高考数学模拟试卷复习试题高三模拟卷科数学

合集下载

2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析

2024年高考数学模拟试题与答案解析一、选择题1.设集合A={x|x=2k,k∈Z},B={x|x=3k,k∈Z},则A∩B={()}A.{x|x=6k,k∈Z}B.{x|x=2k,k∈Z}C.{x|x=3k,k∈Z}D.{x|x=k,k∈Z}【答案】B解析:集合A包含所有2的倍数,集合B包含所有3的倍数。

A ∩B表示同时属于A和B的元素,即同时是2和3的倍数的数,也就是6的倍数。

所以A∩B={x|x=6k,k∈Z},故选B。

2.若函数f(x)=x²-4x+c的图像的对称轴是x=2,则c的值为()A.4B.3C.2D.1【答案】A解析:函数f(x)=x²-4x+c的图像的对称轴是x=-b/2a,即x=2。

根据对称轴的公式,得到-(-4)/(21)=2,解得c=4。

故选A。

3.已知等差数列的前n项和为Sn=n(a1+an)/2,若S3=18,S6-S3=24,则a4的值为()A.6B.8C.10D.12【答案】B解析:根据等差数列的前n项和公式,得到S3=3(a1+a3)/2=18,即a1+a3=12。

又因为S6-S3=24,得到a4+a5+a6=24。

由等差数列的性质,a3+a6=a4+a5。

将a3+a6替换为a4+a5,得到3a4+3a5=48,即a4+a5=16。

解方程组a1+a3=12和a4+a5=16,得到a4=8。

故选B。

二、填空题4.若|x-2|≤3,则|x+1|的取值范围是______【答案】-2≤x≤5解析:由|x-2|≤3,得到-3≤x-2≤3,即-1≤x≤5。

再由|x+1|的图像可知,当-3≤x≤5时,|x+1|的取值范围是-2≤x≤5。

5.已知函数f(x)=2x²-3x+1,求f(1/2)的值。

【答案】3/4解析:将x=1/2代入函数f(x),得到f(1/2)=2(1/2)²-3(1/2)+1=2/4-3/2+1=3/4。

三、解答题6.(1)求证:对任意正整数n,都有n²+2n+1≥n+2。

高三数学模拟试题及答案

高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数f(x) = 2x^2 - 4x + 3,求f(2)的值。

A. 1B. 3C. 5D. 7答案:C2. 求下列数列的通项公式:数列:1, 1/2, 1/3, 1/4, ...A. a_n = nB. a_n = 1/nC. a_n = n^2D. a_n = 1/(n+1)答案:B3. 已知圆x^2 + y^2 = 9,点P(1, 2),求点P到圆心的距离。

A. 2B. 3C. 4D. 5答案:C4. 已知向量a = (3, -4),向量b = (-2, 3),求向量a与向量b的夹角θ。

A. 30°B. 45°C. 60°D. 90°答案:B5. 已知函数y = x^3 - 3x^2 + 4x,求导数y'。

A. 3x^2 - 6x + 4B. 3x^2 - 6x + 5C. 3x^2 - 6x + 3D. 3x^2 - 6x + 2答案:A6. 已知等差数列的第5项为15,第8项为25,求公差d。

A. 2B. 3C. 4D. 5答案:B7. 已知三角形ABC的三边长分别为a = 3,b = 4,c = 5,求三角形ABC的面积。

A. 6B. 9C. 12D. 15答案:A8. 已知函数f(x) = sin(x) + cos(x),求f(π/4)的值。

A. √2B. √3C. 2D. 1答案:A9. 已知复数z = 1 + i,求z的共轭复数。

A. 1 - iB. 1 + iC. -1 + iD. -1 - i答案:A10. 已知函数y = x^2 - 6x + 9,求函数的最小值。

A. 0B. 3C. 6D. 9答案:A二、填空题(本题共5小题,每小题4分,共20分。

)11. 已知函数f(x) = x^3 - 3x + 1,求f''(x)的值。

数学高考模拟试题及答案

数学高考模拟试题及答案

数学高考模拟试题及答案一、选择题(每题4分,共40分)1. 下列函数中,为奇函数的是:A. y = x^2B. y = |x|C. y = sin(x)D. y = cos(x)2. 若f(x) = 2x - 3,求f(5)的值:A. 1B. 4C. 7D. 103. 已知等差数列的前三项为2, 5, 8,求第10项的值:A. 21B. 22C. 23D. 244. 圆的半径为5,求其面积:A. 25πB. 50πC. 75πD. 100π5. 直线y = 2x + 3与x轴的交点坐标是:A. (-1, 0)B. (0, 3)C. (3, 0)D. (1, 0)6. 函数y = x^3 - 6x^2 + 9x + 2的极值点是:A. x = 1B. x = 2C. x = 3D. x = 47. 已知集合A = {1, 2, 3},B = {2, 3, 4},求A∪B:A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 4}8. 抛物线y^2 = 4x的焦点坐标是:A. (1, 0)B. (2, 0)C. (0, 2)D. (0, -2)9. 已知三角形ABC,∠A = 60°,AB = 2,AC = 3,求BC的长度:A. 1B. 2√3C. 3D. 410. 根据题目所给的二项式定理,求(a + b)^5展开式的通项公式:A. T_n = C_5^n a^n b^(5-n)B. T_n = C_5^n a^(5-n) b^nC. T_n = C_5^n a^(4-n) b^nD. T_n = C_5^n a^n b^(4-n)二、填空题(每题4分,共20分)11. 已知等比数列的首项为2,公比为3,求第5项的值:________。

12. 若sin(θ) = 0.6,求cos(θ)的值:________。

13. 已知函数f(x) = x^2 - 4x + 3,求其对称轴:________。

备战2024高考数学全真模拟卷(新高考专用)(解析版)

备战2024高考数学全真模拟卷(新高考专用)(解析版)

备战2024高考数学全真模拟卷(新高考专用)第一模拟注意事项:本试卷满分150分,考试时间120分钟.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、单项选择题(本大题共8小题,每小题5分,共40分)1.(2022·海南·嘉积中学模拟预测)已知全集U =R ,集合{}2,3,4A =,集合{}0,2,4,5B =,则图中的阴影部分表示的集合为()A.{}2,4B.{}0C.{}5D.{}0,5【答案】D【分析】根据给定条件,利用韦恩图表达的集合运算直接计算作答.【详解】依题意,图中的阴影部分表示的集合是()U A B ð,而全集U =R ,{}2,3,4A =,{}0,2,4,5B =,所以(){0,5}U A B ⋂=ð.故选:D2.(2022·天津市第四中学模拟预测)设x ∈R ,则“502x x->-”是“14x -<”的()A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件【答案】A【分析】先求出两个不等式的解集,然后根据充分条件和必要条件的定义判断即可【详解】由502x x->-,得(5)(2)0x x -->,解得25x <<,由14x -<,得414x -<-<,得35x -<<,因为当25x <<时,35x -<<一定成立,而当35x -<<时,25x <<不一定成立,所以“502x x->-”是“14x -<”的充分不必要条件,故选:A3.(2022·海南海口·模拟预测)已知圆柱的侧面积等于上、下底面积之和,圆柱的体积与表面积的数值相同,则该圆柱的高为()A .8B .4C .2D .1【答案】B【分析】根据已知条件及圆柱的侧面积、表面积和体积公式即可求解.【详解】设底面圆的半径为r ,高为h ,则由题意可知,2222π2ππ2π2πrh r r h r rh ⎧=⎨=+⎩,解得4h r ==.所以该圆柱的高为4.故选:B.4.(2022·河北秦皇岛·二模)设ln 2a =,25b =,0.22c =,则()A .a b c >>B .b c a>>C .c b a>>D .c a b>>【答案】B【分析】利用指数函数和对数函数的单调性求解.【详解】因为()ln20,1a =∈,22log 5log 42b =>=,()0.221,2c =∈,所以b c a >>.故选:B5.(2022·山东青岛·一模)我国古代数学著作《九章算术》中有如下问题:“今有人持金出五关,前关二税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤.问本持金几何?”其意思为“今有人持金出五关,第1关收税金为持金的12,第2关收税金为剩余金的13,第3关收税金为剩余金的14,第4关收税金为剩余金的15,第5关收税金为剩余金的16,5关所收税金之和恰好重1斤.问原来持金多少?”.记这个人原来持金为a 斤,设()101,115,01x x f x x x +>⎧=⎨-<≤⎩,则()f a =()A .5-B .7C .13D .26【答案】C【分析】根据题意求得每次收的税金,结合题意得到111111223344556a a a a a ++++=⨯⨯⨯⨯,求得a 的值,代入函数的解析式,即可求解.【详解】由题意知:这个人原来持金为a 斤,第1关收税金为:12a 斤;第2关收税金为111(1)3223a a ⋅-⋅=⋅⨯斤;第3关收税金为1111(1)42634a a ⋅--⋅=⋅⨯斤,以此类推可得的,第4关收税金为145a ⋅⨯斤,第5关收税金为156a ⋅⨯斤,所以111111223344556a a a a a ++++=⨯⨯⨯⨯,即1111111111(1)(112233445566a a -+-+-+-+-⋅=-⋅=,解得65a =,又由()101,115,01x x f x x x +>⎧=⎨-<≤⎩,所以66()1011355f =⨯+=.故选:C.6.(2022·浙江·高三专题练习)已知在OAB 中,2OA OB ==,AB =动点P 位于线段AB 上,当·PA PO取得最小值时,向量PA 与PO的夹角的余弦值为()A .BC .7-D .7【答案】C【解析】由已知得6OAB π∠=,再由向量数量积的定义表示PA PO ⋅,根据二次函数的性质求得其最值,再由向量夹角公式可得选项.【详解】因为在OAB 中,2OA OB ==,AB =6OAB π∠=,所以PA PO PA ⋅=⋅()225+|cos |6PA AO PA PA AO PA PA π=+⋅==23344PA ⎛-≥- ⎝⎭,当且仅当2PA = 时取等号,因此在OAP △中,PO = 所以向量PA 与PO73444722+-=-,故选:C.7.(2020·全国高三专题练习)已知点,,A B C 在半径为2的球面上,满足1AB AC ==,BC =,若S是球面上任意一点,则三棱锥S ABC -体积的最大值为()A .32312+B.36+C.212+D.312+【答案】A 【详解】设ABC 外接圆圆心为O ',三棱锥S ABC -外接球的球心为O ,1AB AC ==,设D 为BC 中点,连AD ,如图,则AD BC ⊥,且O '在AD 上,221()22BC AD AB =-=,设ABC 外接圆半径为r ,222231()()()242BC r AD r r =+-=+-,解得1r =,22||23OO r '∴=-=要使S ABC -体积的最大,需S 到平面ABC 距离最大,即S 为O O '的延长线与球面的交点,最大值为32+,所以三棱锥S ABC -体积的最大值为111132332)32)3332212ABC S ++=⨯+⨯⨯=.故选:A 8.(2022·山东·夏津第一中学高三阶段练习)已知不等式()3e 1xkx k x +<+恰有2个整数解,求实数k 的取值范围()A .32233e 5e k ≤<B .2315e 2ek <≤C .32233e 5e k <≤D .2315e 2ek ≤<【答案】D【分析】原不等式()3e 1xkx k x +<+等价于,()13e x x k x ++<,设()()3g x k x =+,()1e xx f x +=,然后转化为函数的交点结合图象可求.【详解】原不等式()3e 1xkx k x +<+等价于,()13e xx k x ++<,设()()3g x k x =+,()1e x xf x +=,所以()0e xx f x -'==,得0x =.当0x <时,()0f x '>,所以在(),0∞-上单调递增,当0x >时,()0f x '<,所以在()0,∞+上单调递减,又()10f -=,且0x >时,()0f x >,因此()()3g x k x =+与()1e xx f x +=的图象如下,当0k ≤时,显然不满足条件,当0k >时,只需要满足()()()()1122f g f g ⎧>⎪⎨≤⎪⎩,即224e 35e k k⎧>⎪⎪⎨⎪≤⎪⎩,解得2315e 2e k ≤<.故选:D .二.多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.(2020·广东·高三专题练习)已知不共线的两个单位向量,a b ,若向量2a kb - 与2a kb +的夹角为锐角,则符合上述条件的k 值可以是()A .1-B .1C .2D .3【答案】AB【分析】向量夹角为锐角时,数量积应大于0,从而求得参数.【详解】因为向量2a kb - 与2a kb +的夹角为锐角,所以()()222222440a kb a kb a k b k -⋅+=-=-> 且22a kb a kb -≠+ ,所以22k -<<且0k ≠,即20k -<<或02k <<,观察各选项可知符合条件的k 值可以是1-,1.故选:AB .10.(2022·江苏·南京市第一中学三模)在ABC 中,22cos cos 1A B +=,则下列说法正确的是()A .sin cos A B=B .2A B π+=C .sin sin A B 的最大值为12D .tan tan 1A B =±【答案】ACD【分析】根据已知条件,结合22cos sin 1A A +=得sin cos A B =,22111tan 1tan 1A B +=++,进而得tan tan 1A B =±,可判断AD ;进而得()cos 0A B -=或()cos 0A B +=,故2A B π-=或2A B π+=,再分别讨论sin sin A B 的最大值问题即可判断BC.【详解】解:因为22cos cos 1A B +=,22cos sin 1A A +=,所以22sin cos A B =,222222cos cos 1cos sin cos sin A BA AB B+=++所以sin cos A B =,22111tan 1tan 1A B +=++,故A 选项正确;所以,222222tan 1tan t tan tan an 1tan 1A B B A A B =+++⋅+++,即22tan t 1an B A ⋅=;所以tan tan 1A B =±,故D 选项正确;所以sin sin cos cos A B A B =±,即()cos 0A B -=或()cos 0A B +=,所以2A B π-=或2A B π+=,故B 选项错误;当2A B π-=时,0,2B π⎛⎫∈ ⎪⎝⎭,11sin sin sin sin sin cos sin 2222A B B B B B B π⎛⎫=+==≤ ⎪⎝⎭,当且仅当4B π=时,此时3244A πππ=+=,不满足内角和定理;当2A B π+=时,0,2B π⎛⎫∈ ⎪⎝⎭,11sin sin sin sin sin cos sin 2222A B B B B B B π⎛⎫=-==≤ ⎪⎝⎭,当且仅当4B π=时,此时244A πππ=-=,满足题意.综上,sin sin A B 的最大值为12,故C 选项正确.故选:ACD11.(2022辽宁省六校高三上学期期初联考)意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{}n a 称为“斐波那契数列”,记n S 为数列{}n a 的前n 项和,则下列结论正确的是()A.68a = B.954S =C.135********a a a a a ++++= D.22212201920202019a a a a a +++= 【答案】ACD【分析】由题意可得数列{}n a 满足递推关系12211,1,(3)n n n a a a a a n --===+≥,依次判断四个选项,即可得正确答案.【详解】对于A ,写出数列的前6项为1,1,2,3,5,8,故A 正确;对于B ,911235813+21+3488S =++++++=,故B 错误;对于C ,由12a a =,342a a a =-,564a a a =-,……,201920202018a a a =-,可得:13520192426486202020182020a a a a a a a a a a a a a a +++⋅⋅⋅+=+-+-+-++-=L ,故C 正确.对于D ,斐波那契数列总有21n n n a a a ++=+,则2121a a a =,()222312321a a a a a a a a =-=-,()233423423a a a a a a a a =-=-,……,()220182018201920172018201920172018a a a a a a a a =-=-,220192019202020192018aa a a a =-,可得22212201920202019201920202019a a a a a a a a+++==L ,故D 正确;故选:ACD.12.(多选)(2022·广东潮州·二模)已如斜率为k 的直线l 经过抛物线24y x =的焦点且与此抛物线交于()11,A x y ,()22,B x y 两点,8AB <,直线l 与抛物线24y x =-交于M ,N 两点,且M ,N 两点在y 轴的两侧,现有下列四个命题,其中为真命题的是().A .12y y 为定值B .12y y +为定值C .k 的取值范围为()(),11,4-∞-⋃D .存在实数k使得MN =【答案】ACD【分析】设l 的方程为()()10y k x k =-≠,联立()241y x y k x ⎧=⎪⎨=-⎪⎩,整理得2440ky y k --=,根据根与系数的关系可判断A 、B 选项.由弦长公式122448AB x x p k =++=+<,得21k >,再联立()214y k x y x ⎧=-⎨=-⎩,M ,N 两点在y 轴的两侧,求得4k <,由此判断C .设()33,M x y ,()44,N x y ,由弦长公式得MN 241613k k -+=,求解即可判断D 选项.【详解】解:由题意可设l 的方程为()()10y k x k =-≠,联立()241y x y k x ⎧=⎪⎨=-⎪⎩,得2440ky y k --=,则1244k y y k -==-为定值,故A 正确.又124y y k+=,故B 不正确.12122422y y x x k k ++=+=,则122448AB x x p k=++=+<,即21k >,联立()214y k x y x ⎧=-⎨=-⎩,得240x kx k -+-=,∵M ,N 两点在y 轴的两侧,∴()22444160k k k k ∆=--=-+>,且40k -<,∴4k <.由21k >及4k <可得1k <-或14k <<,故k 的取值范围为()(),11,4-∞-⋃,故C 正确.设()33,M x y ,()44,N x y ,则34x x k +=,344x x k =-,则MN =假设存在实数k ,则由MN =得241613k k -+=,解得1k =或3,故存在3k =满足题意.D 正确.故选:ACD .三、填空题(本大题共4小题,每小题5分,共20分)13.(2020·山东潍坊市·高一期中)已知偶函数()f x 在[)0,+∞上单调递增,且1是它的一个零点,则不等式()20f x -<的解集为______.【答案】{}13x x <<【详解】因为1是函数()f x 的一个零点,所以()10f =,因为函数()f x 是偶函数,所以()()22f x fx -=-,所以由()20f x -<,可得()2(1)f x f -<,又因为函数()f x 在[)0,+∞上单调递增,所以有21x -<,解得13x <<.故答案为:{}13x x <<14.(2021辽宁省锦州市第二高级中学高三检测)学校要从5名男教师和2名女教师中随机选出3人去支教,设抽取的人中女教师的人数为X ,求________.15.(2020·江西景德镇一中高二期中)已知双曲线2222:1(00)x y C a b a b-=>>,的左、右焦点分别为12F F ,,设过2F 的直线l 与C 的右支相交于A B ,两点,且112AF F F =,222BF AF =,则双曲线C 的离心率是______.【答案】53【详解】如图:设2AF 的中点为M ,连接1F M ,1BF ,因为1122AF F F c ==,M 为2AF 的中点,所以12F M AF ⊥,由122AF F A a =-,得222F A c a =-,所以2212F A M F c a ==-,在12MF F △中,22112cos 2MF c a BF F F F c -∠==,22244BF AF c a ==-,所以12242BF a BF c a =+=-,在12BF F △中,()()()22222212212112241642cos 2224F F BF BF c c a c a BF F F F BF c c a +-+---∠==⨯⨯⨯-()224121616c a ac c c a +-=-,因为2121BF F MF F π∠+∠=,2121cos cos 0BF F MF F ∠+∠=,所以()22412160216c a c a ac c c c a -+-+=-,整理可得:221616120a ac c -+=,即225830a ac c -+=,所以225830a ac c -+=,即()()530a c a c --=,所以53a c =或a c =(舍),所以离心率53c e a ==,故答案为:5316.(2020·山东高二期末)在棱长为6的正方体空盒内,有四个半径为r 的小球在盒底四角,分别与正方体底面处交于某一顶点的三个面相切,另有一个半径为R 的大球放在四个小球之上,与四个小球相切,并与正方体盒盖相切,无论怎样翻转盒子,五球相切不松动,则小球半径r 的最大值为________;大球半径R 的最小值为________.【答案】32158【详解】当四个半径为r 的小球相切时,小球的半径最大,大球的半径最小,如图所示:四个小球的球心和大球的球心构成一个正四棱锥P ABCD -,所以4r =6,解得32r =,其中3329,23,6222PA R AB r OA OP R r R =+====--=-,在Rt PAO 中,222PA OA OP =+,即22239222R R ⎛⎫⎛⎫⎛⎫+=+- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,解得158R =,故答案为:(1)32;(2)158.四、解答题(本大题共6小题,共70分)17.(2020·山东师范大学附中高三学业考试)在①121n n S S +=+,②214a =,③112n n S a +=-这三个条件中选择两个,补充在下面问题中,并给出解答.已知数列{}n a 的前n 项和为n S ,满足__________,__________;又知正项等差数列{}nb 满足12b =,且1b ,21b -,3b 成等比数列.(1)求{}n a 和{}n b 的通项公式;(2)若n n n c a b =,求数列{}n c 的前n 项和n T .【答案】(1)答案见解析;(2)5352n nn T +=-.【详解】(1)选择①②:当2n ≥时,由121n n S S +=+得121n n S S -=+,两式相减,得12n n a a +=,即()1122n n a n a +=≥,由①得2121S S =+,即()12121a a a +=+,∴121112122a a =-=-=,得112a =.∴2112a a =,∴{}n a 为112a =,公比为12的等比数列,∴1111222n nn a -⎛⎫⎛⎫=⨯= ⎪ ⎪⎝⎭⎝⎭.选择②③:当2n ≥时,由③112n n S a +=-,得112n n S a -=-,两式相减,得122n n n a a a +=-,∴()1122n n a n a +=≥,又1212S a =-,得112a =,∴2112a a =,∴{}n a 为112a =,公比为12的等比数列,∴111111222n nn n a a q --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭.选择①③,由于121n n S S +=+和112n n S a +=-等价,故不能选择;设等差数列{}n b 的公差为d ,0d ≥,且1b ,21b -,3b 成等比数列.()21321b b b =-,即()()22221d d +=+,解得3d =,1d =-(舍去),∴()21331n b n n =+-=-.(2)312n n n n n c a b -==,231132131222n nn T ⨯-⨯--=+++ ,2311311321343122222n n n n n T +⨯-⨯---=++++ ,∴21113331533112222222n n n n n n n T ++--=+++-=-- ,∴5352n nn T +=-.18.(2020·山东省淄博实验中学高三月考)已知向量,12x m ⎫=⎪⎭ ,2cos ,cos 22x x n ⎛⎫= ⎪⎝⎭ ,函数1()2f x m n =⋅- .(1)若,36x ππ⎛⎫∈- ⎪⎝⎭,求()f x 的取值范围;(2)在ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,若()1f B =,5a =,b =ABC 的面积.【答案】(1)1(,22-;(2)2.【详解】(1)向量2,1),(cos ,cos )222x x x m n == ,∴231cos cos (1cos )22222x x x m n x x =+=++ .由此可得函数11()cos sin()226f x m n x x x π=-=+=+ ,又 (,)36x ππ∈-,得(,)663x πππ+∈-1sin()(62x π∴+∈-,即()f x 的取值范围是13(,22-;(2)()sin()6f x x π=+,f ∴(B )sin()16B π=+=,又(66B ππ+∈ ,76π,62B ππ∴+=,可得3B π=.5,a b ==,∴根据正弦定理sin sin a b A B =,可得5sin sin 13sin 2a B A b π⨯===,由a b <得A B <,所以6A π=,因此()2C A B ππ=-+=,可得ABC 是以C 为直角顶点的直角三角形,ABC ∴的面积11522S ab ==⨯⨯.19.(2020·山东宁阳县一中高二期中)如图,在四棱锥P ABCD -中,平面PCD ⊥平面ABCD ,且PCD 是边长为2的等边三角形,四边形ABCD是矩形,BC =M 为BC 的中点.(1)证明:AM PM ⊥;(2)求二面角P AM D --的大小;(3)求点D 到平面APM 的距离.【答案】(1)证明见解析;(2)45 ;(3)263.【详解】(1)取CD 的中点E ,连接PE 、EM 、EA .PCD 为正三角形,PE CD ∴⊥, 平面PCD ⊥平面ABCD ,PE ∴⊥平面ABCD AM PE∴⊥ 四边形ABCD 是矩形ADE ∴V 、ECM 、ABM 均为直角三角形由勾股定理可求得:EM =,AM =,3AE =222EM AM AE ∴+=AM EM∴⊥又PE EM E AM =∴⊥ 平面PEMAM PM∴⊥(2)由(1)可知EM AM ⊥,PM AM⊥PME ∴∠是二面角P AM D --的平面角tan 1PE PME EM ∴∠===45PME ∴∠=︒∴二面角P AM D --为45︒(3)设D 点到平面PAM 的距离为d ,连接DM ,则P ADM D PAM V V --=,∴11··33ADM PAM S PE S d =而1·2ADM S AD CD ==在Rt PEM 中,由勾股定理可求得PM =1·32PAM S AM PM ∴== ,所以:11333d ⨯=⨯⨯d ∴=即点D 到平面PAM 的距离为3.20.(2020·山东师范大学附中高三学业考试)冬天的北方室外温度极低,若轻薄保暖的石墨烯发热膜能用在衣服上,可爱的医务工作者行动会更方便.石墨烯发热膜的制作:从石墨中分离出石墨烯,制成石墨烯发热膜.从石墨分离石墨烯的一种方法是化学气相沉积法,使石墨升华后附着在材料上再结晶.现有A材料、B材料供选择,研究人员对附着在A、B材料上再结晶各做了50次试验,得到如下等高条形图.(1)由上面等高条形图,填写22⨯列联表,判断是否有99%的把握认为试验成功与材料有关?(2)研究人员得到石墨烯后,再制作石墨烯发热膜有三个环节:①透明基底及UV胶层;②石墨烯层;③表面封装层.每个环节生产合格的概率均为23,且各生产环节相互独立.已知生产1吨的石墨烯发热膜的固定成本为1万元,若生产不合格还需进行修复,且生产1吨石塑烯发热膜的每个环节修复费用均为1000元.如何定价,才能实现每生产1吨石墨烯发热膜获利可达1万元以上的目标?附:参考公式:()()()()()22n ad bcKa b c d a c b d-=++++,其中n a b c d=+++.()2P K k≥0.1000.0500.0100.0050.001 k 2.706 3.841 6.6357.87910.828【答案】(1)列联表见解析;有99%的把握认为试验成功与材料有关;(2)2.1万元/吨.【详解】(1)根据所给等高条形图,得到22⨯的列联表:A 材料B 材料合计成功453075不成功52025合计50501002K 的观测值()210045205301250507525K ⨯⨯-⨯==⨯⨯⨯,由于12 6.635>,故有99%的把握认为试验成功与材料有关.(2)生产1吨的石墨烯发热膜,所需的修复费用为X 万元.易知X 可得0,0.1,0.2,0.3.()3280327P X ⎛⎫=== ⎪⎝⎭,()21321120.13327P X C ⎛⎫==⨯= ⎪⎝⎭,()2231260.23327P X C ⎛⎫==⨯= ⎪⎝⎭,()2110.3327P X ⎛⎫=== ⎪⎝⎭,则X的分布列为:(分布列也可以不列)X 00.10.20.3P 8271227627127修复费用的期望:()8126100.10.20.30.127272727E X =⨯+⨯+⨯+⨯=.所以石墨烯发热膜的定价至少为0.111 2.1++=万元/吨,才能实现预期的利润目标.21.(2020·五莲县教学研究室高二期中)已知抛物线C :22(0)y px p =>的焦点F 与椭圆22143x y +=的右焦点重合,点M 是抛物线C 的准线上任意一点,直线MA ,MB 分别与抛物线C 相切于点A ,B .(1)求抛物线C 的标准方程;(2)设直线MA ,MB 的斜率分别为1k ,2k ,证明:12k k ⋅为定值;(3)求AB 的最小值.【答案】(1)24y x =;(2)证明见解析;(3)4.【详解】(1)由椭圆方程得,椭圆的右焦点为(1,0)∴抛物线的焦点为(1,0)F ,2p ∴=,所以抛物线的标准方程:24y x =.(2)抛物线C 的准线方程为1x =-.设(1,)M t -,设过点(1,)M t -的直线方程为(1)y k x t =++,与抛物线方程24y x =联立,消去x 得:24440ky y k t -++=.其判别式△1616()k k t =-+,令△0=,得:210k kt +-=.由韦达定理知12k k t +=-,121k k =-,故121k k =-(定值).(3)设1(A x ,1)y ,2(B x ,2)y ,由210k kt +-=,得21k t k -=,故2222214244444440k ky y k t ky y k ky y k y k k k -⎛⎫-++=-++⨯=-+=-= ⎪⎝⎭,所以2y k =,代入抛物线方程得21x k =,所以211(A k ,12k ,221(B k ,22k,||AB=因为121k k =-,12k k t +=-,所以12|||AB k k =-==244t =+,当且仅当0t =时取等号.当且仅时取等号.故||AB 的最小值为4.22.(2020·山东高三期中)设函数()()22ln f x x a x a x =-++,()2ln 4g x a x x b =-+,其中0a >,b R ∈.(1)讨论函数()f x 的单调性;(2)若2a >且方程()()f x g x =在()1,+∞,上有两个不相等的实数根1x ,2x ,求证1202x x f +⎛⎫'> ⎪⎝⎭.【详解】(1)()()()()()221222220a x x x a x a a x x a x x x xf ⎛⎫-- ⎪-++⎝⎭=-++'>==1°若12a <,即02a <<时,令()0f x '>,得02a x <<或1x >,令()0f x '<,得12a x <<.()f x 在0,2a ⎛⎫ ⎪⎝⎭和()1,+∞上单调递增,在,12a ⎛⎫ ⎪⎝⎭上单调递减2°若12a =,即2a =时,()()2210x f x x-'=恒成立,()f x 在()0,∞+上单调递增3°若12a >,即2a >时,令()0f x '>得01x <<或2a x >,令()0f x '<得12a x <<()f x 在()0,1和,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在1,2a ⎛⎫ ⎪⎝⎭上单调递减综上:02a <<时,()f x 在,02a ⎛⎫⎪⎝⎭上单调递减,0,2a ⎛⎫ ⎪⎝⎭和()1,+∞上单调递增2a =时,()f x 在()0,∞+上单增2a >时,()f x 在1,2a ⎛⎫ ⎪⎝⎭上单减,在()0,1和,2a ⎛⎫+∞ ⎪⎝⎭上单增(2)方程()()f x g x =即()22ln x a x a x b ---=在()1,+∞上有两个不等实根1x 和2x 不妨设121x x <<则()21112ln x a x a x b ---=①()22222ln x a x a x b ---=②①-②得221122112222ln ln +--=+--x x x x a x x x x 因为2a >,由(1)知,()f x 在1,2a ⎛⎫ ⎪⎝⎭上单减,,2a ⎛⎫+∞ ⎪⎝⎭上单增即1,2a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,,2a x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>故若证1202x x f +⎛⎫'> ⎪⎝⎭,只需证1222+>x x a ,即证12a x x <+只需证22112212112222ln ln x x x x x x x x x x +--<++--因为12x x <,所以1122ln ln x x x x +<+即需证:()()22112212112222ln ln x x x x x x x x x x +-->++--整理得:()1212122ln ln x x x x x x --<+即证12112221ln 1x x x x x x ⎛⎫- ⎪⎝⎭<+令()120,1x t x =∈,()()21ln 1t h t t t -=-+()()()22101t h t t t -'=>+显然()h t 在()0,1上单增.所以()()10h t h <=故1202x x f +⎛⎫'> ⎪⎝⎭得证。

高三数学模拟试题及答案

高三数学模拟试题及答案

高三数学模拟试题及答案一、选择题1. 已知集合A={x | x² - 1 = 0},则A的元素个数为()A. 1B. 2C. 3D. 4答案:B2. 若a > 0,b < 0,则a与b的和的符号为()A. 正B. 负C. 零D. 无法确定答案:D3. 设函数f(x) = √(x²-2x+1),则f(3)的值为()A. 0B. 1C. 2D. 3答案:B4. 在△ABC中,角A = 60°,边AC = 5cm,边BC = 4cm,则边AB 的长度为()A. 3.5cmB. 4cmC. 4.5cmD. 5cm答案:C5. 某商店对现金支付的商品提供10%的折扣,小明购买了一件原价500元的商品,他需要支付多少元?()A. 45元B. 50元C. 450元D. 500元答案:C二、计算题1. 已知函数f(x) = |x - 3| + 2,求f(5)的值。

解:当x = 5时,f(x) = |5 - 3| + 2 = 4答案:42. 解方程:3x + 5 = 2(x - 1) + 7解:展开得:3x + 5 = 2x - 2 + 7移项得:3x + 5 = 2x + 5化简得:x = 0答案:03. 已知函数f(x) = x² - 4x + 5,求f(3)的值。

解:当x = 3时,f(x) = 3² - 4 × 3 + 5 = 9 - 12 + 5 = 2答案:24. 某商品在经过两次10%的折扣后,售价为270元,求其原价。

解:设原价为x元,则经过第一次折扣后为0.9x元,经过第二次折扣后为0.9 × 0.9x元。

根据题意,0.9 × 0.9x = 270,解方程得:x = 300答案:300三、应用题1. 一辆自行车上午以每小时20公里的速度向南骑行,下午以每小时15公里的速度向北骑行。

如果来回共耗时8小时,求行程的总长度。

高三数学试卷模拟十五套

高三数学试卷模拟十五套

一、选择题(本大题共15小题,每小题5分,共75分)1. 若函数f(x) = ax^2 + bx + c在x=1时取得极值,则a+b+c的值为()A. 0B. 1C. -1D. 无法确定2. 已知等差数列{an}的首项为2,公差为3,则第10项与第15项的和为()A. 50B. 60C. 70D. 803. 在△ABC中,角A、B、C的对边分别为a、b、c,若a=3,b=4,c=5,则角C的余弦值为()A. 1/2B. 1/3C. 2/3D. 3/44. 下列函数中,在定义域内单调递增的是()A. y = x^2B. y = 2^xC. y = log2xD. y = x^35. 已知等比数列{an}的首项为2,公比为1/2,则第n项an的值为()A. 2^nB. 2^(n-1)C. 2^(n+1)D. 2^(1-n)6. 若复数z满足|z-1|=|z+1|,则复数z的实部为()A. 0B. 1C. -1D. 无法确定7. 下列不等式中,恒成立的是()A. x^2 + 1 > 0B. x^2 - 1 > 0C. x^2 + 1 < 0D. x^2 - 1 < 08. 若函数f(x) = x^3 - 3x在区间[0,3]上的最大值为2,则f(x)在区间[-3,0]上的最小值为()A. -2B. 0C. 2D. 无法确定9. 在直角坐标系中,点P(2,3)关于直线y=x的对称点为()A. (2,3)B. (3,2)C. (3,-2)D. (-2,3)10. 若复数z满足z^2 + z + 1 = 0,则复数z的虚部为()A. 1B. -1C. iD. -i11. 下列数列中,不是等比数列的是()A. 1, 2, 4, 8, ...B. 1, 3, 9, 27, ...C. 1, -2, 4, -8, ...D. 1, 3, 5, 7, ...12. 若函数f(x) = ax^2 + bx + c在x=2时取得最小值,则a、b、c之间的关系为()A. a > 0, b > 0, c > 0B. a > 0, b < 0, c > 0C. a < 0, b > 0, c < 0D.a < 0,b < 0,c < 013. 已知函数f(x) = x^2 - 4x + 3,则f(x)的图像的对称轴为()A. x = 1B. x = 2C. x = 3D. x = 414. 若等差数列{an}的首项为3,公差为2,则第10项与第15项的差的绝对值为()A. 18B. 20C. 22D. 2415. 下列数列中,不是等差数列的是()A. 1, 4, 7, 10, ...B. 2, 5, 8, 11, ...C. 3, 6, 9, 12, ...D. 4, 7, 10, 13, ...二、填空题(本大题共15小题,每小题5分,共75分)16. 已知函数f(x) = 2x - 3,则f(-1)的值为______。

(完整版)高三数学模拟试题及答案

(完整版)高三数学模拟试题及答案

高三数学模拟试卷(满分150 分)一、选择题(每题 5 分,共 40 分)1.已知全集 U={1,2,3,4,5} ,会集 M ={1,2,3} , N = {3,4,5} ,则 M ∩ ( e U N)=()A. {1,2}B.{ 4,5}C.{ 3}D.{ 1,2,3,4,5} 2. 复数 z=i 2(1+i) 的虚部为()A. 1B. iC.- 1D. -i3.正项数列 { a } 成等比, a +a =3, a +a =12,则 a +a 的值是()n1 23445A. - 24B. 21C.24D. 484.一组合体三视图如右,正视图中正方形 边长为 2,俯视图为正三角形及内切圆, 则该组合体体积为()A.2 34B.3C.2 3 4 54 3 4 3+D.2735.双曲线以一正方形两极点为焦点,另两极点在双曲线上,则其离心率为( )A. 2 2B.2 +1C.2D. 1uuur uuur6. 在四边形 ABCD 中,“ AB =2 DC ”是“四边形ABCD 为梯形”的()A. 充足不用要条件B. 必要不充足条件C.充要条件D. 既不充足也不用要条件7.设 P 在 [0,5] 上随机地取值,求方程x 2+px+1=0 有实根的概率为( )A. 0.2B. 0.4C.0.5D.0.6y8. 已知函数 f(x)=Asin( ωx +φ)(x ∈ R, A>0, ω>0, |φ|<)5f(x)的解析式是(2的图象(部分)以下列图,则)A .f(x)=5sin( x+)B. f(x)=5sin(6 x-)O256 66xC. f(x)=5sin(x+)D. f(x)=5sin(3x- )366- 5二、填空题:(每题 5 分,共30 分)9. 直线 y=kx+1 与 A ( 1,0), B ( 1,1)对应线段有公共点,则 k 的取值范围是 _______. 10.记 (2x1)n 的张开式中第 m 项的系数为 b m ,若 b 32b 4 ,则 n =__________.x311 . 设 函 数 f ( x) xx 1x 1、 x 2、 x 3、 x 41 2的 四 个 零 点 分 别 为 , 则f ( x 1 +x 2 +x 3 +x 4 );12、设向量 a(1,2), b (2,3) ,若向量a b 与向量 c (4, 7)共线,则x 111. lim______ .x 1x 23x 414. 对任意实数 x 、 y ,定义运算 x* y=ax+by+cxy ,其中a、 b、c 常数,等号右的运算是平时意的加、乘运算 .已知 2*1=3 , 2*3=4 ,且有一个非零数m,使得任意数x,都有 x* m=2x, m=.三、解答:r r15.(本 10分)已知向量 a =(sin(+x), 3 cosx),b =(sin x,cosx),f(x)=⑴求 f( x)的最小正周期和增区;2⑵若是三角形 ABC 中,足 f(A)=3,求角 A 的.216.(本 10 分)如:直三棱柱(棱⊥底面)ABC — A 1B1C1中,∠ ACB =90°, AA 1=AC=1 , BC= 2,CD ⊥ AB, 垂足 D.C1⑴求: BC∥平面 AB 1C1;A1⑵求点 B 1到面 A 1CD 的距离 .PCA D r r a ·b .B 1B17.(本 10 分)旅游公司 4 个旅游供应 5 条旅游路,每个旅游任其中一条.( 1)求 4 个旅游互不一样样的路共有多少种方法;(2)求恰有 2 条路被中的概率 ;(3)求甲路旅游数的数学希望.18.(本 10 分)数列 { a n} 足 a1+2a2 +22a3+⋯+2n-1a n=4 n.⑴求通a n;⑵求数列 { a n} 的前 n 和S n.19.(本 12 分)已知函数f(x)=alnx+bx,且 f(1)= - 1, f′(1)=0 ,⑴求 f(x);⑵求 f(x)的最大;⑶若 x>0,y>0, 明: ln x+lny≤xy x y 3.220.(本 14 分) F 1, F 2 分 C :x2y 21(a b 0) 的左、右两个焦点,若 Ca 2b 2上的点 A(1,3124.)到 F , F 两点的距离之和等于2⑴写出 C 的方程和焦点坐 ;⑵ 点 P ( 1,1)的直 与 交于两点 D 、 E ,若 DP=PE ,求直 DE 的方程 ;4⑶ 点 Q ( 1,0)的直 与 交于两点 M 、N ,若△ OMN 面 获取最大,求直 MN 的方程 .21. (本 14 分) 任意正 数 a 1、 a 2、 ⋯ 、an ;求1/a 1+2/(a 1 +a 2)+⋯ +n/(a 1+a 2+⋯ +a n )<2 (1/a 1+1/a 2+⋯ +1/a n )9 高三数学模 答案一、 :. ACCD BAD A二、填空 :本 主要考 基 知 和基本运算.每小 4 分,共 16 分 .9.[-1,0] 10.5 11.19 12. 2 13.1 14. 35三、解答 :15.本 考 向量、二倍角和合成的三角函数的公式及三角函数性 ,要修业生能运用所学知 解决 .解:⑴ f(x)= sin xcosx+3 + 3 cos2x = sin(2x+ )+ 3⋯⋯⋯2 23 2 T=π, 2 k π - ≤ 2x+≤ 2 k π +, k ∈ Z,232最小正周期 π, 增区[ k π -5, k π + ], k ∈ Z.⋯⋯⋯⋯⋯⋯⋯⋯1212⑵由 sin(2A+ )=0 , <2A+ <7 ,⋯⋯⋯⋯⋯33 或533∴ 2A+ =π或 2π,∴ A=⋯⋯⋯⋯⋯⋯⋯⋯33616.、本 主要考 空 、 面的地址关系,考 空 距离角的 算,考 空 想象能力和推理、 能力, 同 也可考 学生灵便利用 形, 建立空 直角坐 系, 借助向量工具解决 的能力. ⑴ 明:直三棱柱ABC — A 1B 1C 1 中, BC ∥ B 1C 1,又 BC 平面 A B 1C 1,B 1C 1 平面 A B 1C 1,∴ B 1C 1∥平面 A B 1C 1;⋯⋯⋯⋯⋯⋯⑵(解法一)∵ CD ⊥ AB 且平面 ABB 1A 1⊥平面 AB C,C 11 1 1∴ CD ⊥平面 ABBA ,∴ CD ⊥AD 且 CD ⊥A D ,∴∠ A DA 是二面角 A 1— CD —A 的平面角,1A 1B 1在 Rt △ ABC,AC=1,BC= 2 ,PC∴ AB= 3 , 又 CD ⊥ AB ,∴ AC 2=AD × ABADB∴ AD=3, AA1131=1,∴∠ DA 1B 1=∠ A DA=60 °,∠ A 1 B 1A=30°,∴ A B 1 ⊥A D又 CD ⊥ A 1D ,∴ AB 1⊥平面 A 1CD , A 1D ∩ AB 1=P, ∴ B 1P 所求点 B 1 到面 A 1CD 的距离 . B P=A 1 B 1cos ∠ A 1 B 1A= 33cos30 =° .12即点 B 1 到面 A 1 CD 的距离 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯21 × 3 1 z ( 2)(解法二) 由 V B 1- A 1CD =V C - A 1B 1D =C 132×6 = 2,而 cos ∠ A 1 CD= 2 × 6 = 3 ,AB13 6 2 3 31△A 1CD1 ×2 ×6 ×6 =2,B 1 到平面CS=3 332A ByA 1CD 距离 h, 1×22, 得 h= 3所求 .Dx h=33 6 2⑶(解法三)分 以CA 、CB 、CC 1 所在直 x 、y 、z 建立空 直角坐 系(如 )A ( 1,0, 0), A 1( 1, 0, 1),C (0, 0, 0), C 1( 0, 0, 1),B (0,2 , 0), B 1( 0, 2 , 1),uuurr∴ D ( 2 , 2, 0) CB =( 0, 2 , 1), 平面 A 1CD 的法向量 n =( x , y , z ),3 31r uuur3n CD2x2y 0rruuur,取 n=( 1, -2 , - 1)n CA 1 x z 0r uuur点 B 1 到面 A 1CD 的距离d= n CB 13r⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯n217.本 主要考 排列,典型的失散型随机 量的概率 算和失散型随机 量分布列及希望等基 知 和基本运算能力.解:( 1) 4 个旅游 互不一样样的 路共有:A 54=120 种方法; ⋯(2)恰有两条 路被 中的概率 :P 2 C 52 (2 42) 28=54⋯125(3) 甲 路旅游 数ξ, ξ~ B(4, 1)14⋯⋯⋯⋯⋯⋯ 5∴希望 E ξ=np=4×=5 5答 : ( 1) 路共有120 种,(2)恰有两条 路被 中的概率 0.224, ( 3)所求希望 0.8 个数 .⋯⋯⋯⋯⋯⋯⋯⋯⋯18.本 主要考 数列的基 知 ,考 分 的数学思想,考 考生 合 用所学知 造性解决 的能力.解:( 1) a 1+2 a 2+22a 3+⋯ +2n - 1a n =4n ,∴ a 1+2 a 2+22a 3+⋯ +2n a n+1=4n+1,相减得 2n a n+1=3× 4n , ∴ a n+1=3× 2n ,4(n1) 又 n=1 a 1=4,∴ 上 a n =2n 1所求;⋯⋯⋯⋯⋯⋯⋯⋯⋯3(n 2)⑵ n ≥2 , S n=4+3(2 n- 2), 又 n=1 S 1=4 也建立, ∴ S n =3× 2 n - 2⋯⋯⋯⋯⋯⋯ 12 分19.本 主要考 函数、 数的基本知 、函数性 的 理以及不等式的 合 ,同 考 考生用函数放 的方法 明不等式的能力.解:⑴由 b= f(1)= - 1, f ′(1)= a+b=0, ∴ a=1, ∴f(x)=ln x- x 所求; ⋯⋯⋯⋯⋯⑵∵ x>0,f ′(x)=1- 1=1x ,xxx 0<x<1x=1 x>1 f (′x) +0 - f(x)↗极大↘∴ f (x)在 x=1 获取极大 - 1,即所求最大 - 1; ⋯⋯⋯⋯⋯⑶由⑵得 lnx ≤x- 1 恒建立, ∴ln x+ln y=ln xy+ ln x ln y ≤ xy 1 + x 1 y 1 = xy x y 3建立⋯⋯⋯22 22220.本 考 解析几何的基本思想和方法,求曲 方程及曲 性 理的方法要求考生能正确分析 , 找 好的解 方向, 同 兼 考 算理和 推理的能力, 要求 代数式合理演 ,正确解析最 .解:⑴ C 的焦点在 x 上,由 上的点A 到 F 1、F 2 两点的距离之和是 4,得 2a= 4,即 a=2 .;3134 1.得 b 2=1,于是 c 2=3 ;又点 A(1,) 在 上,因此222b 2因此 C 的方程x 2y 2 1,焦点 F 1 ( 3,0), F 2 ( 3,0). ,⋯⋯⋯4⑵∵ P 在 内,∴直DE 与 订交,∴ D( x 1,y 1),E(x 2,y 2),代入 C 的方程得x 12+4y 12- 4=0, x 22+4y 22- 4=0,相减得 2(x 1- x 2 )+4× 2× 1 (y 1- y 2)=0 , ∴斜率 k=-11 4∴ DE 方程 y- 1= - 1(x-), 即 4x+4y=5; ⋯⋯⋯4(Ⅲ )直 MN 不与 y 垂直,∴MN 方程 my=x- 1,代入 C 的方程得( m 2+4) y 2+2my- 3=0,M( x 1,y 1 ),N( x 2 ,y 2), y 1+y 2=-2m 3 ,且△ >0 建立 .m 2 4, y 1y 2=-m 2 4又 S △ OMN = 1|y 1- y 2|= 1 ×4m212(m 24) = 2 m23, t=m 2 3 ≥ 3 ,2 2m 2 4m 24S△OMN =2,(t+1t1tt ) ′=1 - t-2>0t≥ 3 恒建立,∴t=3t+1获取最小, S△OMN最大,t此 m=0, ∴ MN 方程 x=1⋯⋯⋯⋯⋯。

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024届高三数学仿真模拟卷(全国卷)(理科)(考试版)

2024年高考第三次模拟考试高三数学(理科)(考试时间:120分钟试卷满分:150分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上.2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.写在本试卷上无效.3.回答第Ⅱ卷时,将答案写在答题卡上.写在本试卷上无效.4.测试范围:高考全部内容5.考试结束后,将本试卷和答题卡一并交回.第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若集合{}24A x x =-≤≤,{}260B x x x =-≥,则A B = ()A .[]2,0-B .[]0,4C .[]2,6-D .[]4,62.已知3i 2z a =(R a ∈,i 是虚数单位),若21322z =,则=a ()A .2B .1C .12D .143.如图,已知AM 是ABC 的边BC 上的中线,若AB a=,AC b = ,则AM 等于()A .()12a b- B .()12a b-- C .()12a b+ D .()12a b-+ 4.已知函数()()πtan 0,02f x x ωϕωϕ⎛⎫=+><< ⎝⎭的最小正周期为2π,直线π3x =是()f x 图象的一条对称轴,则()f x 的单调递减区间为()A .()π5π2π,2πZ 66k k k ⎛⎤-+∈ ⎥⎝⎦B .()5π2π2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦C .()4ππ2π,2πZ 33k k k ⎛⎤--∈ ⎥⎝⎦D .()π2π2π,2πZ 33k k k ⎛⎤-+∈ ⎥⎝⎦5.已知直线l 过点()1,1A 交圆22:4O x y +=于,C D 两点,则“CD =l 的斜率为0”的()A .必要而不充分条件B .充分必要条件C .充分而不必要条件D .即不充分也不必要条件6.甲、乙、丙、丁、戊共5名同学进行唱歌比赛,决出第一名到第五名.丙和丁去询问成绩,回答者对丙说:很遗憾,你和丁都没有得到冠军,对丁说:你当然不会是最差的从这两个回答分析,5人的名次排列方式共有()A .24种B .54种C .96种D .120种7.函数()πln sin 2x x f x x⎛⎫⋅- ⎪⎝⎭=的部分图象大致为()A .B .C.D.8.祖暅是我国南北朝时期伟大的数学家.祖暅原理用现代语言可以描述为“夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的面积总相等,那么这两个几何体的体积相等”.例如,可以用祖暅原理推导半球的体积公式,如图,底面半径和高都为R 的圆柱与半径为R 的半球放置在同一底平面上,然后在圆柱内挖去一个半径为R ,高为R 的圆锥后得到一个新的几何体,用任何一个平行于底面的平面α去截这两个几何体时,所截得的截面面积总相等,由此可证明半球的体积和新几何体的体积相等.若用平行于半球底面的平面α去截半径为R 的半球,且球心到平面α的距离为2R ,则平面α与半球底面之间的几何体的体积是()A3R B3R C3R D3R9.已知函数()21e 3ln ,ln ,ln ,ln 222f x x a f b f c f ⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,则()A .a b c <<B .b a c <<C .c<a<bD .a c b<<10.已知数列{}n a 满足1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩当为偶数时当为奇数时,若81a =,1a 的所有可能取值构成集合M ,则M 中的元素的个数是()A .7个B .6个C .5个D .4个11.如图,已知双曲线2222:1(0,0)x y C a b a b -=>>的左、右焦点分别为1(,0)F c -,2(,0)F c ,点A 在C 上,点B 在y 轴上,A ,2F ,B 三点共线,若直线1BF1AF的斜率为,则双曲线C 的离心率是()AB .32CD .312.已知()f x ,()g x 都是定义在R 上的函数,对任意x ,y 满足()()()()()f x y f x g y g x f y -=-,且()()210f f -=≠,则下列说法正确的是()A .()01f =B .函数()21g x +的图象关于点()1,0对称C .()()110g g +-=D .若()11f =,则()202311n f n ==∑第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分13.已知数列{}n a 的前n 项和2n S n n =+,当9n nS a +取最小值时,n =.14.若函数()sin 1f x x x ωω=-在[]0,2π上恰有5个零点,且在ππ[,415-上单调递增,则正实数ω的取值范围为.15.已知52345012345(23)x a a x a x a x a x a x +=+++++,则123452345a a a a a -+-+=.(用数字作答)16.已知定义在R 上的函数()f x 满足()4()0f x f x '+>,且(01f =),则下列说法正确的是.①()f x 是奇函数;②(0,),()0x f x ∃∈+∞>;③41(1)e f >;④0x ∀>时,41()e xf x <三、解答题:本大题共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(12分)已知()sin ,5sin 5sin m B A C =+ ,()5sin 6sin ,sin sin n B C C A =--垂直,其中A ,B ,C 为ABC的内角.(1)求cos A 的大小;(2)若BC =ABC 的面积的最大值.18.(12分)2016年10月“蓝瘦香菇”等网络新词突然在网络流行,某社区每月都通过问卷形式进行一次网上调查,现从社区随机抽取了60名居民进行调查.已知上网参与问卷调查次数与参与人数的频数分布如下表:参与调查问卷次数[)0,2[)2,4[)4,6[)6,8[)8,10[]10,12参与调查问卷人数814814106(1)若将参与调查问卷不少于4次的居民称为“关注流行语居民”,请你根据频数分布表,完成22⨯列联表,据此调查你是否有99%的把握认为在此社区内“关注流行语与性别有关”?男女合计关注流行语8不关注流行语合计40(2)从被调查的人中按男女比例随机抽取6人,再从选取的6人中选出3人参加政府听证会,求选出的3人为2男1女的概率.附:参考公式()()()()()22n ad bc K a b c d a c b d -=++++及附表()2P K k ≥0.1000.0500.0100.001k2.7063.8416.63510.82819.(12分)在几何体中,底面ABC 是边长为2的正三角形.⊥AE 平面ABC ,若,5,4,3AE CD BF AE CD BF ===∥∥.(1)求证:平面DEF ⊥平面AEFB ;(2)是否在线段AE 上存在一点P ,使得二面角P DF E --的大小为π3.若存在,求出AP 的长度,若不存在,请说明理由.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,点31,2P ⎛⎫ ⎪⎝⎭在椭圆C 上,且PF 垂直于x 轴.(1)求椭圆C 的方程;(2)直线l 斜率存在,交椭圆C 于,A B 两点,,,A B F 三点不共线,且直线AF 和直线BF 关于PF 对称.(ⅰ)证明:直线l 过定点;(ⅱ)求ABF △面积的最大值.21.(12分)已知函数()2,0eax x f x a =>.(1)当2a =时,求函数()f x 的单调区间和极值;(2)当0x >时,不等式()()2cos ln ln 4f x f x a x x ⎡⎤-≥-⎣⎦恒成立,求a 的取值范围.(二)选考题:共10分.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,曲线C 的参数方程为12cos 2sin x y αα=+⎧⎨=⎩(α为参数).以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 42πρθ⎛⎫-= ⎪⎝⎭.(1)求C 的普通方程和l 的直角坐标方程;(2)设直线l 与x 轴相交于点A ,动点B 在C 上,点M 满足AM MB =,点M 的轨迹为E ,试判断曲线C与曲线E 是否有公共点.若有公共点,求出其直角坐标;若没有公共点,请说明理由.选修4-5:不等式选讲23.已知()2122f x x x x =-+-+.(1)求()2f x ≥的解集;(2)记()f x 的最小值为t ,且2(0,0)3a b t a b +=>>,求证:11254a b a b ⎛⎫⎛⎫++≥ ⎪⎪⎝⎭⎝⎭.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考数学模拟试卷复习试题高三模拟卷科数学本试题卷共8页,23题(含选考题)。

全卷满分150分。

考试用时120分钟。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,有且只有一项符合题目要求。

1.已知复数,则=()A. B. C. D.2.设集合M{x|xm<0},N={y|y=log2x1,x≥4},若M∩N=Ø,则m的取值范围是()A.[1,+∞)B.(1,+∞)C.(∞,1)D.(∞,1]3.将△ABC的各边都扩大3倍,则∠A的三个三角函数值都()A.扩大3倍B.缩小3倍C.不变D.无法确定4.已知s是正实数,满足不等式组:表示的区域内存在一个半径为1的圆,则s 为最小值为()A.1+B.C.2+2D.25.一直线与平行四边形ABCD中的两边AB,AD分别交于E、F,且交其对角线AC于M,若,,,则=()B. 1C.0D. 3A.6.在如图所示的正方形中随机投掷10000个点,则落入阴影外部(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为()附:若X~N(μ,σ2),则P(μδ<X≤μ+δ)=0.6826,P(μ2δ<X≤μ+2δ)=0.9544.A.3413B.1193C.2718D.65877.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.2+πB.2+4πC.6+πD.6+4π8.已知数列中,,.若如图所示的程序框图是用来计算该数列的第项,则判断框内的条件是()A. B. C. D.9.二项式(ax+)n(a>0,b>0)的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab的值为()A.4B.8C.12D.1610.已知抛物线C:y2=2px(p>0)的焦点为F,点是抛物线C上一点,圆M与线段MF相交于点A,且被直线x=截得的弦长为,若=2,则=()A.4B. 1C. 2D.311.若定义在上的可导函数满足,且,则当时,不等式的解集为()A. B. C. D.12.已知函数f(x)=ax33x2+1,若f(x)存在三个零点,则a的取值范围是()A.(∞,2)B.(2,2)C.(2,+∞)D.(2,0)∪(0,2)二、填空题:本大题共4小题,每小题5分,共20分.13.已知中,内角,,的对边分别为,,,若,,则的面积为14.点M是椭圆+=1(a>b>0)上的点,以M为圆心的圆与x轴相切于椭圆的焦点F,圆M与y轴相交于P,Q,若△PQM是锐角三角形,则椭圆离心率的取值范围是15.函数f(x)=|lgx|+x2的零点个数是16.已知下列命题:①命题“,”的否定是“,”;②已知,为两个命题,若“”为假命题,则“为真命题”;③“”是“”的充分不必要条件;④“若,则且”的逆否命题为真命题其中,所有真命题的序号是__________.三、解答题:本大题分必做题和选做题,其中第1721题为必做题,第2223为选做题,共70分。

解答应写出文字说明、证明过程或演算步骤,把答案填在答题卡上对应题号指定框内。

17.已知函数f(x)=sin cos+cos2.(1)将f(x)写成Asin(ωx+φ)+h(A>0)的形式,并求其图象对称中心的横坐标;(2)如果△ABC的三边a、b、c依次成等比数列,且边b所对的角为x,试求x的取值范围及此时函数f(x)的值域.18.如图所示,四棱锥,已知平面平面,,,,.(1)求证:;(2)若二面角为,求直线与平面所成角的正弦值.19.华中师大附中中科教处为了研究高一学生对物理和数学的学习是否与性别有关,从高一年级抽取60名同学(男同学30名,女同学30名),给所有同学物理题和数学题各一题,让每位同学自由选择一道题进行解答.选题情况如表:(单位:人)物理题数学题总计男同学161430女同学82220总计243660(1)在犯错误的概率不超过1%的条件下,能否判断高一学生对物理和数学的学习与性别有关?(2)经过多次测试后发现,甲每次解答一道物理题所用的时间为58分钟,乙每次解答一道物理题所用的时间为68分钟,现甲、乙解同一道物理题,求甲比乙先解答完的概率;(3)现从选择做物理题的8名女生中任意选取两人,对他们的解答情况进行全程研究,记甲、乙两女生被抽到的人数为X,求X的分布列和数学期望.附表及公式:P(K2⩾k)0.150.100.050.0250.0100.0050.001k 2.072 2.706 3.841 5.024 6.6357.87910.828K2=.20.中,O是BC的中点,,其周长为,若点T在线段AO上,且.(1)建立合适的平面直角坐标系,求点T的轨迹E的方程;(2)若M,N是射线上不同的两点,,过点M的直线与E交于P,Q,直线QN与E交于另一点R,证明:是等腰三角形.21.已知函数f(x)=lnx+ax在点(t,f(t))处的切线方程为y=3x1(1)求a的值;(2)已知k≤2,当x>1时,f(x)>k(1)+2x1恒成立,求实数k的取值范围;(3)对于在(0,1)中的任意一个常数b,是否存在正数x0,使得+x02<1?请说明理由.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号.选修44:坐标系与参数方程22.在极坐标系中,曲线C1:,曲线C2:.以极点为坐标原点,极轴为轴正半轴建立直角坐标系,曲线的参数方程为(为参数).(1)求C1,C2的直角坐标方程;(2)C与C1,C2交于不同四点,这四点在C上的排列顺次为H,,,K,求的值.23.已知函数f(x)=|ax1|(1)若f(x)≤2的解集为[3,1],求实数a的值;(2)若a=1,若存在x∈R,使得不等式f(2x+1)f(x1)≤32m成立,求实数m的取值范围.参考答案一、选择题1.【答案】C【解析】由题意可得:,则= .本题选择C选项。

2.【答案】D【解析】由题意可得,M={x|x<m},N={y|y=log2x1,x≥4}={y|y≥1}∵M∩N= Ø,∴m≤1。

3.【答案】C【解析】因为三角函数值与对应边的比值有关,所以各边的长度都扩大3倍后,锐有A的各三角函数值没有变化。

4.【答案】C【解析】画出不等式组所表示的区域,如图,当s最小时,所表示的区域为第一象限的一个等腰直角三角形的斜边最短,设直角边长为a+1,由直线与圆相切的性质可知,斜边长为2a,S=2a,由(a+1)2+(a+1)2=(2a)2得a=1+,∴Smin=2a=2+2。

5.【答案】【解析】由几何关系可得:,则:,即:,则= .6.【答案】D【解析】由题意P(0<X≤1)=×0.6826=0.3413,∴落入阴影部分点的个数的估计值为10000×0.3413=3413,∴落入阴影外部(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为100003413=6587。

7.【答案】A【解析】由三视图得到几何体为圆锥与三棱锥的组合体,圆锥底面半径为2,三棱锥是底面为腰长为2 的等腰直角三角形,高为3,如图所以几何体的体积为:×π×22×3+××2×2×3=π+2。

8.【答案】B【解析】阅读流程图结合题意可得,该流程图逐项计算数列各项值,当时推出循环,则判断框内的条件是.9.【答案】B【解析】:∵二项式(ax+)n(a>0,b>0)的展开式中只有第6项的二项式系数最大,故展开式共有11项,∴n=10.再根据展开式中的第3项的系数是第4项的系数的3倍,可得•a8•()2=3••a7•()3,求得ab=8。

10.【答案】B【解析】由题意:M(x0,2)在抛物线上,则8=2px0,则px0=4,①由抛物线的性质可知,,,则,∵被直线截得的弦长为|MA|,则,由,在Rt△MDE中,2+2=2,即,代入整理得:②,由①②,解得:x0=2,p=2,∴。

11.【答案】D【解析】不妨令,该函数满足题中的条件,则不等式转化为:,整理可得:,结合函数的定义域可得不等式的解集为.本题选择D选项。

12.【答案】D【解析】函数f(x)=ax33x2+1在x∈R上有三个零点,∴函数f(x)的极大值与极小值异号;又f′(x)=3ax26x,显然a≠0;当f′(x)=0时,解得x=0或x=,∴f(0)×f()=1×(a×3×+1)<0,化简得>1,解得2<a<2,综上,a的取值范围是(2,0)∪(0,2)。

二、填空题13.【答案】4【解析】由题意有:,则的面积为 .14.【答案】(,)【解析】∵圆M与X轴相切于焦点F,∴圆心与F的连线必垂直于X轴,不妨设M(c,y),∵M在椭圆上,则y=±(a2=b2+c2),∴圆的半径为,由题意y>c>y∴c2<()2<2c2,∴e2<(1e2)2<2e2∴<e<故答案为(,)。

15.【答案】2【解析】f(x)=0⇔|lgx|=2x,所以f(x)的零点个数即函数y=|lgx|与函数y=2x的交点的个数,作出函数y=2x与函数y=|lgx|的图象,结合函数的图可知有2个交点,16.【答案】②【解析】①命题“,”的否定是“,”;②已知,为两个命题,若“”为假命题,则“为真命题”;③“”是“”的必要不充分条件;④“若,则且”是假命题,则它的逆否命题为假命题其中,所有真命题的序号是②。

三、解答题17.【解答】(1)已知函数f(x)=sin cos+cos2=sin+(1+cos)=sin(+)+由sin(+)=0得到:+=kπ(k∈Z)解得:x=(k∈Z)即:对称中心的横坐标为:x=(k∈Z)(2)△ABC的三边a、b、c依次成等比数列∴b2=ac∴cosx==≥=∴≤cosx<1∴0<x≤<+≤∴<sin(+)≤1则:<f(x)≤1+即:f(x)的值域为:(,1+]。

18.【解答】(1)中,应用余弦定理得,解得,所以,所以.因为平面平面,平面平面,,所以平面,又因为平面,所以.(2)由(1)平面,平面,所以.又因为,平面平面,所以是平面与平面所成的二面角的平面角,即.因为,,所以平面.所以是与平面所成的角.因为在中,,所以在中,.19.【解答】(1)由表中数据得K2=≈4.444<6.635,在犯错误的概率不超过1%的前提下,不能判断高一学生对物理和数学的学习与性质有关.(2)设甲、乙解答一道物理题的时间分别为x,y分钟,∵甲每次解答一道物理题所用的时间为58分钟,乙每次解答一道物理题所用的时间为68分钟,∴,设事件A表示“甲比乙先解答完”,则A表示“x<y”,作出可行域,如右图:∴甲比乙先解答完的概率P(A)=1−=.(3)由题意知在选择物理题的8名女生中任意抽取两人,抽取方法有=28种,其中甲、乙两人没有一个人被抽到有=15种,恰有一人被抽到有=12种,两人都被抽到有=1种,∴X的可能取值为0,1,2,P(X=0)=,P(X=1)==,P(X=2)=,∴X的分布列为:X 0 1 2P∴E(X)=0×+1×+2×=。

相关文档
最新文档