2010年上海中考数学试卷分析(不含压轴题)
2009年上海中考数学试卷分析2

以几何图形为背景的压轴题闵行中心马德岩近年中考试题或模拟考题能反映命题风格、命题热点、命题形式(特别是新题型)的新动向、新导向,以近年中考题为基本素材,有利于考生适应中考情境,提高中考复习的针对性。
中考题型的创新形式主要有:情景题、应用题、开放题、操作题、探索题等,体现出“经历、体验、探索”的过程性目标。
此类题目是学生得分的薄弱环节,主要涉及到的题目为:图形翻折、平移、旋转的运动变化、函数思想的形成、方程思想的建立等等。
应对此类问题学生应该要用数学的眼光观察世界,用数学知识、数学思想方法去分析问题、解决问题。
这类试题往往情景较为新颖,问题也较为灵活,每年的分值在25分左右。
下面以2009年上海中考最后一题为点来分析这类问题解决的方法。
已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB 上,且满足PQ ADPC AB=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长;(2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离为x ,APQ PBCS y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域; (3)当AD AB <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.数学思想方法是数学知识在更高层次上的抽象和概括,在重点考查最基本、通用的数学规律和数学技能的同时,这道试题突出考查学生对数学思想方法的领悟。
解:(1)AD=2,且Q 点与B 点重合,根据题意,∠PDA ,因为∠A=90。
PQ/PC=AD/AB=1,所以:△PQC 为等腰直角三角形,BC=3,所以:PC=3 /2,(2)如图:根据题意,两个三角形的面积可以分别表示成S1,S2, 高分别是H ,h ,则:S1=(2-x )H/2=(2*3/2)/2-(x*H/2)-(3/2)*(2-h)/2S2=3*h/2 因为两S1/S2=y ,消去H,h,得:Y=-(1/4)*x+(1/2),定义域:当点P 运动到与D 点重合时,X 的取值就是最大值,当PC 垂直BD 时,这时X=0,连接DC,作QDADPCBQ 图8DAPCB(Q ) 图9图10CADPBQ垂直DC,由已知条件得:B、Q、D、C四点共圆,则由圆周角定理可以推知:三角形QDC相似于三角形ABD则QD/DC=AD/AB=3/4,令QD=3t,DC=4t,则:QC=5t,(t>0)由勾股定理得:直角三角形AQD中:(3/2)^2+(2-x)^2=(3t)^2直角三角形QBC中:3^2+x^2=(5t)^2整理得:(8x-7)(8x-43)=0得x1=7/8 x2=(43/8)>2(舍去) 所以函数:Y=-(1/4)*x+1/2的定义域为[0,7/8](3)因为:PQ/PC=AD/AB,假设PQ不垂直PC,则可以作一条直线PQ′垂直于PC,与AB交于Q′点,则:Q′,B,P,C四点共圆,由圆周角定理推知,三角形P Q′C相似于三角形ABD,根据相似三角形的性质得:PQ′/PC=AD/AB,又由于PQ/PC=AD/AB 所以,点Q′与点Q重合,所以角∠QPC=90。
初中毕业(学业)考试数学试卷质量分析

附件2:初中毕业(学业)考试数学试卷质量分析2006年中考数学试卷在体现新理念、新思想以及推进数学课程改革等方面作了积极而有益的探索,试题立足于学生的发展,既考查学生的基础知识、基本技能和基本数学思想方法的获得情况,又考查了学生的基本运算能力、思维能力、空间观念和运用数学知识分析和解决实际问题的能力,并对学生的动手操作、自主探究等创新意识方面的考查作了有益的探索。
一、试题的特点分析1、服务于学生的学习,考查数学的核心内容和基本能力。
这套试卷,从总体上来说能着眼于促进学生的发展来考查基础知识、基本技能和基本数学思想方法,很好地突出了考查的主干内容。
首先,进一步降低了试题的起点,绝大部分考生都能获得基本的分数,如第3、6、12、21题;其次,试题避免了对知识记忆的考查,而是加强了对知识理解的考核,如第5、7、11、20、22题等;第三,试题不再局限于对知识本身的考查,而是注重创设一个合适的情境,让考生在新的情境中活用基础知识、基本技能和基本数学思想方法,如第4、8、17、23、25、27题等。
这些试题结合基础知识来考查具有数学学科特点的基本思想和方法,把重点放在最具价值的常规方法的应用上,这样做,一方面有助于引导教师在平时的课堂教学中,重视“三基”,鼓励学生通过自主探究主动获取知识;另一方面也有利于提高学生的数学素养,有利于促进学生全面而和谐的发展。
同时,许多试题来源于现行教材,是教材例习题的类比、改造、引伸和拓展,这样既可以使考生处于一个较为平和、熟悉的环境之中,增强解题信心,又可以使试题贴近教材,更好地体现了对考生的公平、公正的原则。
2、立足于学生的发展,考查分析和解决实际问题的思维能力。
学习数学的最高境界就在于运用数学知识、方法和思想去解决实际问题。
今年的试题更加注重对学生运用数学知识分析和解决简单实际问题的思维能力进行考查,全卷把对学生思维能力的考查放在主导地位。
如第4、8、17、19、22、23、24、25、27题等,总分达全卷总分的43%,这些试题的题材来源于学生熟悉的生活实际,具有较强的时代气息与亲和感。
上海历年中考数学压轴题复习(试题附答案)

上海历年中考数学压轴题复习2001年上海市数学中考27.已知在梯形ABCD 中,AD ∥BC ,AD <BC ,且AD =5,AB =DC =2. (1)如图8,P 为AD 上的一点,满足∠BPC =∠A .图8①求证;△ABP ∽△DPC ②求AP 的长.(2)如果点P 在AD 边上移动(点P 与点A 、D 不重合),且满足∠BPE =∠A ,PE 交直线BC 于点E ,同时交直线DC 于点Q ,那么①当点Q 在线段DC 的延长线上时,设AP =x ,CQ =y ,求y 关于x 的函数解析式,并写出函数的定义域;②当CE =1时,写出AP 的长(不必写出解题过程).27.(1)①证明:∵ ∠ABP =180°-∠A -∠APB ,∠DPC =180°-∠BPC -∠APB ,∠BPC =∠A ,∴ ∠ABP =∠DPC .∵ 在梯形ABCD 中,AD ∥BC ,AB =CD ,∴ ∠A =∠D .∴ △ABP ∽△DPC .②解:设AP =x ,则DP =5-x ,由△ABP ∽△DPC ,得DCPD AP AB =,即252xx -=,解得x 1=1,x 2=4,则AP 的长为1或4.(2)①解:类似(1)①,易得△ABP ∽△DPQ ,∴ DQ AP PD AB =.即yxx +=-252,得225212-+-=x x y ,1<x <4.②AP=2或AP=3-5.(题27是一道涉及动量与变量的考题,其中(1)可看作(2)的特例,故(2)的推断与证明均可借鉴(1)的思路.这是一种从模仿到创造的过程,模仿即借鉴、套用,创造即灵活变化,这是中学生学数学应具备的一种基本素质,世上的万事万物总有着千丝万缕的联系,也有着质的区别,模仿的关键是发现联系,创造的关键是发现区别,并找到应付新问题的途径.)上海市2002年中等学校高中阶段招生文化考试27.操作:将一把三角尺放在边长为1的正方形ABCD上,并使它的直角顶点P在对角线AC上滑动,直角的一边始终经过点B,另一边与射线DC相交于点Q.图5图6图7 探究:设A、P两点间的距离为x.(1)当点Q在边CD上时,线段PQ与线段PB之间有怎样的大小关系?试证明你观察得到结论;(2)当点Q在边CD上时,设四边形PBCQ的面积为y,求y与x之间的函数解析式,并写出函数的定义域;(3)当点P在线段AC上滑动时,△PCQ是否可能成为等腰三角形?如果可能,指出所有能使△PCQ成为等腰三角形的点Q的位置,并求出相应的x的值;如果不可能,试说明理由.(图5、图6、图7的形状大小相同,图5供操作、实验用,图6和图7备用)五、(本大题只有1题,满分12分,(1)、(2)、(3)题均为4分)27.图1 图2 图3(1)解:PQ =PB ……………………(1分) 证明如下:过点P 作MN ∥BC ,分别交AB 于点M ,交CD 于点N ,那么四边形AMND 和四边形BCNM 都是矩形,△AMP 和△CNP 都是等腰直角三角形(如图1).∴ NP =NC =MB . ……………………(1分) ∵ ∠BPQ =90°,∴ ∠QPN +∠BPM =90°.而∠BPM +∠PBM =90°,∴ ∠QPN =∠PBM . ……………………(1分) 又∵ ∠QNP =∠PMB =90°,∴ △QNP ≌△PMB . ……………………(1分) ∴ PQ =PB . (2)解法一由(1)△QNP ≌△PMB .得NQ =MP . ∵ AP =x ,∴ AM =MP =NQ =DN =x 22,BM =PN =CN =1-x 22, ∴ CQ =CD -DQ =1-2·x 22=1-x 2. 得S △PBC =21BC ·BM =21×1×(1-x 22)=21-42x . ………………(1分) S △PCQ =21CQ ·PN =21×(1-x 2)(1-x 22)=21-x 423+21x 2(1分) S 四边形PBCQ =S △PBC +S △PCQ =21x 2-x 2+1. 即 y =21x 2-x 2+1(0≤x <22). ……………………(1分,1分)解法二作PT ⊥BC ,T 为垂足(如图2),那么四边形PTCN 为正方形.∴ PT =CB =PN .又∠PNQ =∠PTB =90°,PB =PQ ,∴△PBT ≌△PQN .S 四边形PBCQ =S △四边形PBT +S 四边形PTCQ =S 四边形PTCQ +S △PQN =S 正方形PTCN …(2分)=CN 2=(1-x 22)2=21x 2-x 2+1 ∴ y =21x 2-x 2+1(0≤x <22). ……………………(1分)(3)△PCQ 可能成为等腰三角形①当点P 与点A 重合,点Q 与点D 重合,这时PQ =QC ,△PCQ 是等腰三角形, 此时x =0 ……………………(1分) ②当点Q 在边DC 的延长线上,且CP =CQ 时,△PCQ 是等腰三角形(如图3) ……………………(1分) 解法一 此时,QN =PM =x 22,CP =2-x ,CN =22CP =1-x 22. ∴ CQ =QN -CN =x 22-(1-x 22)=x 2-1. 当2-x =x 2-1时,得x =1. ……………………(1分) 解法二 此时∠CPQ =21∠PCN =22.5°,∠APB =90°-22.5°=67.5°, ∠ABP =180°-(45°+67.5°)=67.5°,得∠APB =∠ABP ,∴ AP =AB =1,∴ x =1. ……………………(1分)上海市2003年初中毕业高中招生统一考试27.如图,在正方形ABCD中,AB=1,弧AC是点B为圆心,AB长为半径的圆的一段弧。
2010年中考数学复习导引

1 复 习 时要 把 各章 节的 知识 联 系起 来 , 能 综合 运 用 , 到 举 一反 三 和 触 . 并 做
5月 l 日 6
一
专 题 知 识
类 旁通.
5月 3 1日
一 模 考试
2 进 行 有 针 对性 的复 习 , 据 个人 的具 体 情 况 开展 查 漏补 缺 , . 根 对知 识 和 解 题 方 法进 行 归类 . 形 成 知识 结 构 的基 础 上 加 深 记 忆. 在 1 通 过检 测或 模 拟 考 试 . 时发 现 自己知 识 的 漏 点和 疑 点 、 维 的 盲 点 、 . 及 思
关 ,如 把 几何 图 形放 到 直 角 坐 标 系 中 .利 用 坐标 系 中 的 坐 标
材, 绝不 能 脱 离课 本 ;3 不搞 题 () 海 战术 , 练习量是相 对而 言的 , 大 它 不 是 盲 目的练 ,而 是 有 针 对 性 、 型 性 、 次性 的 , 切 中要 典 层 是 害 的强 化练 习 ;4 对 于 作业 、 () 练
争考 戛
综 观 每 年 各 地 的 中考 数 学 试 卷 , 大 致 可 分 为 选 择 题 、 填 空
题 、 答 题 三 大 部 分 .就 考 题 难 易 程 度 而 言 , 易 试 题 、 档 试 解 较 中
题 、 难 试 题 的 比 例 为 53 2 较 : :.为 了 能 考 出 一 个 理 想 的 成 绩 , 们 我 应 该 制 订 合 理 的 中 考 数 学 复 习 策 略 : 重 教 材 , 抓 基 础 ; 透 注 狠 渗 思 想 , 握 方 法. 掌
中考 数 学 命 题 除 了着 重 考
查 基 础 知 识 外 。还 十 分 重 视 对
改正 、 定期 归纳 、 强化提 高.
2010年中考数学压轴题(一)及解答

中考复习资料大全2010年中考数学压轴题(一)及解答1、(2010年北京市)24. 在平面直角坐标系xOy 中,抛物线y = -41-m x 2+45mx +m 2-3m +2 与x 轴的交点分别为原点O 和点A ,点B (2,n )在这条抛物线上。
(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的 垂线,与直线OB 交于点E 。
延长PE 到点D 。
使得ED =PE 。
以PD 为斜边在PD 右侧作等腰直角三角形PCD (当P 点运动 时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1点Q 从A 点出发向O 点作匀速运动,速度为每秒2个单位(当Q 点到达O 点时停止 运动,P 点也同时停止运动)。
过Q 点作x 轴的垂线,与直线AB 交于点F 。
延长QF 到点M ,使得FM =QF ,以QM 为斜边,在QM 的左侧作等腰直角三角形QMN (当Q 点运动时,M 点,N 点也随之运动)。
若P 点运动到t 秒时,两个等腰直角三角形分 别有一条直角边恰好落在同一条直线上,求此刻t 的值。
【解答】24. 解:(1) ∵拋物线y = -41-m x 2+45mx +m 2-3m +2经过原点,∴m 2-3m +2=0,解得m 1=1,m 2=2, 由题意知m ≠1,∴m =2,∴拋物线的解析式为y = -41x 2+25x ,∵点B (2,n )在拋物线y = -41x 2+25x 上,∴n =4,∴B 点的坐标为(2,4)。
(2) 设直线OB 的解析式为y =k 1x ,求得直线OB 的解析式为y =2x ,∵A 点是拋物线与x 轴的一个交点,可求得A 点的 坐标为(10,0),设P 点的坐标为(a ,0),则E 点的坐标为 (a ,2a ),根据题意作等腰直角三角形PCD ,如图1。
上海市中考数学考点分析及分值分布

上海市中考数学考点分析及分值分布一、试卷的总体情况无论是上海市的数学中考,还是外地的中考数学,都是严格按照中考数学考试纲要制定的。
大体上都是从知识与技能、数学与思考、解决问题、情感态度与价值观等四个方面对学生加以考查。
试卷的知识点覆盖面广,基础知识多,很能体现出适合不同层面的学生来完成,这一点,上海市与外地没有太大的其别。
二、试卷的内容与结构1、代数和几何的比例试卷的题型分为:选择题、填空题和解答题(包括:计算题、证明题、应用题以及探索、开放性试题等)。
外地试卷的内容分布:数与代数约占48.7%;空间与几何占42%;统计与概率约占9.3%。
上海市《考纲》要求:数与代数的内容约占50%,空间与图形的约占35%,通过对近几年上海市各个区的中考试卷分析,我们可以看出,中考试卷150分内代数约占90分,几何约占60分,比例在6∶4。
2、各章节分值情况1、上海市中考方程(28分左右)和函数(32分左右)占较大的比重,函数部分(包括一次函数、二次函数、反比例函数)所涵盖的知识点基本考查到位,但是难度降低,这与外地的考点有比较大的区别,外地二次函数是中考重点考察的内容,且难度很大,属于综合类的大题。
2、统计的分值约占10% ,这与外地没有太大的区别。
3、锐角三角比板块分值与统计类似,约占10% ;4、二次根式、因式分解、不等式分值统计;因式分解3分左右,不等式分值大于二次根式,同学们在复习的过程中要关注不等式知识点复习的有效性。
三、考点分析1、方程:(1)解方程(组):主要是解分式方程、无理方程及二元二次方程组;无理方程与二元二次方程组在外地没有出现过,这些内容是上海市自己独立命题的。
(2)换元(化为整式方程),外地中考没有这一考点。
(3)一元二次方程根与系数关系的应用,主要是求方程中的系数;(4)列方程解应用题;“方程与不等式”的考法一般可分为如下的三大类:①技能层面上的题目——多以考方程与不等式的解法为主;②能力层面上的题目(“列方程或不等式”解应用题)——多以情境化的形式出现;③“方程思想”层面上的应用——一是以“横向”联系、“知识综合”、“解决实际问题或变化过程的即时性(阶段性)问题”为主。
突破2015年中考_回顾上海市近年中考数学难题

突破2015年高考,回顾上海市近年中考数学难题温馨提醒:1、值得教师与优秀数学尖子生值得思考的5年中考难题;2、按时间顺序排列,值得查看。
记得点评,与反思;3、题目在前,答案在后,反思参入,总结个人写。
上海市2009年中考数学试卷(重点难题)温馨提示:难点在于第2、3小问,第一问基础题。
25.(本题满分14分,第(1)小题满分4分,第(2)小题满分5分,第(3)小题满分5分)已知9023ABC AB BC AD BC P ∠===°,,,∥,为线段BD 上的动点,点Q 在射线AB上,且满足PQ ADPC AB=(如图8所示). (1)当2AD =,且点Q 与点B 重合时(如图9所示),求线段PC 的长; (2)在图8中,联结AP .当32AD =,且点Q 在线段AB 上时,设点B Q 、之间的距离 为x ,APQ PBCS y S =△△,其中APQ S △表示APQ △的面积,PBC S △表示PBC △的面积,求y 关于x 的函数解析式,并写出函数定义域;(3)当AD AB <,且点Q 在线段AB 的延长线上时(如图10所示),求QPC ∠的大小.AD PCBQ 图8DAPCB(Q ) 图9图CADPB Q上海市2010年中考数学试卷(重点难题)温馨提示:难点在于第2、3小问,第一问基础题,后两问,考察学生思维化。
25.如图,在Rt△ABC中,∠ACB=90°.半径为1的圆A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与线段BC的延长线交于点P.(1)当∠B=30°时,连接AP,若△AEP与△BDP相似,求CE的长;(2)若CE=2,BD=BC,求∠BPD的正切值;(3)若tan∠BPD=,设CE=x,△ABC的周长为y,求y关于x的函数关系式.上海市2011年中考数学试卷(重点难题)温馨提示:考虑问题的多种情况与可能。
18.Rt△ABC中,已知∠C=90°,∠B=50°,点D在边BC上,BD=2CD(如图).把△ABC绕着点D逆时针旋转m(0<m<180)度后,如果点B恰好落在初始Rt△ABC的边上,那么m= _________.温馨提示:难点在于第3小问,第一问基础题,第二问提高,第三问考虑思路。
上海中考数学考点分析

上海中考数学考点分析对中考数学卷,压轴题是考生最怕的,以为它一定很难,不敢碰它。
其实,对历年中考的压轴题作一番分析,就会发现,其实也不是很难。
首先压轴题难度有约定:历年中考,压轴题一般都由3个小题组成。
第(1)题容易上手,得分率在0.8以上;第(2)题稍难,一般还是属于常规题型,得分率在0.6与0.7之间,第(3)题较难,能力要求较高,但得分率也大多在0.3与0.4之间。
近十年来,最后小题的得分率在0.3以下的情况,只是偶尔发生,但一旦发生,就会引起各方关注。
控制压轴题的难度已成为各届命题组的共识,“起点低,坡度缓,尾巴略翘”已成为上海数学试卷设计的一大特色,以往上海卷的压轴题大多不偏不怪,得分率稳定在0.5与0.6之间,即考生的平均得分在7分或8分。
由此可见,压轴题也并不可怕。
压轴题一般都是代数与几何的综合题,很多年来都是以函数和几何图形的综合作为主要方式,用到三角形、四边形、相似形和圆的有关知识。
如果以为这是构造压轴题的唯一方式那就错了。
方程与图形的综合的几何问题也是常见的综合方式,如去年中考的第25(3)题,就是根据已知的.几何条件列出代数方程而得解的,这类问题在外省市近年的中考试卷中也不乏其例。
动态几何问题中有一种新题型,如北京市去年的压轴题,在图形的变换过程中,探究图形中某些不变的因素,它把操作、观察、探求、计算和证明融合在一起。
在这类动态几何问题中,锐角三角比作为几何计算的一种工具,它的重要作用有可能在压轴题中初露头角。
总之,压轴题有多种综合的方式,不要老是盯着某种方式,应对压轴题,决不能靠猜题、押题。
分析结构理清关系:解压轴题,要注意它的逻辑结构,搞清楚它的各个小题之间的关系是“平列”的,还是“递进”的,这一点非常重要。
如去年第25题的(1)、(2)、(3)三个小题是平列关系,它们分别以大题的已知为条件进行解题,(1)的结论与(2)的解题无关,(2)的结论与(3)的解题无关,整个大题由这三个小题“拼装”而成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2010年上海中考数学试卷分析(不含压轴题)今年的中考数学卷,严格按照课程标准的要求去执行,遵循8:1:1的模式,命题者还是坚持稳中求变,今年的中考试卷较去年的总体略简单(特别是最后的一题),总体难度差不多,体现出从08年全市推行二期课改后,第一次课改中考到09年的中考,可看出“该是稳一稳的时候了”。
题量与题型与前两年类似,学生拿到试卷应感到非常清切,防止学生有失误或因心理因素导致考试不理想的情况发生,也是体现当前的“和谐”与“稳定”两大主题。
以下是在二模分析会上的内容:
19、数的计算(涉及指数)
20、换元法解分式方程
21、统计初步
22、垂径定理(结合勾股定理,方程的思想)
23、与四边形有关的几何题
24、求特殊函数(正比例、一次、反比例、二次)解析式、两点间距离公式、分类讨论、结合相似三角形(经常用到仿射影定理),特殊的可结合图形的特殊性,用纯几何知识解决。
对照今年的中考试卷,可以看出,我们学而思的预测是准确的!在二模分析会上,我们重点提出要分析浦东区的二模卷,现在看来,好多题都在浦东的这份试卷上有所体现。
第19题,考查的是分母有理化、负指数、分数指数以及完全平方公式,计算的结果相当简单,命题人有意回避了学生易错的地方,如括号前是负号的,去括号要变号;二次根式分母有理化时,分母有时是负数等问题,考查的重点放在概念是否清晰上。
第20题,仍然坚持考查换元法解题,此题与第19题与浦东的二模卷类似。
第21题和第22题,与我们上面预测的题号有所调整,其内容没变。
第21题,考查了三角比、垂径定理及方程的思想解题。
题目有意设计了一个表面上看来不特殊度数的角,其实,我们的同学一眼就能发现5、12、13这三个数之间的关系,一般涉及到垂径定理计算的题,都会与勾股定理联系在一块,所以此题的辅助线对于学生来说是常规的,体现了平时要关注通解通法的重要性。
第22题,命题者设计了一道与时俱进的统计题,一般考查的是学生的读图表的能力与统计学中的基本概念,如频数、频率等,这道题有点反常规,考了一道加权平均数的计算,可能是因为频数、频率等前两年被炒得过热吧,而且在各区县的模拟卷中也是90%以上的都考了这方面的知识。
在考前,有些老师说市里的抽样卷中没有把统计题放在大题中,可能是以后的趋势,但我说今年至少不会,主要是因为在这里变招还没有任何迹象,市里的抽样卷只是起到投石问路的作用。
此题中的第三问,实际上是一个一元一次方程的应用题,没想到吧,在08年的中考题第22题中的第二问,也考了一个一元二次方程的问题,此题当时受到追捧,构思巧妙,这一优点被得以延续了。
第23题,“纯粹”的几何问题,这是预料之中的考点。
一般都是考查四边形的问题,因为三角形知识,对于毕业生来说,显得简单,并且考的也多,再说,四边形在初二年级中占有较大的比重。
更重要的是,几何题,一般不会让学生全失分,如果出一道难题,将会使一些学生一下子10分全没了,这与其它学科的一分一题差距过大,也失去了考查的意义。
本题中的最后一问,恰好我在中考押题讲座中举例时,就举了这一例,当时是在讲要注意图形的特殊性时出现的,“如果一个三角形一个角是60度,夹它的两边是两倍的关系,你们能发现什么。
”听过的同学应该有印象吧。
第24题,在中考押题讲座时,我说过一句话,06年考的是二次函数的问题,07年考的是一次函数与反比例函数的问题,08年考的是二次函数的问题,09年考的是一次函数的问题,那么你们说今年的这题考什么?很多同学和家长都说了,就是二次函数!他们预测都准了。
并且考二次函数,一定会考待定系数法、顶点坐标,对吗?此题中的第二问要注意数形结合,这一思想在初中数学中是很重要的,面积问题在第25题中没有考,但在这题中考到了,我们说,考面积问题都是考最简单的面积公式。
此题表面上求出来有两种情况,我相信一般同学都会关注,但题中有意加了P点在第四象限,可想而知,一种情况,学生会注意,这是有意在降低难度。
第25题,前面已有专题点评,此处不再哆嗦。
[查看压轴题点评]
对于前面的客观题:
基本图形,看样子是一定要有的,如仿射影定理,在第16题中出现;
分类讨论我们说一般出现在三个地方,第18、24、25题中,本次考试放在第18题。
其它的题还是让同学们自己去评说吧,与你平时做的题有区别吗?各区县都会涉及到,同学们不知道这一类题做了多少遍吧,这是上海命题的特色。