2 多项式插值(11)
讲解多项式插值(包含例题)

第三章多项式插值方法教学目的及要求:要求掌握基本的定理及各种插值方法。
插值方法是数学分析中很古老的一个分支.它有悠久的历史.等距结点内插公式是由我国隋朝数学家刘焯(公元544—610年)首先提出的;而不等距结点内插公式是由唐朝数学家张遂(公元683—727年) 提出的.这比西欧学者相应结果早一千年.插值方法在数值分析的许多分支(例如, 数值积分, 数值微分, 微分方程数值解,曲线曲面拟合,函数值近似计算,等等)均有应用.下面仅以近似计算函数值为例来说明设已知某个函数关系()x f y =的列表函数值nn y y y yx x x x110而()n i x x i ,1,0=≠问应该如何估值().x f y =对于函数关系()x f y =,我们所知道仅仅上述的表列值,它们常常是间接求得的.例如是由实验(观测)得来的,或者是从级数或微分方程求得的.我们可以使用插值方法估计y. 插值方法的目的是寻求简单的连续函数()x ϕ,使它在n+1个点n x x x ,,,10 处取给定值()()),,1,0(n i x f y x i i i ===ϕ,而在别处希望它也能近似地代表函数()x f .因为()x ϕ已是有解析表达式的简单函数,所以它在x x =处的值可以按表达式精确地计算出来.这样我们就可以将()x ϕ看成().x f y =的近似值了给定点n x x x ,,,10 为插值结点.称函数()x ϕ为函数()x f 的关于n x x x ,,,10 的插值函数.称()x f y =为被插函数.严格的说,插值方法一词只用于x 落在给定点n x x x ,,,10 之间的情形,所以也称它为内插法.如果x 落在给定点n x x x ,,,10 之外,并且仍以插值函数()x ϕ在x 处近似地代替().x f ,则一般称这种近似计算函数的方法为外插法.本章我只研究多项式插值,亦即()x ϕ是x 的多项式的情形.这不仅仅因为多项式是最简单的函数,而且因为在许多场合,函数()x f 容易用多项式近似地表示出来.此外,用多项式作插值函数可满意地解决一系列有应用价值的重要问题.特别是数值积分与数值微分的问题.本章讲不涉及三角插值法.其实,只要理解了代数多项式插值方法的实质读者就不难自行导出关于三角多项式插值方法的一系列相应与代数多项式插值方法的理论结果§1. Lagrange 插值公式设()x f y =是实变量x 得单值函数,且已知()x f 在给定的n+1个互异点n x x x ,,,10 处的值n y y y ,,,10 ,即().,,0,n i x f y i i ==插值的基本问题是,寻求多项式()x p ,使得 ()()1.1.,0,n i y x p i i ==设()x p 是一个m 次多项式()0,2210≠++++=m m m a x a x a x a a x p则插值问题是,如何确定()x p 中的系数m a a a ,,,10 ,使得(1.1)式得以满足.所以该问题等价于求解下述的线性方程组:()2.1,,,22101121211000202010⎪⎪⎩⎪⎪⎨⎧=++++=++++=++++n m n m n n mm mm y x a x a x a a y x a x a x a a y x a x a x a a上述的线性方程组的系数矩阵为⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=m n m m nnx x x x x x x x x A102211200111 它是一个(n+1)×(m+1)矩阵.当m>n 时,A 的列数大于行数.不难证明矩阵A 的秩数为n+1.因为A 的前n+1列所组成的行列式为(称为Vandermonde 行列式)()mnmm n n n n x x x x x x x x x d e f x x x W10221120010111,.,-我们有()()()3.1,.,10∏>--=ij i j n n x x x x x W为证(1.3),考虑n 次多项式()nnnn n n n n n xx xx x x x x x x x x x x x W2121112110200101111,.,----= 显然110,,,-n x x x 均为它的零点,且它的n x 系数恰为()10.,-n x x W 即 ()()()()101010.,,.,-----=n n n x x x x x x W x x x W 从而有下述递推关系式()()()()101010.,,.,-----=n n n n n n x x W x x x x x x x W运用它即可证明(1.3)式根据(1.3),并注意到诸n x x x ,,,10 互异,从而线性方程组(1.2)的系数矩阵的秩数为n+1 .它表明(1.2)的解是不唯一的,即插值问题(1.1)的解不唯一。
二次插值计算例题

二次插值计算例题二次插值是一种常用的数值计算方法,用于通过已知数据点的坐标,推导出两个数据点之间的某个点的值。
在二次插值中,我们假设数据具有二次多项式的形式,并通过插值公式求解未知点的值。
以下是一个用于说明二次插值的计算例题:例题:已知数据点的坐标为(1,1)、(2,3)、(3,7),求x=2.5时的y值。
解析:1. 首先,我们需要确定插值多项式的形式。
由于已知的数据点个数为3个,因此我们可以假设插值多项式为二次多项式的形式:P(x) = a*x^2 + b*x + c2. 接下来,我们需要确定多项式的系数a、b和c。
为了确定这些系数,我们可以使用已知数据点的坐标。
3. 首先,我们将已知的数据点代入多项式中,得到以下方程: P(1) = a*1^2 + b*1 + c = 1P(2) = a*2^2 + b*2 + c = 3P(3) = a*3^2 + b*3 + c = 7将方程整理为矩阵形式,得到以下方程组:⎡ 1 1 1 ⎤⎡ a ⎤⎡ 1 ⎤⎢ 4 2 1 ⎥ * ⎢ b ⎥ = ⎢ 3 ⎥⎣ 9 3 1 ⎦⎣ c ⎦⎣ 7 ⎦4. 解方程组,可以得到系数a、b和c的值。
首先,将方程组进行高斯消元法的操作:⎡ 1 1 1 ⎤⎡ a ⎤⎡ 1 ⎤⎡ 1 1 1 ⎤⎢ 4 2 1 ⎥ * ⎢ b ⎥ = ⎢ 3 ⎥ => ⎢ 0 -2 -3 ⎥⎣ 9 3 1 ⎦⎣ c ⎦⎣ 7 ⎦⎣ 0 0 -2 ⎦进行回代运算:-2c = -2 => c = 1-2b - 3c = 3 => -2b - 3 = 3 => b = -2a +b +c = 1 => a - 2 + 1 = 1 => a = 2因此,系数a、b和c的值为2、-2和1。
5. 最后,将得到的系数代入插值多项式中,求解x=2.5时的y 值:P(2.5) = 2*2.5^2 + (-2)*2.5 + 1 = 11.25 - 5 + 1 = 7.25因此,在已知数据点(1,1)、(2,3)、(3,7)的情况下,当x=2.5时,y的值为7.25。
牛顿插值法例题求解

牛顿插值法例题求解牛顿插值法是一种用于多项式插值的方法。
它利用给定数据点的函数值和差商的计算来构造一个多项式函数,从而在给定数据点之间进行插值。
以下是一个求解多项式插值的牛顿插值法的例题:假设有以下给定数据点与函数值:x: 0 1 2 4 y: 1 4 11 36现在要使用牛顿插值法,通过这些数据点拟合出一个多项式函数来进行插值。
解题步骤如下:1.计算差商表:x0 f[x0] 0 1 f[x0,x1] 1 4 f[x0,x1,x2] 2 11 f[x0,x1,x2,x3] 4 36差商的计算可以使用以下公式:f[xi,xi+1,...,xi+k] = (f[xi+1,xi+2,...,xi+k] - f[xi,xi+1,...,xi+k-1]) / (xi+k - xi)2.使用差商表计算插值多项式:插值多项式P(x) = f[x0] + f[x0,x1](x-x0) + f[x0,x1,x2](x-x0)(x-x1) + f[x0,x1,x2,x3](x-x0)(x-x1)(x-x2)P(x)的展开式为:P(x) = 1 + 3(x-0) + 2(x-0)(x-1) + 2(x-0)(x-1)(x-2)3.使用得到的插值多项式进行插值计算。
例如,要计算在x=3 的位置的插值结果,将x 替换为3,计算P(3):P(3) = 1 + 3(3-0) + 2(3-0)(3-1) + 2(3-0)(3-1)(3-2) = 1 + 9 + 12 + 6 = 28因此,使用牛顿插值法,给定数据点(0,1), (1,4), (2,11), (4,36),在 x=3 的位置的插值结果为 28。
注意,此例仅为示例,实际问题中,使用牛顿插值法时可能需要更多的数据点和计算过程。
在实际应用中,还需要考虑插值误差、阶数选择以及数据点的分布等因素。
几种常用的插值方法

几种常用的插值方法常用的插值方法包括线性插值、多项式插值、样条插值和径向基函数插值等,下面将依次介绍这些方法。
1.线性插值:线性插值是最简单的插值方法之一,它假设函数在两个已知点之间的变化是线性的。
对于给定的两个点(x0,y0)和(x1,y1),线性插值公式为:y=y0+(x-x0)*(y1-y0)/(x1-x0)其中,y是需要插值的点对应的函数值,x是插值点的横坐标。
2.多项式插值:多项式插值方法通过在给定的一组点上构建一个多项式函数来进行插值。
常用的多项式插值方法包括拉格朗日插值和牛顿插值。
- 拉格朗日插值通过构建一个n次多项式来插值n+1个给定的点。
具体来说,对于给定的n+1个点(x0, y0), (x1, y1), ..., (xn, yn),拉格朗日插值公式为:y = Σ(yk * lk(x))其中,lk(x)是拉格朗日基函数,计算公式为:lk(x) = Π((x - xj) / (xi - xj)),(j ≠ i)- 牛顿插值通过构建一个n次插值多项式来插值n+1个给定的点。
具体来说,对于给定的n+1个点(x0, y0), (x1, y1), ..., (xn, yn),牛顿插值公式为:y = Σ(Π(x - xj) / Π(xi - xj) * finDiff(yj))其中,finDiff(yj)是每个节点的差商,计算公式为:finDiff(yj) = (ΣΠ(xj - xi) * yj) / ΣΠ(xi - xj),(i ≠ j) 3.样条插值:样条插值方法通过使用分段函数来逼近给定的一组点。
常用的样条插值方法有线性样条插值和三次样条插值。
-线性样条插值在每两个相邻点之间使用线性函数进行插值,保证了插值函数的一阶导数是连续的。
-三次样条插值在每两个相邻点之间使用三次多项式进行插值,保证了插值函数的一阶和二阶导数都是连续的。
三次样条插值具有良好的平滑性和精度。
4.径向基函数插值:径向基函数插值是一种基于局部函数的插值方法,它假设函数值仅取决于与插值点的距离。
插值算法

一插值算法简介:1:插值的涵义:在离散数据的基础上补插连续函数,使得这条连续曲线通过全部给定的离散数据点。
插值是离散函数逼近的重要方法,利用它可通过函数在有限个点处的取值状况,估算出函数在其他点处的近似值。
早在6世纪,中国的刘焯已将等距二次插值用于天文计算。
17世纪之后,I.牛顿,J.-L.拉格朗日分别讨论了等距和非等距的一般插值公式。
在近代,插值法仍然是数据处理和编制函数表的常用工具,又是数值积分、数值微分、非线性方程求根和微分方程数值解法的重要基础,许多求解计算公式都是以插值为基础导出的。
插值问题的提法是:假定区间[a,b]上的实值函数f(x)在该区间上n+1个互不相同点x0,x1……xn 处的值是f [x0],……f(xn),要求估算f(x)在[a,b]中某点的值。
其做法是:在事先选定的一个由简单函数构成的有n+1个参数C0,C1,……Cn的函数类Φ(C0,C1,……Cn)中求出满足条件P(xi)=f(xi)(i=0,1,……n)的函数P(x),并以P()作为f()的估值。
此处f(x)称为被插值函数,c0,x1,……xn称为插值结(节)点,Φ(C0,C1,……Cn)称为插值函数类,上面等式称为插值条件,Φ(C0,……Cn)中满足上式的函数称为插值函数,R(x)=f(x)-P(x)称为插值余项。
当估算点属于包含x0,x1……xn的最小闭区间时,相应的插值称为内插,否则称为外插。
2:插值的种类(1)多项式插值这是最常见的一种函数插值。
在一般插值问题中,若选取Φ为n次多项式类,由插值条件可以唯一确定一个n次插值多项式满足上述条件。
从几何上看可以理解为:已知平面上n +1个不同点,要寻找一条n次多项式曲线通过这些点。
插值多项式一般有两种常见的表达形式,一个是拉格朗日插值多项式,另一个是牛顿插值多项式。
(2)埃尔米特插值对于函数f(x),常常不仅知道它在一些点的函数值,而且还知道它在这些点的导数值。
多项式的插值多项式与Lagrange插值知识点

多项式的插值多项式与Lagrange插值知识点多项式的插值多项式是数值分析中的重要概念,用于逼近给定数据点集合的函数。
通过插值,我们可以通过已知的数据点,构造出一个多项式函数,从而对未知数据点进行预测和估计。
Lagrange插值是一种常用的插值方法,具有简单易懂的形式和计算方法。
1. 插值多项式的定义插值多项式是指通过已知数据点集合,构造一个多项式函数,该函数在已知数据点上与原函数完全相等。
插值多项式在数值计算、信号处理、图像处理等领域都有广泛的应用。
2. Lagrange插值的原理Lagrange插值是一种基于多项式插值的方法,它通过构造一个满足一定条件的插值多项式来逼近原函数。
Lagrange插值的思想是,通过构造一系列的基函数,使得插值多项式在每个数据点上的取值等于对应数据点的函数值,并且在其他数据点上的取值为0。
3. Lagrange插值的公式Lagrange插值的公式非常简洁明了。
设已知的数据点集合为{(x0, y0), (x1, y1), ...,(xn, yn)},其中xi和yi分别代表数据点的横坐标和纵坐标。
插值多项式的公式可以表示为:P(x) = ∑(i=0 t o n) [yi * Li(x)]其中,Li(x)为Lagrange基函数,其公式为:Li(x) = ∏(j=0 to n, j!=i) [(x - xj) / (xi - xj)]4. Lagrange插值的优点Lagrange插值具有以下几个优点:(1) 简单易懂:Lagrange插值的公式非常简洁明了,易于理解和计算。
(2) 泛用性强:Lagrange插值适用于任意数量的数据点,能够满足不同场景的需求。
(3) 高精度:在数据点较为密集的情况下,Lagrange插值能够提供较高的插值精度。
5. Lagrange插值的局限性尽管Lagrange插值具有许多优点,但也存在一些局限性:(1) 数据点过于离散:当数据点过于离散时,Lagrange插值可能会导致插值多项式的震荡现象,从而影响插值结果的准确性。
数值分析实验报告--实验2--插值法

1 / 21数值分析实验二:插值法1 多项式插值的震荡现象1.1 问题描述考虑一个固定的区间上用插值逼近一个函数。
显然拉格朗日插值中使用的节点越多,插值多项式的次数就越高。
我们自然关心插值多项式的次数增加时, 是否也更加靠近被逼近的函数。
龙格(Runge )给出一个例子是极著名并富有启发性的。
设区间[-1,1]上函数21()125f x x=+ (1)考虑区间[-1,1]的一个等距划分,分点为n i nix i ,,2,1,0,21 =+-= 则拉格朗日插值多项式为201()()125nn ii iL x l x x ==+∑(2)其中的(),0,1,2,,i l x i n =是n 次拉格朗日插值基函数。
实验要求:(1) 选择不断增大的分点数目n=2, 3 …. ,画出原函数f(x)及插值多项式函数()n L x 在[-1,1]上的图像,比较并分析实验结果。
(2) 选择其他的函数,例如定义在区间[-5,5]上的函数x x g xxx h arctan )(,1)(4=+=重复上述的实验看其结果如何。
(3) 区间[a,b]上切比雪夫点的定义为 (21)cos ,1,2,,1222(1)k b a b ak x k n n π⎛⎫+--=+=+ ⎪+⎝⎭(3)以121,,n x x x +为插值节点构造上述各函数的拉格朗日插值多项式,比较其结果,试分析2 / 21原因。
1.2 算法设计使用Matlab 函数进行实验, 在理解了插值法的基础上,根据拉格朗日插值多项式编写Matlab 脚本,其中把拉格朗日插值部分单独编写为f_lagrange.m 函数,方便调用。
1.3 实验结果1.3.1 f(x)在[-1,1]上的拉格朗日插值函数依次取n=2、3、4、5、6、7、10、15、20,画出原函数和拉格朗日插值函数的图像,如图1所示。
Matlab 脚本文件为Experiment2_1_1fx.m 。
可以看出,当n 较小时,拉格朗日多项式插值的函数图像随着次数n 的增加而更加接近于f(x),即插值效果越来越好。
第二章插值法多项式插值的存在性

第二章 插值法⏹ 多项式插值的存在性 ⏹ Lagrange 插值 ⏹ Newton 插值 ⏹ Hermit 插值 ⏹ 分段低次插值 ⏹ 三次样条插值在生产实践和科学研究所遇到的大量函数中,相当一部分是通过测量或实验得到的。
虽然其函数关系)(x f y =在某个区间[]b a ,是客观存在的,但是却不知道具体的解析表达式,只能通过观察、测量或实验得到函数在区间a ,b]上一些离散点上的函数值、导数值等,因此,希望对这样的函数用一个比较简单的函数表达式来近似地给出整体上的描述。
还有些函数,虽然有明确的解析表达式,但却过于复杂而不便于进行理论分析和数值计算,同样希望构造一个既能反映函数的特性又便于计算的简单函数,近似代替原来的函数。
插值法就是寻求近似函数的方法之一.在用插值法寻求近似函数的过程中,根据所讨论问题的特点,对简单函数的类型可有不同的选取,如多项式、有理式、三角函数等,其中多项式结构简单,并有良好的性质,便于数值计算和理论分析,因此被广泛采用。
本章主要介绍多项式插值、分段多项式插值和样条插值. 2.1 插值多项式的存在唯一性 2.1.1 插值问题设函数)(x f y =在区间],[b a 上有定义,且已知函数在区间],[b a 上n+1个互异点n x x x ,,,10 处的函数值)(i i x f y = i=0,1,…,n ,若存在一个简单函数)(x p y =,使其经过)(x f y =上的这n+1个已知点),(,),,(),,(1100n n y x y x y x (图5-1),即n i y x p i i ,,1,0 ,)( == (2.1.1)那么,函数)(x p 称为插值函数,点n x x x ,,,10 称为插值节点,],[b a 称为插值区间,求)(x p 的方法称为插值法,)(x f 称为被插函数。
若)(x p 是次数不超过n 的多项式,记为)(x p n ,即n n n x a x a a x p +++= 10)(则称)(x p n 为n 次插值多项式,相应的插值法称为多项式插值;若)(x p 为分段多项式,称为分段插值,多项式插值和分段插值称为代数插值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
10
North China Elec. P.U.
Numerical Analysis
2011-5-8
J. G. Liu
我们看到利用多项式插值函数逼近函数f(x),n小不行,n大也 不行。这种现象我们称为龙格(Runge)现象 龙格( 龙格 )现象。 这是为什么呢? 下面分析多项式插值余项的估计式
通常, (1) |f(n+1)(x)|的值,常常随n的增加呈指数级增长,比(n+1)!快 得多! (2)
2011-5-8
J. G. Liu
一、 整 体 插 值
2 拉格朗日 拉格朗日(Lagrange)插值 插值 定义: 定义: 设n次多项式lj(x) ( j = 0 ,1 , 2 , L , n ) 满足
1, ( i = j ) l j ( xi ) = 0, (i ≠ j )
( i , j = 0 ,1, 2 , L , n )
x
y
x0
y0
x1
y1
L
L
xn
yn
为了得到 y = f (x ) 的更多信息, 我们首先要确定一个函数 空间 Φ ,在该函数空间中寻找 y = f (x) 的近似函数 p (x ) 。 根据寻找策略的不同,我们有插值问题 最佳平方逼近问题 插值问题和最佳平方逼近问题 插值问题 最佳平方逼近问题。
School of Math. & Phys. North China Elec. P.U.
x − xi +1 x − xi si ( x) = f ( xi ) + f ( xi +1 ), x ∈[ xi , xi +1 ] xi − xi +1 xi +1 − xi 从而得 pn ( x) = {Si ( x), x ∈ [ xi , xi +1 ] — 分段函数
则称 { k (x) | k = 0,1 2,L, n} 在点集{xi | i = 0,1 2,L, n} 上线性无关。 , ϕ , 定义2: 定义 :设函数组 {ϕ ( x) | k k
= 0,1,2,L, n},在[a,b]上连续, 若存在不全为零的数 a0 , a1 ,L, an 使得 a0ϕ 0 ( x ) + a1ϕ1 ( x ) + L + anϕ n ( x ) ≡ 0, a ≤ x ≤ b 则称 {ϕ k ( x ) | k = 0,1, 2,L , n} 在[a,b]上线性相关,
(3) 当n比较小时,说明在区间[a,b]内取的节点少,以至于插 值多项式不足以反映被插函数f(x)的性态!
School of Math. & Phys.
11
North China Elec. P.U.
Numerical Analysis
2011-5-8
J. G. Liu
分段线性插值
1、分段线性插值的定义 、 将[a,b] n等分,在每个小区间[xi , xi+1](i=0,1,…,n-1)上,作线性插值
Numerical Analysis
2011-5-8
J. G. Liu
例1 已知数表 i xi yi
0 2 1.4142
1 2.1 1.44912 2.2 1.ຫໍສະໝຸດ 8323 2.3 1.5166
试用抛物插值求 f (2.05) 的近似值。 解: 选取最靠近2.05的节点x , x , x 为插值节点,
f ( n +1) (ξ ) Rn ( x) = ( x − x0 )( x − x1 )L ( x − xn ), (n + 1)!
ωn+1(x) = (x − x0 )(x − x1)L(x − xn ) 的值,在 x0 , x1 ,L , xn 的均 x 值附近比较小,而在边界 x0、 n 的附近随n的增加而增加。
pn ( x ) =
School of Math. & Phys.
∑y
j=0
n
j
l j ( x ) —— 拉格朗日插值多项式
7 North China Elec. P.U.
Numerical Analysis
2011-5-8
J. G. Liu
求满足插值条件 pn ( xi ) = yi (i = k − 1, k ) 的插值多项式,
Numerical Analysis
2011-5-8
J. G. Liu
代数(多项式 插值问题 代数 多项式)插值问题 多项式
1 代数插值概述 取函数空间为不超过n阶的多项式集合 Φn ,这样的插值问题称 为代数(多项式)插值问题,即求 pn ( x) ∈ Φn ,
pn ( x) = a0 + a1 x + L + an x n
2011-5-8
J. G. Liu
显然以 pn ( x )作为 f ( x )在插值点 插值点
x 处的近似值是有误差的,记
—— 插值余项 插值余项。
Rn ( x) = f ( x) − pn ( x)
定理2 多项式插值余项定理) 定理 (多项式插值余项定理 (n+1) (n) 设 f (x)在 [a, b]上连续,f (x)在 (a, b)内存在,则∀x∈[a,b] , 有 f ( n +1) (ξ )
School of Math. & Phys.
2
North China Elec. P.U.
Numerical Analysis
2011-5-8
J. G. Liu
预备知识 定义1: 函数组 定义 :设函数组{ϕk ( x) | k 线性无关,
= 0,1,2,L, n} , 若向量组 T {(ϕk ( x0 ),ϕk ( x1 ),L,ϕk ( xn )) | k = 0,1,2,L, n}
0 1 2
计算可得
f ( 2.05) ≈ p2 ( 2.05) = 1.4317
#
问题6:编程实现任意节点的拉格朗日插值多项式 的计算,并画出插值节点和插值多项式!
School of Math. & Phys.
9
North China Elec. P.U.
Numerical Analysis
2011-5-8
(2) 在实际计算时插值节点应尽量选在插值点x的附近,以使
ωn+1 ( x)
尽可能小!
(3) 对于不超过 次的多项式 不超过n次的多项式 不超过 次的多项式,其n阶插值多项式就是其本身!
School of Math. & Phys. 6 North China Elec. P.U.
Numerical Analysis
J. G. Liu
二、 分 段 插 值
实例演示: 实例演示: 取等分节点,分别用n=1,2,4,6,8, 10时的多项式插值函数逼 近f(x): 1
f ( x) =
1+ x
2
, x ∈ [−5,5]
作图如下: 问题7:通过调用编写的拉格朗日插值多项式函 数实现本演示实例!
School of Math. & Phys.
1
Numerical Analysis
2011-5-8
J. G. Liu
若要求
p(x) ∈Φ
满足
p( xi ) = yi (i = 0,1,L, n)
xi (i = 0,1,L, n) —— 插值节点;
则相应的问题称为插值问题 插值问题,上述条件称为插值条件 插值条件, 插值问题 插值条件 p(x) —— 插值函数, 若要求
Numerical Analysis
2011-5-8
J. G. Liu
引言
插值与逼近
在科学与工程等实际问题中,其数据模型(由实验或测量所得 到的一批离散数据)容易得到。 那么,能否通过处理这些数据来建立连续模型呢?从而可以对 模型有更全面的认识!下面我们以一维的问题来说明, 假设已经得到 y = f ( x) ( x ∈ [a, b]) 的离散数据模型(xi互异)
( n + 1)
(ξ ) − K ( x )( n + 1) ! = 0
其中 ξ ∈ ( a , b )且依赖于
f ( n + 1 ) (ξ ) ∴ K (x) = ( n + 1) ! 得证! #
x,
注: (1) 若 M = max f
a< x<b
n +1
M ( x ) , 则 Rn ( x ) ≤ ω n +1 ( x ) ; ( n + 1)!
lk +1( x) =
插值多项式:
( x − xk −1)(x − xk ) ( xk +1 − xk −1)(xk +1 − xk )
p2 ( x) = yk −1lk −1 ( x) + yk lk ( x) + yk +1lk +1 ( x)
8 North China Elec. P.U.
School of Math. & Phys.
使得如下插值条件成立 定理1 定理 插值多项式存在并且唯一。 n a 0 + a1 x 0 + L + a n x 0 = y 0 证: 存在性,
—— 插值多项式
pn ( xi ) = yi (i = 0,1,L, n)
即 n+1个插值 条件可以唯一 的确定一个不 超过n阶的插 值多项式!
唯一性, (利用n阶多项式在复数域内至多有n个零点可证!)
不妨设
证:Q R ( x ) 以 x , x , L x 为零点 n 0 1 n
x ≠ x i ,做函数 ϕ ( t ) = f ( t ) − p n ( t ) − K ( x )( t − x 0 ) L ( t − x n )