2020年中考数学专题33最值问题
2020年中考数学(线段路径)最值问题解法分类(10种)及试题精练(PDF版带答案)

中考数学专题:线段/路径最值问题线段最值问题解法分类一、定点到定点⇒连线段点P在直线l上,AP+BP何时最小?二、定点到定线⇒作垂线点P在直线l上,AP何时最小?三、定点到定圆⇒连心线点P在圆O上,AP何时最小?线段最值问题一般转化为上述三个问题.例题赏析:1.如图,∠AOB=30°,点M、N分别是射线OA、OB上的动点,OP平分∠AOB,且OP=6,当△PMN 的周长最小值为.思路:把点P分别沿OA、OB翻折得P1、P2,周长即为P1M+MN+P2N,转化为求P1、P2两点之间最小值,得△PMN最小值为P1P2=OP=6.2.如图,在锐角△ABC中,AB=4,∠BAC=45°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是.思路:点N沿AD翻折至AC上,BM+MN=BM+MN',转化为求点B到直线AC的连线最小值,即BN'⊥AC时,最小值为2√2.3.如图,矩形ABCD中,AB=2,BC=3,以A为圆心、1为半径画圆,E是⊙A上一动点,F是BC 上的一动点,则FE+FD的最小值是.思路:点D沿BC翻折至D',DF+EF=D'F+EF,转化为求点D'到圆A上各点的最小距离,易求D'E=4.4.抛物线y=3/5x2-18/5x+3与直线y=3/5x+3相交于A、B两点,点M是线段AB上的动点,直线PM∥y轴,交抛物线于点N.在点M运动过程中,求出MN的最大值.思路:设M(m,3/5m2-18/5m+3),N(m,3/5m+3),用函数关系式表示MN=(3/5m+3)-(3/5m2-18/5m+3)=21/5m-3/5m2,求得最大值即可.5.在菱形ABCD中,对角线AC=8,BD=6,点E、F分别是边 AB、BC的中点,点P在AC上运动,在运动过程中,存在PE+PF 的最小值,则这个最小值是思路:点E沿AC翻折,转化为点到点的距离.(将军饮马问题实质就是通过翻折转化为定点到定点的问题)6.如图,∠MON=90°,矩形ABCD的顶点A、B分别在边OM,ON上,当B在边ON上运动时,A随之在边OM上运动,矩形ABCD的形状保持不变,其中AB=2,BC=1,运动过程中,点D到点O 的最大距离为 .思路:取AB中点E,连接DE、OE,由两点间线段最短,得OD≤OE+DE,最大为1+√2.7.如图,在△ABC中,∠ACB=90°,AB=5,BC=3,P是AB边上的动点(不与点B重合),将△BCP 沿CP所在的直线翻折,得到△B′CP,连接B′A,则B′A长度的最小值是简解:B'点运动路径为以C为圆心,BC为半径的圆弧,转化为点到圆的最短距离AC-B'C=1.8.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个六边形的边长最大时,AE的最小值为 .思路:正六边形最大半径为1/2,与正方形中心重合,E点运动路径为圆,转化为求点到圆的最短距离,如下图.9.在⊙O中,圆的半径为6,∠B=30°,AC是⊙O的切线,则CD的最小值是 .思路:D是定点,C是直线AC上的动点,转化为求点到线的最短距离.10.在△ABC中,AB=AC=5,cos∠ABC=3/5,将△ABC绕点C顺时针旋转,得到△A'B'C,点E是BC上的中点,点F为线段AB上的动点,在△A'B'C绕点C顺时针旋转过程中,点F的对应点是F',求线段EF'长度的最大值与最小值的差.思路:先确定线段A'B'的运动轨迹是圆环,外圆半径为BC,内圆半径为AB边上的高,F'是A'B'上任意一点,因此F'的运动轨迹是圆环内的任意一点,由此转化为点E到圆环的最短和最长距离.E到圆环的最短距离为EF2=CF2-CE=4.8-3=1.8,E到圆环的最长距离为EF1=EC+CF1=3+6=9,其差为7.2.问:何时需要作辅助线翻折其中的定点(定线或定圆)?答:当动点所在直线不在定点(定线或定圆)之间时,需把定点(定线或定圆)沿动点所在直线翻折以使定点(定线或定圆)处于动点所在直线的两侧,从而便于连接相关线段或作垂线与动点所在直线找到交点.如上述例3,动点F所在直线不在定圆A和定点D之间,因而需把D点沿BC翻折至D',即可转化为定点D'到定圆A的最短距离,另外亦可把圆A沿BC翻折至另一侧,同样可以转化为定点D到定圆A'的最短距离,如下图.关键方法:动中求定,动点化定线;以定制动,定点翻两边.(1)动中求定,动点化定线:如例7、例8、例10,动点所在路径未画出时需先画出动点所在轨迹,一般动点所在轨迹为线或圆.(2)以定制动,定点翻两边:如例1、例2、例3、例5,定点(线或圆)在动点所在直线同侧时需翻折至两侧,转化为上述三种关系.练1、如图,已知直线112y x =+与y 轴交于点A ,与x 轴交于点D ,抛物线212y x bx c =++与直线交于A 、E 两点,与x 轴交于B 、C 两点,且B 点坐标为 (1,0)。
2022年中考数学试卷分类汇编专项33网格问题

2022年中考数学试卷分类汇编专项33网格问题专题33:网格问题一、选择题1. (2020宁夏区3分)一个几何体的三视图如图所示,网格中小正方形的边长均为1,那么下列选项中最接近那个几何体的侧面积的是【】A.24.0 B.62.8 C.74.2 D.113.0【答案】B。
【考点】网格问题,圆锥的运算,由三视图判定几何体,勾股定理。
【分析】由题意和图形可知,几何体是圆锥,底面半径为4,依照勾股定理可得母线长为5。
则侧面积为πrl=π×4×5=20π≈62.8。
故选B。
2. (2020湖北孝感3分)如图,△ABC在平面直角坐标系中的第二象限内,顶点A的坐标是(-2,3),先把△ABC向右平移4个单位长度得到△A1B1C1,再作△A1B1C1关于x轴的对称图形△A2B2C2,则顶点A2的坐标是【】A.(-3,2) B.(2,-3) C.(1,-2) D.(3,-1)【答案】B。
【考点】坐标与图形的对称和平移变化。
【分析】∵将△ABC向右平移4个单位得△A1B1C1,∴A1的横坐标为-2+4=2;纵坐标不变为3;∵把△A1B1C1以x轴为对称轴作轴对称图形△A2B2C2,∴A2的横坐标为2,纵坐标为-3。
∴点A2的坐标是(2,-3)。
故选B。
3. (2020湖北荆门3分)下列4×4的正方形网格中,小正方形的边长均为1,三角形的顶点都在格点上,则与△ABC相似的三角形所在的网格图形是【】A.B.C.D.4. (2020山东聊城3分)如图,在方格纸中,△ABC通过变换得到△DEF,正确的变换是【】A.把△ABC绕点C逆时针方向旋转90°,再向下平移2格B .把△ABC 绕点C 顺时针方向旋转90°,再向下平移5格C .把△ABC 向下平移4格,再绕点C 逆时针方向旋转180°D .把△ABC 向下平移5格,再绕点C 顺时针方向旋转180°【答案】B 。
2020年九年级数学中考经典几何题讲义系列:几何最值问题

3 / 18
(4) 两点两线的最值问题: (两个动点+两个定点)
问题特征:两动点分别在两条直线上独立运动,一动点分别到一定点和另一动点的距离和最小。 核心思路:利用轴对称变换,使一动点在另一动点的对称点与定点的线段上(两点之间线段最 短),且这条线段垂直于另一动点的对称点所在直线(连接直线外一点与直线上各点的所有线 段中,垂线段最短)时,两线段和最小,最小值等于这条垂线段的长。 变异类型:演变为多边形周长、折线段等最值问题。 1. 如图,点 A 是∠MON 内的一点,在射线 ON 上作点 P,使 PA 与点 P 到射线 OM 的距离之 和最小。
A.
B.
C.
D.1
考点: 轴对称-最短路线问题;正方形的性质. 菁优网版权所有
分析: 根据题意得出作 EF∥AC 且 EF= ,连结 DF 交 AC 于 M,在 AC 上截取 MN=
,此时四边形 BMNE
解答: 的周长最小,进而利用相似三角形的判定与性质得出答案. 解:作 EF∥AC 且 EF= ,连结 DF 交 AC 于 M,在 AC 上截取 MN= ,延长 DF 交 BC 于 P,作
2.连结对称点与另一个定点,则直线段长度就是我们所求。 变异类型:实际考题中,经常利用本身就具有对称性质的图形,比如等腰三角形,等边三角形、 正方形、圆、二次函数、直角梯形等图形,即其中一个定点的对称点就在这个图形上。 1.如图,直线 l 和 l 的同侧两点 A、B,在直线 l 上求作一点 P,使 PA+PB 最小。
∵LN=AS=
=40.
2020年重庆中考复习数学课件 “线段最值问题”漫谈(56张PPT)

y
B
M1
O
点M1为最值点, P1D1为所求线段 M
x
D1
H
P1
P
D C
“阿氏圆”问题
【问题背景】阿氏圆又称阿波罗尼斯圆,已知平面上两点 A、B, 则所有满足PA/PB=k(k≠1)的点 P 的轨迹是一个圆,这个轨迹 最先由古希腊数学家阿波罗尼斯发现,故称“阿波罗尼斯圆”简称 “阿氏圆”.如下图所示,其中PA:PB=OP:OB=OA:OP=k.
小伙子从A走到P,然后从P折往B,可望最早到达B。
问 题 : 若 在 驿 道 上 行 走 的 速 度 为 v1=8km/h , 在 沙 地 上 行 走 的 速 度 为
v2=4km/h.(1)小伙子回家需要的时间可表示为 (2)点P选择在何处他回家的时间最短?
AP P; B
84
1 4
1 2
PA
PB
PA最长 PB最短
⑦圆圆之间,连心线截距最短(长)
基本图形
E
A
O
C
B DM
F
结论
AB最长 CD最短
解决策略
复杂的几何最值问题都是在基本图形的基础上进行变式 得到的,在解决这一类问题的时候,常常需要通过几何变换 进行转化,逐渐转化为“基本图形”,再运用“基本图形” 的知识解决。常运用的典型几何变换有: (1)平移------“架桥选址” (2)翻折------“将军饮马“ (3)旋转------“费马点问题“ (4)相似------“阿氏圆问题“ (5)三角------“胡不归问题“ (6)多变换综合运用
解题要点:
将定点沿定长方向平移
定长距离 将军饮马
B1
B1
架桥选址类
【例20】如图,在矩形ABCD中,AB= 3 ,BC=1,将△ABD
2020年中考数学线段最值问题之阿波罗尼斯圆问题(含答案)

2020中考数学线段最值问题之阿波罗尼斯圆(阿氏圆)【知识背景】阿波罗尼斯与阿基米德、欧几里德齐名,被称为亚历山大时期数学三巨匠。
阿波罗尼斯对圆锥曲线有深刻而系统的研究,其主要研究成果集中在他的代表作《圆锥曲线》一书,阿波罗尼斯圆是其研究成果之一,本文主要讲述阿波罗尼斯圆在线段最值中的应用,下文中阿波罗尼斯圆简称为“阿氏圆”。
【定 义】阿氏圆是指:平面上的一个动点P 到两个定点A ,B 的距离的比值等于k ,且k≠1的点P 的轨迹称之为阿氏圆。
即:)1(≠=k k PBPA,如下图所示:上图为用几何画板画出的动点P 的轨迹,分别是由图中红色和蓝色两部分组成的的圆,由于是静态文档的形式,无法展示动图,有兴趣的可以用几何画板试一试。
【几何证明】证明方法一:初中纯几何知识证明:阿氏圆在高中数学阶段可以建立直角坐标系,用解析几何的方式来确定其方程。
但在初中阶段,限于知识的局限性,我们可以采用纯几何的证明方式,在证明前需要先明白角平分线定理及其逆定理,请看下文: 知识点1:内角平分线定理及逆定理若AD 是∠BAC 的角平分线,则有:CDBDAC AB =。
即“两腰之比”等于“两底边之比”。
其逆定理也成立:即CDBDAC AB =,则有:AD 是∠BAC 的角平分线。
知识点2:外角平分线定理及其逆定理若AD 是△ABC 外角∠EAC 的角平分线,则有CDBDAC AB =。
即“两腰之比”等于“两底边之比”。
其逆定理也成立:即CDBDAC AB =,则有:AD 是外角∠EAC 的角平分线。
【阿氏圆的证明】有了上述两个知识储备后,我们开始着手证明阿氏圆。
①如上图,根据阿氏圆的定义: 当P 点位于图中P 点位置时有:k PB PA =,当P 点位于图中N 点位置时有:k NBNA=, 所以有:NBNAPB PA =,所以PN 是∠APB 的角平分线,∴∠1=∠2. 当P 点位于图中M 点位置时有:PBPAk MB MA ==, 所以有:MBMNPB PA =,所以PM 是∠EPA 的角平分线,∴∠3=∠4. 又∵∠1+∠2+∠3+∠4=180° ∴2∠1+2∠3=180° ∴∠1+∠3=90°故∠MPN=90°,所以动点P 是在以MN 为直线的圆上。
2020年中考数学复习微专题最值问题(费马点问题)

2020年中考数学复习专题最值问题(费马点问题)突破与提升策略问题:在△ABC内找一点P,使得P A+PB+PC最小.APB C【分析】在之前的最值问题中,我们解决的依据有:两点之间线段最短、点到直线的连线中垂线段最短、作对称化折线段为直线段、确定动点轨迹求最值等.其实理论还是上面的理论,本题难点在于有3条线段,我们需要对这三条线段作一些位置上的变化,如果能变换成在一条直线上,问题就能解决了!若点P满足∠P AB=∠BPC=∠CP A=120°,则P A+PB+PC值最小,P点称为该三角形的费马点.接下来讨论3个问题:(1)如何作三角形的费马点?(2)为什么是这个点?(3)费马点怎么考?一.如何作费马点问题要从初一学到的全等说起:(1)如图,分别以△ABC中的AB、AC为边,作等边△ABD、等边△ACE.(2)连接CD、BE,即有一组手拉手全等:△ADC≌△ABE.(3)记CD、BE交点为P,点P即为费马点.(到这一步其实就可以了)(4)以BC为边作等边△BCF,连接AF,必过点P,有∠P AB=∠BPC=∠CP A =120°.EB ACAB CDE在图三的模型里有结论:(1)∠BPD =60°;(2)连接AP ,AP 平分∠DPE . 有这两个结论便足以说明∠P AB =∠BPC =∠CP A =120°.原来在“手拉手全等”就已经见过了呀,只是相逢何必曾相识!但是在这里有个小小的要求,细心的同学会发现,这个图成立的一个必要条件是∠BAC <120°,若120BAC∠≥︒ ,这个图就不是这个图了,会长成这个样子:此时CD 与BE 交点P 点还是我们的费马点吗?显然这时候就不是了,显然P 点到A 、B 、C 距离之和大于A 点到A 、B 、C 距离之和.所以咧?是的,你想得没错,此时三角形的费马点就是A 点!当然这种情况不会考的,就不多说了.二.为什么是这个点为什么P点满足∠P AB=∠BPC=∠CP A=120°,P A+PB+PC值就会最小呢?归根结底,还是要重组这里3条线段:P A、PB、PC的位置,而重组的方法是构造旋转!在上图3中,如下有△ADC≌△ABE,可得:CD=BE.类似的手拉手,在图4中有3组,可得:AF=BE=CD.E更巧的是,其长度便是我们要求的P A+PB+PC的最小值,这一点是可以猜想得到的,毕竟最小值这个结果,应该也是个特别的值!接下来才是真正的证明:考虑到∠APB=120°,∴∠APE=60°,则可以AP为边,在PE边取点Q使得PQ=AP,则△APQ是等边三角形.△APQ、△ACE均为等边三角形,且共顶点A,故△APC≌△AQE,PC=QE.以上两步分别转化P A=PQ,PC=QE,故P A+PB+PC=PB+PQ+QE=BE.没有对比就没有差别,我们换个P 点位置,如下右图,同样可以构造等边△APQ ,同样有△APC ≌△AQE ,转化P A =PQ ,PC =QE ,显然,P A +PB +PC =PB +PQ +QE >BE .还剩下第3个问题!如果说费马点以前还算是课外的拓展内容,那现在,已经有人把它搬上了中考舞台!三.费马点怎么考?问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE .问题解决:如图2,在△MNG 中,MN =6,∠M =75°,MG=点O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是______.NG图2图1ABCD EP【分析】本题的问题背景实际上是提示了解题思路,构造60°的旋转,当然如果已经了解了费马点问题,直接来解决就好了!如图,以MG为边作等边△MGH,连接NH,则NH的值即为所求的点O到△MNG三个顶点的距离和的最小值.(此处不再证明)HGNM过点H作HQ⊥NM交NM延长线于Q点,根据∠NMG=75°,∠GMH=60°,可得∠HMQ=45°,∴△MHQ是等腰直角三角形,∴MQ=HQ=4,∴NH==464QHGNM【练习】如图,在△ABC中,∠ACB=90°,AB=AC=1,P是△ABC内一点,求P A+PB+PC的最小值.C【分析】如图,以AD为边构造等边△ACD,连接BD,BD的长即为P A+PB+PC的最小值.至于点P的位置?这不重要!AB CD如何求BD ?考虑到△ABC 和△ACD 都是特殊的三角形,过点D 作DH ⊥BA 交BA 的延长线于H 点,根据勾股定理,222BD BH DH =+即可得出结果.HDCB A【练习】如图,已知矩形ABCD ,AB =4,BC =6,点M 为矩形内一点,点E 为BC 边上任意一点,则MA +MD +ME 的最小值为______.ABCDME【分析】依然构造60°旋转,将三条折线段转化为一条直线段. 分别以AD 、AM 为边构造等边△ADF 、等边△AMG ,连接FG ,易证△AMD ≌△AGF ,∴MD =GF ∴ME +MA +MD =ME +EG +GF过F 作FH ⊥BC 交BC 于H 点,线段FH 的长即为所求的最小值.HFGE MDCBA。
中考数学点对点-最值问题(解析版)

中考数学最值问题专题知识点概述在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要分为几何最值和代数最值两大部分。
一、解决几何最值问题的要领(1)两点之间线段最短;(2)直线外一点与直线上所有点的连线段中,垂线段最短;(3)三角形两边之和大于第三边或三角形两边之差小于第三边(重合时取到最值)。
二、解决代数最值问题的方法要领1.二次函数的最值公式二次函数y ax bx c =++2(a 、b 、c 为常数且a ≠0)其性质中有 ①若a >0当x b a=-2时,y 有最小值。
y ac b a min =-442; ②若a <0当x b a=-2时,y 有最大值。
y ac b a max =-442。
2.一次函数的增减性.一次函数y kx b k =+≠()0的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大(小)值;但当m x n ≤≤时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)值。
3. 判别式法.根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得∆≥0,进而求出y 的取值范围,并由此得出y 的最值。
4.构造函数法.“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质.在实数范围内,显然有a b k k 22++≥,当且仅当a b ==0时,等号成立,即a b k 22++的最小值为k 。
6. 零点区间讨论法.用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解.在不等式x a ≤中,x a =是最大值,在不等式x b ≥中,x b =是最小值。
8. “夹逼法”求最值.在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。
2023年九年级数学中考专题复习——最值问题(将军饮马,胡不归,阿氏圆)

牛吃草最值问题:1.如图,AB 是⊙O 的直径,AB=8,点M 在⊙O 上,∠MAB=20°,N 是弧MB 的中点,P 是直径AB 上的一动点.若MN=1,则△PMN 周长的最小值为.2.如图,点P 是∠AOB 内一定点,点M 、N 分别在边OA 、OB 上运动,若∠AOB =45°,OP =32,则△PMN 周长的最小值为.3.如图,∠AOB 的边OB 与x 轴正半轴重合,点P 是OA 上一动点,点N(6,0)是OB 上的一定点,点M 是ON 中点,∠AOB=30∘,要使PM+PN 最小,则点P 的坐标为.4.如图,Rt △ABC 中,∠ACB=90º,∠CAB=30º, BC=1,将△ABC 绕点B 顺时针转动, 并把各边缩小为原来的一半,得到△DBE ,点A ,B ,E 在一直线上.P 为边DB 上的动点,则AP+CP 的最小值为 .5.点A 、B 均在由面积为1的相同小矩形组成的网格的格点上,建立坐标系如图所示.若P 是x 轴上使得PA PB -的值最大的点,Q 是y 轴上使得QA+QB 的值最小的点,则OP OQ ⋅= .N M O P B A Ay6.如图,当四边形PABN 的周长最小时,a =.7.矩形OACB 的顶点O 在坐标原点,顶点A 、B 分别在x 轴、y 轴的正半轴上,OA=3,OB =4,D 为边OB 的中点. 若E 、F 为边OA 上的两个动点,且EF =2,当四边形CDEF 的周长最小时,则点F 的坐标为8.如图,在Rt △ABO 中,∠OBA =90°,A (4,4),点C 在边AB 上,且=,点D 为OB 的中点,点P 为边OA 上的动点,当点P 在OA 上移动时,使四边形PDBC 周长最小的点P 的坐标为三角形条件及隐圆最值问题1.如图,在边长为2的菱形ABCD 中,∠A=60°,M 是AD 边的中点,N 是AB 边上一动点,将△AMN 沿MN 所在的直线翻折得到△A′MN ,连接A′C. 则A′C 长度的最小值是.N (a +2,0)P (a ,0)B (4,-1)A (1,-3)O y x F D C B A x y O E F D C B A x y O E2如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D处,则CD′的最小值是3.如图,点P是正方形ABCD的对角线BD上的一个动点(不与B、D重合),连结AP,过点B作直线AP的垂线,垂足为H,连结DH,若正方形的边长为4,则线段DH长度的最小值是.4.如图,AB为直径,C为⊙O上一点,其中AB=4,∠AOC=120°,P为⊙O上的动点,取AP中点Q,连CQ,则线段CQ的最大值为5.如图,矩形ABCD中,AC与BD相交于点E,AD:AB=:1,将△ABD沿BD折叠,点A的对应点为F,连接AF交BC于点G,且BG=2,在AD边上有一点H,使得BH+EH的值最小,此时BH:CF=6.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值为_____.7.如图,A(1,0)、B(3,0),以AB为直径作⊙M,射线OF交⊙M于E、F两点,C为弧AB的中点,D为EF的中点.当射线OF 绕O点旋转时,CD的最小值为________8.如图,点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是______9.AB是半圆O的直径,AB=10,弦AC长为8,点D是弧BC上一个动点,连接AD,作CP⊥AD,垂足为P,连接BP,则BP的最小值是_____10.直线y=x+4 分别与x 轴、y 轴相交与点M、N,边长为2 的正方形OABC 一个顶点O 在坐标系的原点,直线AN 与MC 相交与点P,若正方形绕着点O 旋转一周,则点P 到点(0,2)长度的最小值是__________11.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是x−3与x轴、y轴分别交于A、B两点,P是以C(0,2)为圆心,2为半径的圆上一动点,连结PA、12.如图,已知直线y=34PB.则△PAB面积的最小值是_____.13.如图,C、D是以AB为直径的圆O上的两个动点(点C、D不与A、B重合),在运动过程中弦CD始终保持不变,M是弦CD 的中点,过点C作CP⊥AB于点P.若CD=3,AB=5,PM=x,则x的最大值是14.如图,已知A、B两点的坐标分别为(8,0)、(0,8),点C、F分别是直线x=﹣5和x轴上的动点,CF=10,点D是线段CF的中点,连接AD交y轴于点E,当△ABE面积取得最小值时,tan∠BAD的值是15.如图,抛物线y=x2﹣4与x轴交于A、B两点,P是以点C(0,3)为圆心,2为半径的圆上的动点,Q是线段P A的中点,连结OQ.则线段OQ的最大值是16.如图,正方形ABCD和Rt△AEF,AB=5,AE=AF=4,连接BF,DE.若△AEF绕着点A旋转,当∠ABF最大时,S△ADE =17.如图,在直角坐标系中,已知C(3,4),以点C为圆心的圆与y轴相切.点A、B在x轴上,且OA=OB.点P为⊙C上的动点,∠APB=90°,则AB长度的最大值为18.在△ABC中,AB=4,∠C=60°,∠A>∠B,则BC的长的取值范围是19.如图,直线y=x+1与抛物线y=x2﹣4x+5交于A,B两点,点P是y轴上的一个动点,当△P AB的周长最小时,S△P AB=20..如图,△ABC是⊙O的内接三角形,且AB是⊙O的直径,点P为⊙O上的动点,且∠BPC=60°,⊙O的半径为6,则点P到AC距离的最大值是路径问题:1.如图,AB是⊙O的直径,M、N是(异于A、B)上两点,C是上一动点,∠ACB的角平分线交⊙O于点D,∠BAC 的平分线交CD于点E.当点C从点M运动到点N时,则C、E两点的运动路径长的比是2.如图,在圆心角为90°的扇形OAB中,OB=2,P为上任意一点,过点P作PE⊥OB于点E,设M为△OPE的内心,当点P从点A运动到点B时,则内心M所经过的路径长为3.如图,在矩形ABCD中,AB=4,∠DCA=30°,点F是对角线AC上的一个动点,连接DF,以DF为斜边作∠DFE=30°的直角三角形DEF,使点E和点A位于DF两侧,点F从点A到点C的运动过程中,点E的运动路径长是4.等边三角形ABC的边长为6,在AC,BC边上各取一点E,F,连接AF,BE相交于点P.若AF=BE,当点E从点A运动到点C时,则点P经过的路径长为.5.如图,边长为2 的正方形ABCD 的两条对角线交于点O,把BA 与CD 分别绕点B 和点C 逆时针旋转相同的角度,此时正方形ABCD 随之变成四边形A′BCD′.设A′C,BD′交于点O′,若旋转了60°,则点O 运动到点O′所经过的路径长为6.已知等边三角形ABC 的边长为4,点D 是边BC 的中点,点E 在线段BA 上由点B 向点A 运动,连接DE,以DE 为边在DE 右侧作等边三角形DEF.设△DEF 的中心为O,则点 E 由点 B 向点 A 运动的过程中,点O 运动的路径长为胡不归型问题:当 k≠1 且 k 为正数时,若点 P 在某条直线上运动时,此时所求的最短路径问题称之为“胡不归”问题.那么对于当“PA + k·PB”的值最小时,点 P 的位置如何确定呢?过点 P 作 PQ⊥BN,垂足为 Q,如图3则 k·PB = PB·sin∠MBN = PQ.因此,本题求“PA + k·PB”的最小值转化为求“PA +PQ”的最小值,即 A,P,Q 三点共线时最小.1.如图,四边形ABCD是菱形,AB=4,且∠ABC=60°,M为对角线BD(不含B点)上任意一点,则AM+1BM的最小值为.22.在△ABC中,AB=AC=10,tan A=2,BE⊥AC于点E,D是线段BE上的一个动点,则CD+BD的最小值是阿氏圆模型问题:已知平面上两点 A,B,则所有满足 PA + k·PB(k≠1,且 k 为正数),若点 P 的轨迹是一个圆,当点 P 在圆周上运动的类型称之为“阿氏圆”(阿波罗尼斯圆)问题.如图所示,⊙O 的半径为 r,点 A,B 都在圆外,P 为⊙O 上的动点,已知 r = k·OB,连接 PA,PB,则当“PA + k·PB”的值最小时,P 点的位置如何确定?在线段 OB 上截取 OC 使 OC = k·r,则可说明△BPO∽△PCO,即 k·PB = PC.因此,求“PA + k·PB”的最小值转化为求“PA + PC”的最小值,即 A,P,C 三点共线时最小1.已知A(-4,-4)、B(0, 4)、C(0, -6)、 D(0, -1),AB与x轴交于点E,以点E为圆心,ED长为半径作圆,点M为⊙E上AM的最小值.一动点,求CM+122.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,则AP+1BP的最小值为.2旋转最值及路径问题:1.如图,点O在线段AB上,OA=1,OB=3,以O为圆心,OA长为半径作⊙O,点M在⊙O上运动,连接MB,以MB为腰作等腰Rt△MBC,使∠MBC=90°,M,B,C三点为逆时针顺序,连接AC,则AC长的取值范围为___________.2.如图,线段AB为⊙O的直径,AB=4,点C为OB的中点,点P在⊙O上运动,连接CP,以CP为一边向上作等边△CPD,连接OD,则OD的最大值为___________.3.如图,在直角坐标系中,已知点A(4,0),点B为y轴正半轴上一动点,连接AB,以AB为一边向下做等边△ABC,连接OC,则OC的最小值为__________4.如图,在Rt△ABC中,AB=BC=2,点P为AB边上一动点,连接CP,以CP为边向下作等腰RT△CPD,连接BD,则BD的最小值为____________.5..如图,在直角坐标系中,已知点A(4,0),点B为直线y=2上一动点,连接AB,以AB为底边向下做等腰Rt△ABC,∠ACB=90°,连接OC,则OC的最小值为__________6.如图,已知点A(3,0),C(0,-4),⊙C的半径为√5,点P为⊙C上一动点,连接AP,若M为AP的中点,连接OM,则OM的最大值为.7.如图,已知△ABC为等腰直角三角形,∠BAC=90°,AC=2,以点C为圆心,1为半径作圆,点P为⊙C上一动点,连结AP,并绕点A顺时针旋转90°得到AP′,连结CP′,则CP′的取值范围是.8.如图,Rt△ABC中,AC=6,BC=8,∠C=90°.点P是AB边上一动点,D是AC延长线上一点,且AC=CD,连接PD,过点D作.则当点P从点A运动到B点时,点E运动的路径长为DE⊥PD,连接PE,且tan∠DPE=252的一个定点,AC⊥x 轴于点M,交直线y=-x 于点N.若点P 是线段ON 上9.如图,点A 是第一象限内横坐标为3的一个动点,∠APB=30°,BA⊥PA,则点P 在线段ON 上运动时,A 点不变,B 点随之运动.当点P 从点O 运动到点N 时,点B 运动的路径长是旋转构图法(补形)问题:常见旋转模型:1.如图,在△ABC 中,AB=AC=32,∠BAC=120°,点D ,E 都在BC 上,∠DAE=60°,若BD=2CE ,则DE 的长为_____.2.在四边形ABCD 中,AD=4,CD =3,∠ABC=∠ACB =∠ADC=45°,则BD 的长为;3.如图,在△ABC 中,∠ABC=90°,将AB 边绕点A 逆时针旋转90°得到线段AD ,将AC 边绕点C 顺时针旋转90°得到线段CE ,AE 与BD 交于点F .若DF=2,EF=22,则BC 边的长为____________.A D CB E FDE CB A4.如图,菱形ABCD的对角线AC上有一动点P,BC=6,∠ABC=150°,则线段AP+BP+PD的最小值为5.如图,在△ABC中,∠ABC=30°,AB=4 ,BC=5 , P是△ABC内部的任意一点,连接PA , PB , PC,则PA + PB + PC 的最小值为.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题33 最值问题在中学数学题中,最值题是常见题型,围绕最大(小)值所出的数学题是各种各样,就其解法,主要为以下几种:1.二次函数的最值公式二次函数(a 、b 、c 为常数且)其性质中有y ax bx c =++2a ≠0①若当时,y 有最小值。
;a >0xb a =-2y ac b a min =-442②若当时,y 有最大值。
a <0xb a =-2y ac b amax =-4422.一次函数的增减性一次函数的自变量x 的取值范围是全体实数,图象是一条直线,因而没有最大y kx b k =+≠()0(小)值;但当时,则一次函数的图象是一条线段,根据一次函数的增减性,就有最大(小)m x n ≤≤值。
3. 判别式法根据题意构造一个关于未知数x 的一元二次方程;再根据x 是实数,推得,进而求出y 的取值∆≥0范围,并由此得出y 的最值。
4.构造函数法“最值”问题中一般都存在某些变量变化的过程,因此它们的解往往离不开函数。
5. 利用非负数的性质在实数范围内,显然有,当且仅当时,等号成立,即的最小值a b k k 22++≥a b ==0a b k 22++为k 。
6. 零点区间讨论法用“零点区间讨论法”消去函数y 中绝对值符号,然后求出y 在各个区间上的最大值,再加以比较,从中确定出整个定义域上的最大值。
7. 利用不等式与判别式求解在不等式中,是最大值,在不等式中,是最小值。
x a ≤x a =x b ≥x b =8. “夹逼法”求最值在解某些数学问题时,通过转化、变形和估计,将有关的量限制在某一数值范围内,再通过解不等式获取问题的答案,这一方法称为“夹逼法”。
专题知识回顾【例题1】(经典题)二次函数y=2(x﹣3)2﹣4的最小值为 .【答案】﹣4.【解析】题中所给的解析式为顶点式,可直接得到顶点坐标,从而得出解答.二次函数y=2(x﹣3)2﹣4的开口向上,顶点坐标为(3,﹣4),所以最小值为﹣4.【例题2】(2018江西)如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是 .【答案】.【解析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.如图,∵点M,N分别是AB,AC的中点,∴MN=BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′===5,∴MN 最大=.【例题3】(2019湖南张家界)已知抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,与y 轴交于点C ,OC =3.(1)求抛物线的解析式及顶点D 的坐标;(2)过点A 作AM ⊥BC ,垂足为M ,求证:四边形ADBM 为正方形;(3)点P 为抛物线在直线BC 下方图形上的一动点,当△PBC 面积最大时,求P 点坐标及最大面积的值;(4)若点Q 为线段OC 上的一动点,问AQ +QC是否存在最小值?若存在,求岀这个最小值;若不存在,请12说明理由.【思路分析】(1)将A 、B 、C 三点坐标代入抛物线的解析式即可求出a 、b 、c 的值(当然用两根式做更方便);(2)先证四边形AMBD 为矩形,再证该矩形有一组邻边相等,即可证明该四边形为正方形;(3)如答图2,过点P 作PF ⊥AB 于点F ,交BC 于点E ,令P (m ,m 2-4m +3),易知直线BC 的解析式为y =-x +3,则E (m ,-m +3),PE =(-m +3)-(m 2-4m +3)=-m 2+3m .再由S △PBC =S △PBE +S △CPE ,转化为PE •OB =×3×(-m 2+3m ),最后将二次函数化为顶点式即可锁定S △PBC 的最大值与点P 坐标;(4)解1212决本问按两步走:一找(如答图3,设OQ =t ,则CQ =3-t ,AQ +QC ,取CQ 的中点121(3)2t +-G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A时,AQ +QC =⊙Q的直径最小)、二求(由 AQ =12QC ,解关于t 的方程即可).12【解题过程】(1)∵抛物线y =ax 2+bx +c (a ≠0)过点A (1,0),B (3,0)两点,∴令抛物线解析为y=a(x-1)(x-3).∵该抛物线过点C(0,3),∴3=a×(0-1)×(0-3),解得a=1.∴抛物线的解析式为y=(x-1)(x-3),即y=x2-4x+3.∵y=x2-4x+3=(x-2)2-1,∴抛物线的顶点D的坐标为(2,-1).综上,所求抛物线的解析式为y=x2-4x+3,顶点坐标为(2,-1).(2)如答图1,连接AD、BD,易知DA=DB.∵OB=OC,∠BOC=90°,∴∠MBA=45°.∵D(2,-1),A(3,0),∴∠DBA=45°.∴∠DBM=90°.同理,∠DAM=90°.又∵AM⊥BC,∴四边形ADBM为矩形.又∵DA=DB,∴四边形ADBM为正方形.(3)如答图2,过点P作PF⊥AB于点F,交BC于点E,令P(m,m2-4m+3),易知直线BC的解析式为y=-x+3,则E(m,-m+3),PE=(-m+3)-(m2-4m+3)=-m2+3m.∵S △PBC =S △PBE +S △CPE =PE •BF +PE •OF =PE •OB =×3×(-m 2+3m )12121212=- (m -)2+,3232278∴当m =时,S △PBC 有最大值为,此时P点的坐标为(,-).322783234(4)如答图3,设OQ =t ,则CQ =3-t ,AQ +QC ,12211(3)2t t +-取CQ 的中点G ,以点Q 为圆心,QG 的长为半径作⊙Q ,则当⊙Q 过点A时,AQ +QC =⊙Q的直径最小,12此时,,解得t =-1,t 2+1=12(3-t)263于是AQ +QC的最小值为3-t =3-(1)=4-.122632631.(2018河南)要使代数式有意义,则x 的( )2-3x A.最大值为 B.最小值为 2323C.最大值为 D.最大值为3232【答案】A.【解析】要使代数式有意义,必须使2-3x≥0,即x≤,所以x 的最大值为。
2-3x 23232.(2018四川绵阳)不等边三角形的两边上的高分别为4和12且第三边上的高为整数,那么此高∆ABC 的最大值可能为________。
【答案】5【解析】设a 、b 、c 三边上高分别为4、12、h专题典型训练题因为,所以2412S a b ch ABC ∆===a b =3又因为,代入c a b b <+=412b ch =得,所以124b bh <h >3又因为,代入c a b b >-=212b ch = 得,所以122b bh >h <6所以3<h<6,故整数h 的最大值为5。
3.(2018齐齐哈尔)设a 、b 为实数,那么的最小值为_______。
a ab b a b 222++--【答案】-1【解析】a ab b a b222++--=+-+-=+-+--=+-+--≥-a b a b ba b b b a b b 22222212123432141234111()()()()当,,即时,a b +-=120b -=10a b ==01,上式等号成立。
故所求的最小值为-1。
4.(2018云南)如图,MN 是⊙O 的直径,MN=4,∠AMN=40°,点B 为弧AN 的中点,点P 是直径MN 上的一个动点,则PA+PB 的最小值为 .【答案】2.【解析】过A 作关于直线MN 的对称点A′,连接A′B,由轴对称的性质可知A′B 即为PA+PB 的最小值,由对称的性质可知=,再由圆周角定理可求出∠A′ON 的度数,再由勾股定理即可求解.过A 作关于直线MN 的对称点A′,连接A′B,由轴对称的性质可知A′B 即为PA+PB的最小值,连接OB,OA′,AA′,∵AA′关于直线MN对称,∴=,∵∠AMN=40°,∴∠A′ON=80°,∠BON=40°,∴∠A′OB=120°,过O作OQ⊥A′B于Q,在Rt△A′OQ中,OA′=2,∴A′B=2A′Q=2,即PA+PB的最小值2.5.(2018海南)某水果店在两周内,将标价为10元/斤的某种水果,经过两次降价后的价格为8.1元/斤,并且两次降价的百分率相同.(1)求该种水果每次降价的百分率;(2)从第一次降价的第1天算起,第x天(x为正数)的售价、销量及储存和损耗费用的相关信息如表所示.已知该种水果的进价为4.1元/斤,设销售该水果第x(天)的利润为y(元),求y与x(1≤x<15)之间的函数关系式,并求出第几天时销售利润最大?时间(天)1≤x<99≤x<15x≥15售价(元/斤)第1次降价后的价格第2次降价后的价格销量(斤)80-3x120-x储存和损耗费用(元)40+3x3x2-64x+400(3)在(2)的条件下,若要使第15天的利润比(2)中最大利润最多少127.5元,则第15天在第14天的价格基础上最多可降多少元?【答案】看解析。
【解析】(1)设该种水果每次降价的百分率为x,则第一次降价后的价格为10(1-x),第二次降价后的价格为10(1-x)2,进而可得方程;(2)分两种情况考虑,先利用“利润=(售价-进价)×销量-储存和损耗费用”,再分别求利润的最大值,比较大小确定结论;(3)设第15天在第14天的价格基础上降a元,利用不等关系“(2)中最大利润-[(8.1-a-4.1)×销量-储存和损耗费用]≤127.5”求解.解答:(1)设该种水果每次降价的百分率为x,依题意得:10(1-x)2=8.1.解方程得:x 1=0.1=10%,x 2=1.9(不合题意,舍去)答:该种水果每次降价的百分率为10%.(2)第一次降价后的销售价格为:10×(1-10%)=9(元/斤),当1≤x <9时,y =(9-4.1)(80-3x )-(40+3x )=-17.7x +352;当9≤x <15时,y =(8.1-4.1)(120-x )-(3x 2-64x +400)=-3x 2+60x +80,综上,y 与x 的函数关系式为:y ={-17.7x +352(1≤x <9,x 为整数),-3x +60x +80(9≤x <15,x 为整数).)当1≤x <9时,y =-17.7x +352,∴当x =1时,y 最大=334.3(元);当9≤x <15时,y =-3x 2+60x +80=-3(x -10)2+380,∴当x =10时,y 最大=380(元);∵334.3<380,∴在第10天时销售利润最大.(3)设第15天在第14天的价格上最多可降a 元,依题意得:380-[(8.1-a -4.1)(120-15)-(3×152-64×15+400)]≤127.5,解得:a ≤0.5,则第15天在第14天的价格上最多可降0.5元.6.(2018湖北荆州)某玩具厂计划生产一种玩具熊猫,每日最高产量为40只,且每日产出的产品全部售出,已知生产x 只玩具熊猫的成本为R (元),售价每只为P (元),且R 、P 与x 的关系式分别为,。