2019年高考数学模拟试题含答案
2019届浙江省杭州市高考命题比赛模拟(二)数学试卷(含答案)

(3)若方程
f
(x)
b 有两个实数根
x1, x2
,且
x1<x2
,证明:
x2
x1
1
b e 1 3e 1
eb e 1
.
【命题意图】本题考查导数在单调性与最值、极值、切线问题中的应用,及不等式性质、恒成立等基
础知识,同时考查推理论证能力,分类讨论及分析问题和解决问题的能力.
高三数学试题卷第 6 页,共 6 页
边上有一点 P 的坐标是 3a, a,其中 a 0 .
(1)求 cos 的值;
(2)若 tan 2 1 ,求 tan 的值.
【命题意图】本题考查三角函数及其变换、正弦和余弦定理等基础知识,同时考查运算求解能力.
19.(原创题)(本题满分 15 分)如图,已知多面体 ABCD A1B1C1D1 , AA1, BB1,CC1, DD1 均垂直于平面
数学试题卷
本试题卷分选择题和非选择题两部分.全卷共 6 页,选择题部分 1 至 3 页;非选择题部分 3 至 6 页.
满分 150 分.考试用时 120 分钟.
考生注意:
1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸
规定的位置上.
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷
高三数学试题卷第 2 页,共 6 页
6.(原创题)某几何体的三视图如图所示,则该几何体的体积为
A. 3 3 C. 3 3
2
B. 5 3 2
D. 9 3 2
【命题意图】本题主要考查关于“几何体的三视图”与“三视图的几何体”
的相互转化和空间想象能力.
2019年高考数学模拟试卷(一)

2019年高考数学模拟试卷(一)作者:本刊编辑部试题研究中心
来源:《中学生数理化·高考使用》2019年第08期
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题日要求的。
18.(本小题满分12分)
某篮球运动员通过选秀进入美国NBA赛场,通过一年的锻炼,技术日渐成熟,下面统计了他进入NBA赛场的第2年到第6年的成绩,其第x年与其年平均每场得分y(单位:分)之间的数据如表1所示。
19.(本小题满分12分)
如圖6,在四棱锥P-ABCD中,顶点P在底面ABCD内的射影恰好落在AB的中点O上,底面直角梯形ABCD中,AB⊥AD,BC//AD,且AD =AB =2BC。
2019年高考真题和模拟题分项汇编数学(理):专题03 导数及其应用 (含解析).docx

专题03导数及其应用1. [2019年高考全国III 卷理数】已知曲线y = ae x +xlnx 在点(1, ae)处的切线方程为y=2x+b,贝9 A. a = e, b = —1 B. a=e, b=l C. a — e _1, b = lD. a = e"1 > b = -\【答案】D【解析】T y' = ae* + lnx+l,切线的斜率 k = y' |Y=1= ae+1 = 2,a = e _1, 将(1,1)代入 y = 2x + b,得 2 + b = l,b = -l. 故选D.【名师点睛】本题求解的关键是利用导数的几何意义和点在曲线上得到含有a, b 的等式,从而求解,属于常考题 型.了2 O XTTV 2d V* V 12. [2019年高考天津理数】已知tzeR ,设函数/(%)=' _ '若关于X 的不等式/(x)>0在R 上x-alnx, x>l.恒成立,则a 的取值范围为A. [0,1]B. [0,2]C. [0,e]D. [l,e]【答案】C【解析】当兀=1时,/(1) = 1 —2a + 2a = l>0恒成立;当 x<l 时,/(%) = x 2-2ajc + 2a>0^ 2a>^-恒成立,x-1令g(x) =—7x-1(1 —兀―1)2_ (1—兀)2—2(1 —兀)+ 1 1 — X 1 — X当1 —兀=丄,即x = 0时取等号,1-X贝0g(x) = ——1-X2a= 0,则a>0.Y当 x 〉l 时,f(x) = x-a\nx>0,即a< ---------------- 11 成立,lnx当x>e 时,h'(x) >0,函数〃(x)单调递增, 当0<x<e 时,h'(x) <0,函数力(x)单调递减, 则x = e 时,〃(x)取得最小值A(e) = e,•■- a<h(x)nin =e,综上可知,a 的取值范围是[0,e ]. 故选C.【名师点睛】本题考查分段函数的最值问题,分别利用基本不等式和求导的方法研究函数的最值,然后解决恒成 立问题.x,x<03. (2019浙江)已知a,bwR ,函数/(%) = < 1 1 2.若函数f(x)-ax-b 恰有3个零点, —X ——(Q + 1)兀 + ax, X > 0 13 2A. a<-\, b<0 C. tz>—1, Z?<0D. a>—1, Z?>0【答案】C【解析】当 x<0 时,y=f (x) -ax - b=x - ax - b= (1 - a) x - b=0,得 x= 丿丿 l-a则y=f (x) -ax-b 最多有一个零点;当 x>0 时,y=f (兀)-ax - b= -x 3—- (a+1) x^+ax - ax - b= -x 3—- (a+1) x 2 - b, —)J3 2 3 2y = x 2-(€l + l)x,当 a+lwo,即來-1 时,y>0, y=f (x) -ax-b 在[0, +oo)上单调递增, 则y =f -ax-b 最多有一个零点,不合题意;当a+l>0,即°>-1时,令y'>0得兀丘@+1, +oo),此时函数单调递增, 令WVO 得用[0, d+1),此时函数单调递减,则函数最多有2个零点.根据题意,函数y=f (x) -ax-b 恰有3个零点o 函数y=f (x) - ax - b 在(-oo, 0)上有一个零点,在[0, +oo)令〃(x)=—, lnx则 h\x)=lnx-1(In x)2 B. a<-l, b>0上有2个零点,如图:b—b>01-a (a + l)3 - j (a + l)(a + l)2- b<0解得b<0, 1 - a>0, b> -- (a+1) 3,6则a>-l, b<0.故选C・【名师点睛】本题考查函数与方程,导数的应用.当兀V0时,y=f (x) -ax - b=x - ax - b= (l-°) x~ b最多有一个零点;当空0时,y=/(x) -ax-b=^-\ (a+1) - b,利用导数研究函数的单调性,根据单调性画出函数的草图,从而结合题意可列不等式组求解.4.[2019年高考全国I卷理数】曲线y = 3(x2+x)e x在点(0,0)处的切线方程为_________________ .【答案】3x-y-0【解析】y = 3(2x+l)e A + 3(x2 + x)e r = 3(x2 +3x+l)e r,所以切线的斜率k = y' |x=0=3,则曲线y = 3(x2 + x)^在点(0,0)处的切线方程为y = 3x,即3x — y = 0 .【名师点睛】准确求导数是进一步计算的基础,本题易因为导数的运算法则掌握不熟,而导致计算错误•求导要“慢”, 计算要准,是解答此类问题的基本要求._ 45.[2019年高考江苏】在平面直角坐标系xOy中,P是曲线y = x + —(无>0)上的一个动点,则点P到直线x+ y = 0的距离的最小值是一▲•【答案】44 4【解析】由y = x (x〉0),得丁' = 1 ——,X X4 4设斜率为一1的直线与曲线_y = x + -(x>0)切于(x0,x0+—),x 勺由1一一 =一1得x0 = A/2(x0=-A/2舍去),x o曲线y = x + -(x>o)±,点P(V2,3A/2)到直线x+y = o的距离最小,最小值为故答案为4 .【名师点睛】本题考查曲线上任意一点到己知直线的最小距离,渗透了直观想象和数学运算素养.采取导数法,利用数形结合和转化与化归思想解题.6.[2019年高考江苏】在平面直角坐标系中,点A在曲线y=lnr上,且该曲线在点A处的切线经过点(-e, -l)(e 为自然对数的底数),则点A的坐标是▲.【答案】(e, 1)【解析】设出切点坐标,得到切线方程,然后求解方程得到横坐标的值,可得切点坐标.设点A(x0,y0),则y Q =lnx0.又# =丄,X则曲线y = InX在点A处的切线为y - %=丄(X —勺),即yin”。
2019年高考模拟数学试卷(1)及答案

2019年高考模拟数学试卷(1)一、选择题(本大题共18小题,每小题3分,共54分) 1.设集合M ={-1,0,1},N 为自然数集,则M ∩N 等于( ) A .{-1,0} B .{-1} C .{0,1}D .{1}2.已知A (1,1,1),B (3,3,3),点P 在x 轴上,且|P A |=|PB |,则P 点坐标为( ) A .(6,0,0) B .(6,0,1) C .(0,0,6)D .(0,6,0)3.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7等于( ) A .5 B .6 C .8 D .104.若幂函数f (x )的图象过点(2,8),则f (3)的值为( ) A .6 B .9 C .16 D .275.在锐角三角形ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则A 等于( ) A.π3 B.π4 C.π6D.π126.已知cos α=-12,且α是钝角,则tan α等于( )A. 3B.33 C .- 3 D .-337.已知b ,c 是平面α内的两条直线,则“直线a ⊥α”是“直线a ⊥b ,直线a ⊥c ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件8.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧2x -y ≥0,x +2y ≥0,3x +y -5≤0,则2x +y 的最大值是( )A .0B .3C .4D .5 9.下列命题为真命题的是( ) A .平行于同一平面的两条直线平行 B .与某一平面成等角的两条直线平行 C .垂直于同一平面的两条直线平行 D .垂直于同一条直线的两条直线平行10.如图是一个几何体的三视图,则这个几何体是( )A .圆锥B .棱柱C .圆柱D .棱锥11.若关于x 的不等式|a -x |+|x -3|≤4在R 上有解,则实数a 的取值范围是( ) A .[-7,+∞) B .[-7,7] C .[-1,+∞)D .[-1,7]12.已知正项等比数列{a n }的前n 项和为S n ,若S 3=2a 3-a 1,则该数列的公比为( ) A .2 B.12 C .4 D.1413.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,CA =CB =CC 1=1,则直线A 1B 与平面BB 1C 1C 所成角的正弦值为( )A.22B.155C.33D.6314.已知F 1,F 2为双曲线Ax 2-By 2=1的焦点,其顶点是线段F 1F 2的三等分点,则其渐近线的方程为( ) A .y =±22x B .y =±24xC .y =±xD .y =±22x 或y =±24x15.已知函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则一定有( ) A .f (x )为偶函数 B .f (x )为奇函数 C .f (x +2)为偶函数D .f (x +3)为奇函数16.存在函数f (x )满足:对于任意的x ∈R 都有f (x 2+2x )=|x +a |,则a 等于( ) A .-1 B .1 C .2 D .417.已知Rt △AOB 的面积为1,O 为直角顶点,设向量a =OA →|OA →|,b =OB →|OB →|,OP →=a +2b ,则P A →·PB→的最大值为( )A .1B .2C .3D .418.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 2向其一条渐近线作垂线l ,垂足为P ,l 与另一条渐近线交于Q 点,若QF 2→=3PF 2→,则双曲线的离心率为( )A .2 B. 3 C.43 D.233二、填空题(本大题共4小题,每空3分,共15分)19.已知抛物线C :y 2=2x ,点M (3,5),点P 在抛物线C 上移动,点P 在y 轴上的射影为Q ,则|PM |-|PQ |的最大值是________,此时点P 的坐标为________. 20.已知向量a =(1,2),b =(-2,t ),若a ∥b ,则实数t 的值是________.21.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________.22.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A -3cos C cos B =3c -a b ,则sin Csin A 的值为________.三、解答题(本大题共3小题,共31分) 23.(10分)已知函数f (x )=sin x +cos x ,x ∈R . (1)求f ⎝⎛⎭⎫π2的值;(2)求函数f (x )的最小正周期;(3)求函数g (x )=f ⎝⎛⎭⎫x +π4+f ⎝⎛⎭⎫x +3π4的最小值. 24.(10分)已知椭圆C 的焦点F 1(-2,0)和F 2(2,0),长轴长为4,设直线y =x +2交椭圆C 于A ,B 两个不同的点. (1)求椭圆C 的方程; (2)求弦AB 的长.25.(11分)已知函数f (x )=x |x -a |+bx .(1)当a=2,且f(x)是R上的增函数时,求实数b的取值范围;(2)当b=-2,且对任意a∈(-2,4),关于x的方程f(x)=tf(a)总有三个不相等的实数根,求实数t的取值范围.2019年高考模拟数学试卷(1)答案一、选择题(本大题共18小题,每小题3分,共54分) 1.设集合M ={-1,0,1},N 为自然数集,则M ∩N 等于( ) A .{-1,0} B .{-1} C .{0,1} D .{1}答案 C2.已知A (1,1,1),B (3,3,3),点P 在x 轴上,且|P A |=|PB |,则P 点坐标为( ) A .(6,0,0) B .(6,0,1) C .(0,0,6) D .(0,6,0) 答案 A解析 ∵点P 在x 轴上, ∴设P (x,0,0),又∵|P A |=|PB |, ∴(x -1)2+(0-1)2+(0-1)2 =(x -3)2+(0-3)2+(0-3)2, 解得x =6. 故选A.3.在等差数列{a n }中,a 1=2,a 3+a 5=10,则a 7等于( ) A .5 B .6 C .8 D .10 答案 C解析 因为在等差数列{a n }中,a 1=2,a 3+a 5=10,所以2a 4=a 3+a 5=10,解得a 4=5,所以公差d =a 4-a 14-1=1.所以a 7=a 1+6d =2+6=8.故选C.4.若幂函数f (x )的图象过点(2,8),则f (3)的值为( ) A .6 B .9 C .16 D .27 答案 D解析 设幂函数f (x )=x α,其图象过点(2,8),可得f (2)=2α=8,解得α=3,即f (x )=x 3,可得f (3)=27. 故选D.5.在锐角三角形ABC 中,角A ,B 所对的边长分别为a ,b .若2a sin B =3b ,则A 等于( ) A.π3 B.π4 C.π6D.π12答案 A解析 因为在△ABC 中,2a sin B =3b ,所以由正弦定理a sin A =bsin B ,得2sin A sin B =3sin B ,由角A 是锐角三角形的内角知sin B ≠0, 所以sin A =32.又△ABC 为锐角三角形,所以A =π3. 6.已知cos α=-12,且α是钝角,则tan α等于( )A. 3B.33 C .- 3 D .-33答案 C解析 ∵cos α=-12,且α为钝角,∴sin α=1-cos 2α=32, ∴tan α=sin αcos α=- 3.7.已知b ,c 是平面α内的两条直线,则“直线a ⊥α”是“直线a ⊥b ,直线a ⊥c ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 依题意,由a ⊥α,b ⊂α,c ⊂α,得a ⊥b ,a ⊥c ; 反过来,由a ⊥b ,a ⊥c 不能得出a ⊥α.因为直线b ,c 可能是平面α内的两条平行直线.综上所述,“直线a ⊥α”是“直线a ⊥b ,直线a ⊥c ”的充分不必要条件,故选A. 8.已知实数x ,y 满足不等式组⎩⎪⎨⎪⎧2x -y ≥0,x +2y ≥0,3x +y -5≤0,则2x +y 的最大值是( )A .0B .3C .4D .5 答案 C解析 在平面直角坐标系中画出题中的不等式组表示的平面区域为以(0,0),(1,2),(2,-1)为顶点的三角形区域(如图阴影部分,含边界),由图易得当目标函数z=2x+y经过平面区域内的点(1,2)时,z=2x+y取得最大值z max=2×1+2=4,故选C.9.下列命题为真命题的是()A.平行于同一平面的两条直线平行B.与某一平面成等角的两条直线平行C.垂直于同一平面的两条直线平行D.垂直于同一条直线的两条直线平行答案 C解析如图所示,A1C1∥平面ABCD,B1D1∥平面ABCD,但是A1C1∩B1D1=O1,所以A错;A1O,C1O与平面ABCD所成的角相等,但是A1O∩C1O=O,所以B错;D1A1⊥A1A,B1A1⊥A1A,但是B1A1∩D1A1=A1,所以D错;由线面垂直的性质定理知C正确.10.如图是一个几何体的三视图,则这个几何体是()A.圆锥B.棱柱C.圆柱D.棱锥答案 C11.若关于x的不等式|a-x|+|x-3|≤4在R上有解,则实数a的取值范围是() A.[-7,+∞) B.[-7,7]C.[-1,+∞) D.[-1,7]答案 D解析因为不等式|a-x|+|x-3|≤4在R上有解,所以4≥(|a-x|+|x-3|)min=|a-3|,解得-1≤a≤7,故选D.12.已知正项等比数列{a n}的前n项和为S n,若S3=2a3-a1,则该数列的公比为()A .2 B.12 C .4 D.14答案 A解析 设正项等比数列{a n }的公比为q >0,因为S 3=2a 3-a 1,所以2a 1+a 2=a 3,所以a 1(2+q )=a 1q 2,化为q 2-q -2=0,q >0,解得q =2.故选A.13.如图,在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,CA =CB =CC 1=1,则直线A 1B 与平面BB 1C 1C 所成角的正弦值为( )A.22B.155C.33D.63答案 C解析 连接BC 1,由A 1C 1⊥平面BB 1C 1C ,得∠A 1BC 1=θ是直线A 1B 与平面BB 1C 1C 所成的角,在Rt △A 1BC 1中,A 1C 1=1,BC 1=2,BA 1=3,sin θ=13=33. 14.已知F 1,F 2为双曲线Ax 2-By 2=1的焦点,其顶点是线段F 1F 2的三等分点,则其渐近线的方程为( ) A .y =±22x B .y =±24xC .y =±xD .y =±22x 或y =±24x答案 D解析 由题意可知,双曲线焦点在x 轴或y 轴上. ∵2a =13·2c ,∴c 2=9a 2.又∵c 2=a 2+b 2, ∴b 2=8a 2, 故b a =22,a b =24. ∴渐近线方程为y =±22x 或y =±24x .15.已知函数f (x )的定义域为R ,若f (x +1)与f (x -1)都是奇函数,则一定有( ) A .f (x )为偶函数B .f (x )为奇函数C .f (x +2)为偶函数D .f (x +3)为奇函数答案 D解析 因为函数f (x +1),f (x -1)均为奇函数, 所以f (x +1)=-f (-x +1),f (x -1)=-f (-x -1), 则f (x +3)=f (x +2+1)=-f [-(x +2)+1] =-f (-x -1)=f (x -1)=f (x -2+1) =-f [-(x -2)+1]=-f (-x +3), 所以函数f (x +3)为奇函数,故选D.16.存在函数f (x )满足:对于任意的x ∈R 都有f (x 2+2x )=|x +a |,则a 等于( ) A .-1 B .1 C .2 D .4 答案 B解析 由题意不妨令x 2+2x =0,则x =0或x =-2, 所以f (0)=|0+a |=|-2+a |,解得a =1,故选B.17.已知Rt △AOB 的面积为1,O 为直角顶点,设向量a =OA →|OA →|,b =OB →|OB →|,OP →=a +2b ,则P A →·PB→的最大值为( )A .1B .2C .3D .4 答案 A解析 以O 为原点,OA 所在直线为x 轴,OB 所在直线为y 轴,建立平面直角坐标系(图略). 设A (m ,0),B (0,n ),则a =(1,0), b =(0,1),OP →=a +2b =(1,2), P A →=(m -1,-2),PB →=(-1,n -2), 因为Rt △AOB 的面积为1,即有mn =2,则P A →·PB →=1-m -2(n -2)=5-(m +2n )≤5-22mn =5-2×2=1, 当且仅当m =2n =2时,取得最大值1.18.过双曲线x 2a 2-y 2b 2=1(a >0,b >0)的右焦点F 2向其一条渐近线作垂线l ,垂足为P ,l 与另一条渐近线交于Q 点,若QF 2→=3PF 2→,则双曲线的离心率为( )A .2 B. 3 C.43 D.233答案 B解析 由题意得直线F 2Q 的方程为y =-ab (x -c ),与直线y =b a x 联立,消去x 得y =-a b ⎝⎛⎭⎫ab y -c , 解得y P =abc. 与直线y =-b a x 联立,消去x 得y =-a b ⎝⎛⎭⎫-a b y -c ,解得y Q =abcb 2-a 2. 因为QF 2→=3PF 2→, 所以y Q =3y P ,即abc b 2-a2=3abc , 结合b 2=c 2-a 2化简得c 2=3a 2, 所以双曲线的离心率e =ca=3,故选B.二、填空题(本大题共4小题,每空3分,共15分)19.已知抛物线C :y 2=2x ,点M (3,5),点P 在抛物线C 上移动,点P 在y 轴上的射影为Q ,则|PM |-|PQ |的最大值是________,此时点P 的坐标为________. 答案55+12⎝⎛⎭⎪⎫3-54,1-52 解析 抛物线C 的焦点F ⎝⎛⎭⎫12,0,准线l :x =-12, 则由抛物线的定义知|PM |-|PQ |=|PM |-|PF |+12≤|MF |+12=55+12,此时点P 在第四象限,且由抛物线C :y 2=2x 及直线MF :y =2x -1得点P 的坐标为⎝⎛⎭⎪⎫3-54,1-52. 20.已知向量a =(1,2),b =(-2,t ),若a ∥b ,则实数t 的值是________.答案 -4解析 由a ∥b 得t +2×2=0,所以t =-4.21.对于实数x ,y ,若|x -1|≤1,|y -2|≤1,则|x -2y +1|的最大值为________. 答案 5解析 |x -2y +1|=|(x -1)-2(y -2)-2|≤|(x -1)-2(y -2)|+2≤|x -1|+2|y -2|+2≤5. 22.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A -3cos C cos B =3c -a b ,则sin Csin A 的值为________.答案 3解析 由正弦定理a sin A =b sin B =c sin C=2R , 得cos A -3cos C cos B =3c -a b =2R ·(3sin C -sin A )2R ·sin B =3sin C -sin A sin B, 即(cos A -3cos C )sin B =(3sin C -sin A )cos B ,化简可得sin(A +B )=3sin(B +C ),又A +B +C =π,所以sin C =3sin A ,因此sin C sin A=3. 三、解答题(本大题共3小题,共31分)23.(10分)已知函数f (x )=sin x +cos x ,x ∈R .(1)求f ⎝⎛⎭⎫π2的值;(2)求函数f (x )的最小正周期;(3)求函数g (x )=f ⎝⎛⎭⎫x +π4+f ⎝⎛⎭⎫x +3π4的最小值. 解 (1)由题意得f ⎝⎛⎭⎫π2=sin π2+cos π2=1. (2)因为f (x )=2sin ⎝⎛⎭⎫x +π4, 所以函数f (x )的最小正周期为2π.(3)因为g (x )=f ⎝⎛⎭⎫x +π4+f ⎝⎛⎭⎫x +3π4 =2sin ⎝⎛⎭⎫x +π2+2sin(x +π)=2(cos x -sin x ) =2cos ⎝⎛⎭⎫x +π4. 所以当x +π4=2k π+π,k ∈Z ,即x =3π4+2k π,k ∈Z 时,函数g (x )取得最小值-2.24.(10分)已知椭圆C 的焦点F 1(-2,0)和F 2(2,0),长轴长为4,设直线y =x +2交椭圆C 于A ,B 两个不同的点.(1)求椭圆C 的方程;(2)求弦AB 的长.解 (1)因为椭圆C 的焦点为F 1(-2,0)和F 2(2,0),长轴长为4,所以设所求椭圆的方程为x 2a 2+y 2b 2=1(a >b >0), 则依题意有a =2,c =2,所以b 2=a 2-c 2=2.所以椭圆C 的方程为x 24+y 22=1. (2)联立⎩⎪⎨⎪⎧ x 24+y 22=1,y =x +2,消去y 得3x 2+8x +4=0,设A (x 1,y 1),B (x 2,y 2),则由根与系数的关系有x 1+x 2=-83,x 1x 2=43, 所以由弦长公式得|AB |=(1+k 2)[(x 1+x 2)2-4x 1x 2] = 2 ⎝⎛⎭⎫-832-4×43=423. 25.(11分)已知函数f (x )=x |x -a |+bx .(1)当a =2,且f (x )是R 上的增函数时,求实数b 的取值范围;(2)当b =-2,且对任意a ∈(-2,4),关于x 的方程f (x )=tf (a )总有三个不相等的实数根,求实数t 的取值范围.解 (1)f (x )=x |x -2|+bx =⎩⎪⎨⎪⎧x 2+(b -2)x ,x ≥2,-x 2+(b +2)x ,x <2. 因为f (x )连续,且f (x )在R 上单调递增,等价于这两段函数分别递增,所以⎩⎨⎧ 2-b 2≤2,2+b 2≥2,得b ≥2.(2)f (x )=x |x -a |-2x =⎩⎪⎨⎪⎧x 2-(a +2)x ,x ≥a ,-x 2+(a -2)x ,x <a , tf (a )=-2ta .当2≤a <4时,a -22<a +22≤a ,f (x )在⎝⎛⎭⎫-∞,a -22上单调递增, 在⎝⎛⎭⎫a -22,a 上单调递减,在(a ,+∞)上单调递增,所以f (x )极大值=f ⎝⎛⎭⎫a -22=a 24-a +1,f (x )极小值=f (a )=-2a ,所以⎩⎪⎨⎪⎧ -2a <-2ta ,a 24-a +1>-2ta 对2≤a <4恒成立, 解得0<t <1.当-2<a <2时,a -22<a <a +22, f (x )在⎝⎛⎭⎫-∞,a -22上单调递增, 在⎝⎛⎭⎫a -22,a +22上单调递减, 在⎝⎛⎭⎫a +22,+∞上单调递增, 所以f (x )极大值=f ⎝⎛⎭⎫a -22=a 24-a +1,f (x )极小值=f ⎝⎛⎭⎫a +22=-a 24-a -1, 所以-a 24-a -1<-2ta <a 24-a +1对-2<a <2恒成立, 解得0≤t ≤1,综上,0<t <1.。
2019年高考数学(理)模拟试题(三)含答案及解析

2019年高考数学(理)模拟试题(三)含答案及解析2019年高考数学(理)模拟试题(三)注意事项:1、本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答题前,考生务必将自己的姓名、考生号填写在答题卡上。
2、回答第Ⅰ卷时,选出每小题的答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在试卷上无效。
3、回答第Ⅱ卷时,将答案填写在答题卡上,写在试卷上无效。
4、考试结束,将本试卷和答题卡一并交回。
第Ⅰ卷选择题共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知复数z满足(1-i)z=2+i,则z的共轭复数在复平面内对应的点在()A。
第一象限B。
第二象限C。
第三象限D。
第四象限2.设集合M={x|x<36},N={2,4,6,8},则M∩N=()A。
{2,4}B。
{2,4,6}C。
{2,6}D。
{2,4,6,8}3.下图中的图案是我国古代建筑中的一种装饰图案,形若铜钱,寓意富贵吉祥.在圆内随机取一点,则该点取自阴影区域内(阴影部分由四条四分之一圆弧围成)的概率是()A。
1/4B。
1/3C。
1/2D。
2/34.将5个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A。
42种B。
48种C。
54种D。
60种5.如图所示是一个几何体的三视图,则这个几何体外接球的体积为()A。
32π/3B。
64π/3C。
32πD。
64π/26.数学家欧拉在1765年提出定理:三角形的外心、重心、垂心依次位于同一直线上,且重心到外心的距离是重心到垂心距离的一半,这条直线被后入称之为三角形的欧拉线.已知△ABC的顶点A(2,0),B(0,4),AC=BC,则△ABC的欧拉线方程为()A。
2x+y-3=0B。
2x-y+3=0C。
x-2y-3=0D。
x-2y+3=07.执行如图所示的程序框图,则输出S的值为()A。
2019年镇海中学高考数学模拟试题(含答案)2019.5.20

a
1 4
a2
第 12 题图
3 的展开式中,各项系数之和为 A ,各项二项式系数之和为 B ,且 x
n
A+ B = 72 ,则 n 等于___▲_ _,展开式中常数项的值为___▲_ _.
15 .设椭圆 C2 :
1 x2 y 2 + 2 = 1(a > b > 0) 的左右焦点为 F1 , F2 ,离心率为 e = ,抛物线 2 2 a b
1 3
Sh
其中 S 表示锥体的底面积, h 表示锥体的高 球的表面积公式 S = 4πR2 球的体积公式 V=
4 3
(1-p)
n-k
(k = 0,1,2,…, n)
台体的体积公式
V = 1 3 h ( S1 + S1S 2 + S 2 )
其中 S1, S2 分别表示台体的上、下底面积, h 表示台体的高
值是( ▲ ) A.2 B.
3 2
C.1
D.3
4.如图,网格纸上小正方形边长为 1 ,粗线画出的是某几何体的 三视图,则该几何体的体积为( ▲ ) A.
4 3
B.
8 3
C. 4
D.
16 3
镇海中学高考模拟试卷 第 1 页,总 10 页
5.小明站在点 O 观察练车场上匀速行驶的小车 P 的运动情况,小车从点 A 出发的运动轨迹 如图所示.设小明从点 A 开始随动点 P 变化的视角为 θ = ∠AOP ,练车时间为 t ,则函数
2019 年镇海中学高考数学模拟试题
2019 年 5 月 20 日
注意事项: 1.本科目考试分试题卷和答题卷,考生必须在答题卷上作答.答题前,请在答题卷 的密封线内填写学校、班级、学号、姓名; 2.本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分.满分 150 分, 考试时间 120 分 钟. 参考公式:
2019年高考数学(浙江专版)精选模拟卷4含答案(详细解析版)

押题卷 4
一、选择题:本大题共 10 小题,每小题 4 分,共 40 分.在每小题给出的四个选项中,只有一
项是符合题目要求的.
1.【2019 年 1 月浙江省普通高中学业水平仿真】全集 U={1,2,3,4,5,6},集合 A={1,2,5},集合 B={3,
【答案】C
【解析】
由已知条件每位市民使用移动支付的概率都为 p,看做是独立重复事件,
满足 X~B(10,p),
=6,
则 p=0.6
故选:C
8.【浙江省名校新高考研究联盟(Z20)2019 届高三第一次联考】已知三棱锥
的所有棱长为 是底
面
内部一个动点 包括边界 ,且 到三个侧面 , , 的距离 , , 成单调递增的等差数
4,5},则(∁UA)∩B 等于 A.{4} B.{3,4} C.{2,3,4}
D.{3}
【答案】B
2.【浙江省温州九校 2019 届高三第一次联考】双曲线
A.
B.
【答案】C
【解析】
C.
D.
,则双曲线 的焦点坐标为( )
由方程 则 c2=a2+b2=25,即
表示双曲线,焦点坐标在 y 轴上,可知, ,
故双曲线的焦点坐标为:
,
故选:C.
3.【浙江省“七彩阳光”联盟 2019 届高三期初联考】i 是虚数单位,复数 满足 ()
A.
B.
C.
D.
【答案】A
【解析】
,则 为
,则 故选 4.【湖北省荆州中学、宜昌一中等“荆、荆、襄、宜四地七校考试联盟”2019 届高三上期末】“斗拱”是 中国古代建筑中特有的构件,从最初的承重作用,到明清时期集承重与装饰作用于一体.在立柱顶、额枋和 檐檩间或构架间,从枋上加的一层层探出成弓形的承重结构叫拱,拱与拱之间垫 的方形木块叫斗.如图所示, 是“散斗”(又名“三才升”)的三视图,则它的体积为( )
2019年高考数学一模试卷(附答案)

的渐近线的
距离为 3 c ,则双曲线的渐近线方程为() 2
A. y 3x
B. y 2x
C. y x
12.在如图的平面图形中,已知
D. y 2x
OM 1,ON 2, MON 120 , BM 2MA,CN 2NA, 则 BC·OM 的值为
A. 15
C. 6 二、填空题
B. 9
D.0
D. b a c
3.如果 ,那么下列不等式成立的是( )
4
2
A. sin cos tan
B. tan sin cos
C. cos sin tan
D. cos tan sin
4.在“一带一路”知识测验后,甲、乙、丙三人对成绩进行预测.
甲:我的成绩比乙高.
乙:丙的成绩比我和甲的都高.
2019 年高考数学一模试卷(附答案)
一、选择题
1.若 tan 3 ,则 cos2 2sin 2 (
)
4
A. 64
B. 48
C.1
25
25
2.设 a sin 5 , b cos 2 , c tan 2 ,则( )
7
7
7
A. a b c
B. a c b
C. b c a
D. 16 25
【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消
去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间
分成 9 组,制成了如图所示的频率分布直方图. (1)求直方图的 的值; (2)设该市有 30 万居民,估计全市居民中月均用水量不低于 3 吨的人数,说明理由; (3)估计居民月用水量的中位数.
23.如图,已知四棱锥 P ABCD 的底面为等腰梯形, AB//CD , AC BD ,垂足为 H , PH 是四棱锥的高.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FEDCBA 2019年高考数学模拟试题(理科)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并收回。
一.选择题:本大题共12个小题,每小题5分,共60分。
在每小题给出的四个选项中只有一项是符合题目要求的1.已知集合}032{2>--=x x x A ,}4,3,2{=B ,则B A C R ⋂)(=A .}3,2{B .}4,3,2{C .}2{D .φ2.已知i 是虚数单位,iz +=31,则z z ⋅= A .5B .10C .101D .51 3.执行如图所示的程序框图,若输入的点为(1,1)P ,则输出的n 值为A .3B .4C .5D .6(第3题) (第4题)4.如图,ABCD 是边长为8的正方形,若13DE EC =,且F 为BC 的中点,则EA EF ⋅=A .10B .12C .16D .205.若实数y x ,满足⎪⎩⎪⎨⎧≥≤-≤+012y x y y x ,则yx z 82⋅=的最大值是A .4B .8C .16D .326.一个棱锥的三视图如右图,则该棱锥的表面积为 A .3228516++ B .32532+C .32216+D .32216516++7. 5张卡片上分别写有0,1,2,3,4,若从这5张卡片中随机取出2张,则取出的2张卡片上的数字之和大于5的概率是 A .101 B .51 C .103 D .548.设n S 是数列}{n a 的前n 项和,且11-=a ,11++⋅=n n n S S a ,则5a = A .301 B .031- C .021 D .201- 9. 函数()1ln1xf x x-=+的大致图像为10. 底面为矩形的四棱锥ABCD P -的体积为8,若⊥PA 平面ABCD ,且3=PA ,则四棱锥ABCD P -的外接球体积最小值是A .π625 B .π125 C .π6251 D .π25 11. 已知抛物线()220y px p =>,过焦点且倾斜角为30°的直线交抛物线于A,B 两点,以AB为直径的圆与抛物线的准线相切,切点的纵坐标是3,则抛物线的准线方程为 A .1x =- B .32x =-C .33x =- D .3x =- 12. 已知函数x x x f ln )(2-=(22≥x ),函数21)(-=x x g ,直线t y =分别与两函数交于B A ,两点,则AB 的最小值为A .21B .1C .23D .2二.填空题:本大题共4小题,每小题5分,共20分.13. 设样本数据1x ,2x ,...,2018x 的方差是5,若13+=i i x y (2018,...,2,1=i ),则1y ,2y ,...,2018y 的方差是________14. 已知函数x x x f ωωcos 3sin )(-=(0>ω),若3=ω,则方程1)(-=x f 在),0(π的实数根个数是_____15. 我国的《洛书》中记载着世界上最古老的一个幻方:将1,2,...,9填入33⨯ 的方格内,使三行、三列、两对角线的三个数之和都等于15 (如图).一般地,将连续的正整数1,2,3,…, 2n 填入n n ⨯的方格内,使得每行、每列、每条对角线上的数的和相等,这个正方形就叫做n 阶幻方.记n 阶幻方的一条对角线上数的和为n N (如:在3阶幻方中,315N =),则5N =_______16.已知ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,且1c =,π3C =.若sin sin()sin 2C A B B +-=,则ABC ∆的面积为三、解答题:本大题共6小题,其中17-21小题为必考题,每小题12分,第22—23题为选考题,考生根据要求做答,每题10分. 17.(本小题满分12分)设数列}{n a 是公差为d 的等差数列. (Ⅰ) 推导数列}{n a 的通项公式;(Ⅱ) 设0≠d ,证明数列}1{+n a 不是等比数列.18.(本小题满分12分)某中学为了解全校学生的上网情况,在全校随机抽取了40名学生(其中男、女生各占一半)进行问卷调查,并进行了统计,按男、女分为两组,再将每组学生的月上网次数分为5组:[0,5),[5,10),[10,15),[15,20),[20,25],得到如图所示的频率分布直方图.(Ⅰ)写出女生组频率分布直方图中a 的值;(Ⅱ)在抽取的40名学生中从月上网次数不少于20的学生中随机抽取2人,并用X 表示随机抽取的2人中男生的人数,求X 的分布列和数学期望.19.(本小题满分12分)在直三棱柱111C B A ABC -中,21===AA AC AB ,CA BA ⊥。
C 1B 1A 1CBA(Ⅰ)证明:1BC ⊥1AB ;(Ⅱ) 求直线C A 1与平面11BC A 所成的角.20.(本小题满分12分)在平面直角坐标系xoy 中,已知椭圆)0(1:2222>>=+b a by a x E ,圆)0(:222b r r y x O <<=+,若圆O 的一条切线m kx y l +=:与椭圆E 相交于B A ,两点.(Ⅰ)当1,31=-=r k ,若点B A ,都在坐标轴的正半轴上,求椭圆的方程;(Ⅱ)若以AB 为直径的圆经过坐标原点,探究r b a ,,之间的等量关系.21.(本小题满分12分)已知函数ax e x f x-=)((e 是自然对数的底数).(Ⅰ) 求)(x f 的单调区间;(Ⅱ)若1-≥a ,当m ax x a x x xf +-++-≥13235)(23对任意),0[+∞∈x 恒成 立时,m 的最大值为1,求实数a 的取值范围.请考生在第22、23题中任选一题作答,如果多做,则按所做的第一题计分,做答时请先将对应题号用铅笔涂黑.22.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==.sin 31,cos 3θθy x (θ为参数).以坐标原点为极点,x 轴正半轴为极轴,建立极坐标系,曲线2C 的极坐标方程为θρcos 2=. (Ⅰ) 写出1C 的普通方程和2C 的直角坐标方程;(Ⅱ) 设点P 在1C 上,点Q 在2C 上,判断1C 与2C 的位置关系并求||PQ 的最小值.23.(本小题满分10分)选修4—5:不等式选讲已知函数12)(-++=x m x x f (0>m ). (Ⅰ)当1=m 时,解不等式2)(≥x f ;(Ⅱ)当]2,[2m m x ∈时,不等式1)(21+≥x x f 恒成立,求实数m 的取值范围.数学科答案(理科)一、选择题 1-5ACADD 6-10ABCBC 11-12BA二、填空题 13.45 14.3 15.65 16.6343或 三、解答题17.解:(1)因为}{n a 是等差数列且公差为d ,所以)(21≥=--n d a a n n (1)d a a =-∴12 , d a a =-23,... , d a a n n =--1 (3)将上述式子相加,得 d n a a n )1(1-=-所以,数列}{n a 的通项公式为d n a a n )1(1-+=.................6 (2)假设数列}1{+n a 是等比数列,.. (7)当2≥n 时,11+-n a ,1+n a ,11++n a 成等比数列所以)1()1()1(112+⋅+=++-n n n a a a (9)所以 ])1[(])1[()1(2d a d a a n n n ++⋅-+=+所以02=d ,所以0=d ,这与0≠d 矛盾 所以,数列}1{+n a 不是等比数列 (12)18.解:(1)由频率分布直方图,得a =1(20.020.030.08)55-⨯++⨯错误!未找到引用源。
=0.05. (3)(2)在抽取的女生中,月上网次数不少于20的学生的频率为0.02×5=0.1,学生人数为0.1×20=2..........................4 同理,在抽取的男生中,月上网次数不少于20的学生人数为0.03×5×20=3,.....................................5 故X 的所有可能取值为0,1,2,则 2225C 1(0)C 10P X ===错误!未找到引用源。
,112325C C 6(1)C 10P X ===错误!未找到引用源。
,2325C 3(2)C 10P X === (9)所以X 的分布列为所以E (X )=0×110错误!未找到引用源。
+1×5错误!未找到引用源。
+2×310=65错误!未找到引用源。
. (12)19.解:(1)由题意,以A 为坐标原点,以AB,AC,1AA 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系A-xyz. 因为21===AA AC AB则)0,0,0(A ,)0,0,2(B ,)0,2,0(C ,)2,0,0(1A ,)2,0,2(1B ,)2,2,0(1C (3)所以)(2,2,21-=−→−BC ,)(2,0,21=−→−AB所以040411=++-=⋅−→−−→−AB BC ..........................................4 所以−→−−→−⊥11AB BC ,所以1BC ⊥1AB (5)(2)又因为)(2,0,21-=−→−B A ,所以0404A 11=-+=⋅−→−−→−B A B 所以−→−−→−⊥B A B 11A 又因为B BC B A =⋂11所以111BC A AB 平面⊥,............................................8 又)2,2,0(1-=−→−C A ,所以21884,cos 11-=⋅->=<−→−−→−AB C A (10)所以 32,11π>=<−→−−→−AB C A ,............................................11 所以直线C A 1与平面11BC A 所成的角为6π (12)20.解(1)因为圆O 的一条切线为m kx y l +=:所以r km=+21,当1,31=-=r k ,所以310=m ..................2 又点B A ,都在坐标轴的正半轴上,所以310=m ,所以切线31031:+-=x y l 所以B A ,两点坐标是)310,0(和)0,10(,..............................4 所以椭圆的方程为11091022=+y x (5)(2)设),(11y x A ,),(22y x B ,以AB 为直径的圆经过坐标原所以02121=+y y x x ,所以0))((2121=+++m kx m kx x x ..................6 所以0)()1(221212=++++m x x km x x k由⎪⎩⎪⎨⎧+==+m kx y b y a x 12222所以02)(222222222=-+++b a m a x kma x k a b 所以222222221b k a b a m a x x +-=,2222212b k a kma x x +-=+ (8)所以0)()2())(1(2222222222=++-+-+b k a m kma km b a m a k .................10 且)1(222k r m +=所以2222222)1()1()(b a k k r b a +=++,................................11 所以222111r b a =+ (12)21. 解(1)因为ae xf x-=')( (1)①0≤a 时,0)(≥'x f 恒成立,所以)(x f 在R 上单调递增,无减区间; (2)②0>a 时,0)(=-='a e x f x 有a x ln =,且)ln ,(a x -∞∈时,0)(<'x f .),(ln +∞∈a x 时,0)(>'x f ,所以)(x f 的增区间是),(ln +∞a ,减区间是)ln ,(a -∞ (4)(2)m ax x a x x xf +-++-≥13235)(23对任意),0[+∞∈x 恒成立, 所以m ax x a x ax e x x +-++-≥-13235)(23对任意),0[+∞∈x 恒成立所以1)32)1(3(2+-++-≤a x a x e x m x 对任意),0[+∞∈x 恒成立 (5)设),0[,32)1(3)(2+∞∈-++-=x a x a x e x g x ,因为m 的最大值为1, (6)所以恒成立032)1(3)(2≥-++-=a x a x e x g x2)1(32)(++-='a x e x g x , (7)令2)1(32)(++-=a x e x h x所以02)(=-='xe x h 有2ln =x ,且)2ln ,0[∈x ,0)(<'x h ,),2[ln +∞∈x ,0)(>'x h所以02ln 2)1(232)2(ln )(>-++='≥'a g x g 所以)(x g 在),0[+∞∈x 是单调递增的。