的最小值为AH的长,再求出AH的长即可.【解答】解:连接AQ,作AH⊥BC于H,∵四边形ABCD是菱形,∴AB=CB,∠ABQ=∠CBQ,∵BQ=BQ,∴△ABQ≌△CBQ(SAS),∴AQ=CQ,∴当点A、Q、P共线,AQ+PQ的最小值为AH的长,∵AB=2,∠ABC=45°,∴AH=,∴CQ+PQ的最小值为,故答案为:.10.(2022•眉山)如图,点P为矩形ABCD的对角线AC上一动点,点E为BC的中点,连接PE,PB,若AB=4,BC=43,则PE+PB的最小值为.【分析】作点B关于AC的对称点B',交AC于点F,连接B′E交AC于点P,则PE+PB 的最小值为B′E的长度;然后求出B′B和BE的长度,再利用勾股定理即可求出答案.【解答】解:如图,作点B关于AC的对称点B',交AC于点F,连接B′E交AC于点P,则PE+PB的最小值为B′E的长度,∵四边形ABCD为矩形,∴AB=CD=4,∠ABC=90°,在Rt△ABC中,AB=4,BC=4,∴tan∠ACB==,∴∠ACB=30°,由对称的性质可知,B'B=2BF,B'B⊥AC,∴BF=BC=2,∠CBF=60°,∴B′B=2BF=4,∵BE=BF,∠CBF=60°,∴△BEF是等边三角形,∴BE=BF=B'F,∴△BEB'是直角三角形,∴B′E===6,∴PE+PB的最小值为6,故答案为:6.11.(2022•滨州)如图,在矩形ABCD中,AB=5,AD=10.若点E是边AD上的一个动点,过点E作EF⊥AC且分别交对角线AC、直线BC于点O、F,则在点E移动的过程中,AF+FE+EC的最小值为.【分析】如图,过点E作EH⊥BC于点H.利用相似三角形的性质求出FH,EF,设BF=x,则DE=10﹣x﹣=﹣x,因为EF是定值,所以AF+CE的值最小时,AF+EF+CE 的值最小,由AF+CE=+,可知欲求AF+CE的最小值相当于在x轴上找一点P(x,0),使得P到A(0,5),B(,5)的距离和最小,如图1中,作点A关于x轴的对称点A′,连接BA′交x轴于点P,连接AP,此时P A+PB的值最小,最小值为线段A′B的长,由此即可解决问题.【解答】解:如图,过点E作EH⊥BC于点H.∵四边形ABCD是矩形,∴∠B=∠BAD=∠BHE=90°,∴四边形ABHE是矩形,∴EH=AB=5,∵BC=AD=10,∴AC===5,∵EF⊥AC,∴∠COF=90°,∴∠EFH+∠ACB=90°,∵∠BAC+∠ACB=90°,∴∠EFH=∠BAC,∴△EHF∽△CBA,∴==,∴==,∴FH=,EF=,设BF=x,则DE=10﹣x﹣=﹣x,∵EF是定值,∴AF+CE的值最小时,AF+EF+CE的值最小,∵AF+CE=+,∴欲求AF+CE的最小值相当于在x轴上找一点P(x,0),使得P到A(0,5),B(,5)的距离和最小,如图1中,作点A关于x轴的对称点A′,连接BA′交xz轴于点P,连接AP,此时P A+PB的值最小,最小值为线段A′B的长,∵A′(0,﹣5),B(,5),∴A′B==,∴AF+CE的最小值为,∴AF+EF+CE的最小值为+.解法二:过点C作CC′∥EF,使得CC′=EF,连接C′F.∵EF=CC′,EF∥CC′,∴四边形EFC′C是平行四边形,∴EC=FC′,∵EF⊥AC,∴AC⊥CC′,∴∠ACC=90°,∵AC′===,∴AF+EC=AF+FC′≥AC′=,∴AF+EF+CE的最小值为+.故答案为:+.12.(2022•自贡)如图,矩形ABCD中,AB=4,BC=2,G是AD的中点,线段EF在边AB上左右滑动,若EF=1,则GE+CF的最小值为.【分析】解法一:利用已知可以得出GC,EF长度不变,求出GE+CF最小时即可得出四边形CGEF周长的最小值,利用轴对称得出E,F位置,即可求出.解法二:设AE=x,则BF=3﹣x,根据勾股定理可得:EG+CF=+,由勾股定理构建另一矩形EFGH,根据线段的性质:两点之间线段最短可得结论.【解答】解:解法一:如图,作G关于AB的对称点G',在CD上截取CH=1,然后连接HG'交AB于E,在EB上截取EF=1,此时GE+CF的值最小,∵CH=EF=1,CH∥EF,∴四边形EFCH是平行四边形,∴EH=CF,∴G'H=EG'+EH=EG+CF,∵AB=4,BC=AD=2,G为边AD的中点,∴DG'=AD+AG'=2+1=3,DH=4﹣1=3,由勾股定理得:HG'==3,即GE+CF的最小值为3.解法二:∵AG=AD=1,设AE=x,则BF=AB﹣EF﹣AE=4﹣x﹣1=3﹣x,由勾股定理得:EG+CF=+,如图,矩形EFGH中,EH=3,GH=2,GQ=1,P为FG上一动点,设PG=x,则FP=3﹣x,∴EP+PQ=+,当E,P,Q三点共线时,EP+PQ最小,最小值是3,即EG+CF的最小值是3.故答案为:3.13.(2022•泰州)如图,正方形ABCD的边长为2,E为与点D不重合的动点,以DE为一边作正方形DEFG.设DE=d1,点F、G与点C的距离分别为d2、d3,则d1+d2+d3的最小值为()A.2B.2C.22D.4【分析】连接AE,那么,AE=CG,所以这三个d的和就是AE+EF+FC,所以大于等于AC,故当AEFC四点共线有最小值,最后求解,即可求出答案.【解答】解:如图,连接AE ,∵四边形DEFG 是正方形,∴∠EDG =90°,EF =DE =DG ,∵四边形ABCD 是正方形,∴AD =CD ,∠ADC =90°,∴∠ADE =∠CDG ,∴△ADE ≌△CDG (SAS ),∴AE =CG ,∴d 1+d 2+d 3=EF +CF +AE ,∴点A ,E ,F ,C 在同一条线上时,EF +CF +AE 最小,即d 1+d 2+d 3最小,连接AC ,∴d 1+d 2+d 3最小值为AC ,在Rt △ABC 中,AC =AB =2,∴d 1+d 2+d 3最小=AC =2, 故选:C .14.(2022•安徽)已知点O 是边长为6的等边△ABC 的中心,点P 在△ABC 外,△ABC ,△P AB ,△PBC ,△PCA 的面积分别记为S 0,S 1,S 2,S 3.若S 1+S 2+S 3=2S 0,则线段OP 长的最小值是( )A .233B .235C .33D .237【分析】如图,不妨假设点P 在AB 的左侧,证明△P AB 的面积是定值,过点P 作AB 的平行线PM ,连接CO 延长CO 交AB 于点R ,交PM 于点T .因为△P AB 的面积是定值,推出点P 的运动轨迹是直线PM ,求出OT 的值,可得结论.【解答】解:如图,不妨假设点P 在AB 的左侧,∵S △P AB +S △ABC =S △PBC +S △P AC ,∴S 1+S 0=S 2+S 3,∵S 1+S 2+S 3=2S 0,∴S 1+S 1+S 0=2,∴S1=S0,∵△ABC是等边三角形,边长为6,∴S0=×62=9,∴S1=,过点P作AB的平行线PM,连接CO延长CO交AB于点R,交PM于点T.∵△P AB的面积是定值,∴点P的运动轨迹是直线PM,∵O是△ABC的中心,∴CT⊥AB,CT⊥PM,∴•AB•RT=,CR=3,OR=,∴RT=,∴OT=OR+TR=,∵OP≥OT,∴OP的最小值为,当点P在②区域时,同法可得OP的最小值为,如图,当点P在①③⑤区域时,OP的最小值为,当点P在②④⑥区域时,最小值为,∵<,故选:B.考点二:利用确定圆心的位置求最短路径通过确定圆心的位置,利用定点到圆心的距离加或减半径解题。
中考数学复习《最值问题》

解:如图,∵高为 12 cm,底面周长为 10 cm,在容器内壁离容器底部 3 cm 的 点 B 处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿 3 cm 与饭粒相对的点 A 处,∴A′D=5 cm,BD=12-3+AE=12(cm),∴将容器侧面展开,作 A 关 于 EF 的对称点 A′,连结 A′B,则 A′B 即为最短距离,A′B= A′D2+BD2= 52+122=13(cm)
解:(1)如图所示 (2)如图,即为所求
(3)作点 C 关于 y 轴的对称点 C′,连结 CP,B1C′交 y 轴于点 P, 则点 P 即为所求.设直线 B1C′的解析式为 y=kx+b(k≠0),
-2k+b=-2, k=2, ∵B1(-2,-2),C′(1,4),∴ 解得 k+b=4, b=2,
7.图1、图2为同一长方体房间的示意图 ,图3为该长方体的表面展开 图.
(1)蜘蛛在顶点A′处.
①苍蝇在顶点B处时,试在图1中画出蜘蛛为捉住苍蝇,沿墙面爬行的 最近路线;
②苍蝇在顶点C处时,图2中画出了蜘蛛捉住苍蝇的两条路线,往天花
板ABCD爬行的最近路线A′GC和往墙面BB′C′C爬行的最近路线A′HC,试通 过计算判断哪条路线更近;
两点距离之差的绝对值最大时,点P在直线AB上.先运用待定系数法求出直
线AB的解析式,再令y=0,求出x的值即可.
解:由题意可知,当点 P 到 A,B 两点距离之差的绝对值最大时, 点 P 在直线 AB 上.设直线 AB 的解析式为 y=kx+b,
b=1, k=1, ∵A(0,1),B(1,2),∴ 解得 ∴y=x+1, k+b=2, b=1,
令 y=0,得 0=x+1,解得 x=-1,∴点 P 的坐标是(-1,0)
中考中的最值问题

最值问题一、与绝对值有关的最值问题例1(2004,南昌):先阅读下面材料,然后解答问题。
在一条直线上有依次排列的n台机床在工作,我们要设置一个零件供应站P使这n台机床到供应站P的距离总和最小,要解决这个问题,先“退”到比较简单的情形:(1)如果直线上有2台机床时,很明显设在A1和A2之间的任何地方都行,因为甲和乙所走的距离之合等于A1到A2的距离。
(2)如果直线上有3台机床时,不难判断,供应站高在中间一台机床A2处最合适,因为如果P放在A2处,甲和丙所走的距离之和恰好为A1到A3的距离,而如果把P放在别处,例如D处,那么甲和丙所走的距离之和恰好为A1到A3的距离,可是乙还得走从A2到D 的这一段,这是多出来的,因此P放在A2处是最佳选择。
不难知道,如果直线上有4台机床,P应设在第2台与第3台之间的任何地方;有5台机床,P应设在第3台的位置,试回答:(1)有n台机床时,P应设在何处?(2)根据问题(1)的结论,求的最小值。
二、由不等关系确定的最值问题例2:某加工厂以每吨3000元的价格购进50吨原料进行加工,若进行粗加工,每吨加工费为600元,需天,每吨售价4000元;若进行精加工,每吨加工费用为900元,需天,每吨售价为4500元,现将这50吨原料全部加工完。
(1)设其中粗加工吨,获利元,求与的函数关系式。
(不要求写自变量的范围)(2)如果必须在20天内完成,如何安排生产才通报获得最大利润?最大利润是多少?三、由相等关系确定的最值问题例3:已知:a、b、c均为实数,且满足a+b+c=2, abc=4求a、b、c中最大者的最小值四、由垂线段确定的最值问题例4:台风是一种自然灾害,它以台风中心为圆心在数十千米范围内形成气旋风暴,有极强的破坏力,据气象观察,距沿海某城市A正南220千米的B处有一台风中心,其中心最大风力为12级,每远离台风中心20千米,风力就会减弱一级,该台风中心正以15千米/时的速度沿北偏东300方向向C移动,且台风中心风力不变,若城市受到的风力达到或超过四级,则称受台风影响.(1) 该城市是否会受到这次台风的影响?为什么?.(2) 若受到台风影响,那么台风影响该城市的持续时间有多长?(3) 该城市受到台风影响的最大风力为几级?五、由完全平方公式确定的最值问题例5:设为x实数,代数式x2+4x-5的最小值为。
中考数学专题复习-例说线段的最值问题 (共62张)

MA MD 1 AD 1,FDM 60. 2
A
N
B
解答过程:
F M D 3 0 , F D = 1 M D = 1 .
2
2
FM =MD cos30= 3 . 2
MC = FM 2+CF 2 = 7.
A 'C = M C M A ' = 7 1.
FD
C
M
A‘'
A
N
B
小结:
“关联三角形”的另外两条边尽可能长度已知(或 可求),再利用三角形三边关系求解,线段取得最值时 ,“关联三角形”不存在(三顶点共线).
解答过程:
连接OC交e O于点P,此时PC最小. 在RtBCO中, Q BC=4,OB=3, OC=5,PC=OC OP=2. 即PC最小值为2.
小结:
此道作业题构造“辅助圆”的突破口在于发现动点与 两定点连线的夹角为确定值;若点P在△ABC外部,则CP 长存在最大值;若∠APB为非直角时,则作△ABP的外接 圆,此时AB为非直径的弦.
'
2
2
2
在 R t C D D '中 ,
C D '= C D 2 D D '2 3 2 4 2 5 , 即 PC PD的 最 小 值 为 5.
小结:
1. 本题从形的角度得到点P的位置,再从数的角度计算 出点P的坐标,进而得到最小值.这正是体现了数形结合 的重要性.
典型例题2:
D
C
M
A‘'
,52
),B(4,m)两点,点P是线段AB上异于A,B的动点
,过点P作PC⊥x轴于点D,交抛物线于点C.
(1)求抛物线的表达式.
y
九年级中考 几何综合题型之最值问题:解题策略与常考题型(教师版)

教学过程一、复习预习最值问题是初中数学中的一种常见题型,而利用勾股定理、轴对称等知识求图形中的最值,是近年中考的热点问题第一。
对这类问题,我们应该学会分析、观察图形,从中找出解题途径。
二、知识讲解1.两条线段和的最小值。
(一)、已知两个定点:1、在一条直线m上,求一点P,使PA+PB最小;(1)点A、B在直线m两侧:P m AB m A BmA B PmAB A'n mA B QPnmABP'Q' n mA BQ PnmAB B'QPnm A BB'A'n mA B(2)点A 、B 在直线同侧:A 、A / 是关于直线m 的对称点。
2、在直线m 、n 上分别找两点P 、Q ,使PA+PQ+QB 最小。
(1)两个点都在直线外侧:(2)一个点在内侧,一个点在外侧:(3)两个点都在内侧:(4)、台球两次碰壁模型变式一:已知点A 、B 位于直线m,n 的内侧,在直线n 、m 分别上求点D 、E 点,使得围成的四边形ADEB 周长最短.A BED ABA'B'm n APmnAB mn A mn A PQ mnAA"A'mA B m A BB'P P'变式二:已知点A 位于直线m,n 的内侧, 在直线m 、n 分别上求点P 、Q 点PA+PQ+QA 周长最短.(二)、一个动点,一个定点:1、动点在直线上运动:点B 在直线n 上运动,在直线m 上找一点P ,使PA+PB 最小(在图中画出点P 和点B ) (1)、两直线在定点的同侧:(2)、两直线在定点的两侧(定点在两直线的内部):2.求两线段差的最大值问题 (运用三角形两边之差小于第三边) 基本图形解析:在一条直线m 上,求一点P ,使PA 与PB 的差最大; 1、点A 、B 在直线m 同侧:解析:延长AB 交直线m 于点P ,根据三角形两边之差小于第三边,P ’A —P ’B <AB ,而PA —PB=AB 此时最大,因此点P 为所求的点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考中的最值问题
1、已知抛物线y=ax2+bx+c与y轴交于点A(0,3),与x轴分别交于B(1,0)、C(5,0)两点。
(1)求此抛物线的解析式;
(2)若点D为线段OA的一个三等分点,求直线DC的解析式;
(3)若一个动点P自OA的中点M出发,先到达x轴上的某点(设为点E),再到达抛物线的对称轴上某点(设为点F),最后运动到点A。
求使点P运动的总路径最短的
点E、点F的坐标,并求出这个最短总路径的长。
2、已知∆ABC是边长为4的等边三角形,BC在x轴上,点D为BC的中点,点A在第一象限内,AB与y轴的正半轴相交于点E,点B(-1,0),P是AC上的一个动点(点P与A、C两点不重合).
(1)写出点A、点E的坐标;
(2)连结PB、PD,设L为∆PBD的周长,当L取最小值时,求点P的坐标及L的最小值
3、如图,在平面直角坐标系中,Rt△AOB的顶点坐标分别为A(-2,0),O(0,0),B(0,4),
把△AOB绕点O按顺时针方向旋转90,得到△COD.在经过A、B、D三点的
抛物线的对称轴上取两点E、F(点E在点F的上方),且EF=1,使四边形ACEF 的周长最小,求出E、F两点的坐标.
4、抛物线)0(2≠++=a c bx ax y 交x 轴于A 、B 两点,交y 轴于点C ,已知抛物线的对称轴为直线1-=x ,B (1,0),C (0,3)
(1)求抛物线的解析式.
(2)在抛物线的对称轴上是否存在一点P ,使点P 到A 、C 两点的距离之差最大? 若存在,求出点P 的坐标;若不存在,
请说明理由.
5、如图,抛物线经过A (-3,0)、B (0,4)、C (4,0)三点。
(1)求抛物线解析式;
(2)已知AD=AB (D 在线段AC 上),有一动点P 从点A 沿线段AC 以每秒1个单位长度的速度移动;同时另一个动点Q 以某一速度从点B 沿线段BC 移动,经过t 秒的移动,线段PQ 被BD 垂直平分,求t 的值;
(3)在(2)的情况下,抛物线的对称轴上是否存在一点M ,使MQ+MC 的值最小?若存在,请求出点M 的坐标;若不存在,请说明理由。
6、如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在直线为y轴,建立直角坐标系。
已知OA=3,OC=2,点E是AB的中点,在OA 上取一点D,将⊿BDA沿BD翻折,使点A落在BC边上的点F处。
(1)直接写出点E、F的坐标;
(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;
(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由。