液压油缸的设计内容和步骤
液压油缸设计手册

液压油缸设计手册一、液压油缸概述1.定义及作用液压油缸,作为一种将液压能转换为机械能的元件,广泛应用于各种工程机械、汽车制造、航空航天、工业自动化等领域。
它以油液为工作介质,通过活塞往复运动实现驱动和控制设备的动作。
液压油缸在实现机械自动化、提高生产效率等方面具有重要作用。
2.分类及特点液压油缸按结构可分为单杆、双杆、多杆等类型;按驱动方式可分为手动和电动两种。
液压油缸具有以下特点:(1)输出力大,承载能力高;(2)体积小,重量轻,结构简单;(3)动作平稳,无噪声,无污染;(4)易于控制,便于实现自动化;(5)寿命长,维护方便。
二、液压油缸设计要点1.选材与工艺液压油缸的材料选择应考虑强度、耐磨性、耐腐蚀性等因素。
常见的材料有碳钢、不锈钢、铝合金等。
工艺方面,应根据油缸的工作条件选择合适的加工方法,如焊接、铸造、数控加工等。
2.结构设计与计算液压油缸的结构设计应满足以下要求:(1)确保油缸在正常工作时,密封件的寿命;(2)考虑油缸的安装方式,如耳轴、法兰等;(3)满足油缸在各种工况下的稳定性能;(4)考虑油缸的防尘、防水、防爆等性能。
计算方面,主要包括以下内容:(1)确定油缸的工作压力;(2)计算油缸的驱动力和负载力;(3)计算油缸的有效面积;(4)校核油缸的材料强度、密封件寿命等。
3.油缸尺寸确定根据液压油缸的用途和工况,确定油缸的长度、直径、行程等尺寸。
同时,考虑油缸的安装空间和外形要求。
4.密封与防尘设计密封设计应考虑油缸的工作压力、运动速度、介质性质等因素,选择合适的密封材料和型式。
防尘设计方面,可根据工况要求,采用不同的防尘措施,如防尘圈、防护罩等。
5.油缸性能优化针对液压油缸的性能要求,通过结构优化、材料选择、工艺改进等手段,提高油缸的性能。
三、液压油缸应用领域1.工程机械液压油缸在工程机械中的应用十分广泛,如液压起重机、液压挖掘机、液压支撑等。
2.汽车制造液压油缸在汽车制造领域的应用主要包括车身装配、发动机装配、底盘装配等。
液压油缸设计手册

液压油缸设计手册液压油缸是一种能够将液压能转换为机械能的设备,广泛应用于各种工程机械、自动化设备和工业领域中。
液压油缸的设计涉及到许多方面,包括设计原则、组成部分、性能参数等。
在本手册中,我们将详细介绍液压油缸的设计方法及其应用领域。
一、液压油缸概述液压油缸是液压系统中的核心部件,主要负责驱动和控制设备的运动。
它主要由缸体、活塞、密封装置、驱动装置等组成。
液压油缸具有结构简单、可靠性高、输出力大、动作速度快等特点。
二、液压油缸的设计原则在设计液压油缸时,应遵循以下原则:1.根据实际需求确定液压油缸的类型和规格。
2.确保液压油缸的强度、刚度和稳定性。
3.合理选择密封材料和密封方式,以提高液压油缸的密封性能。
4.考虑液压油缸的安装、维护和故障排除的便捷性。
三、液压油缸的组成部分液压油缸主要由以下几个部分组成:1.缸体:承受液压油的压力,并传递给活塞。
2.活塞:承受液压油的推力,并驱动其他设备运动。
3.密封装置:防止液压油泄漏,保证液压油缸的密封性能。
4.驱动装置:将液压油的能量转换为机械能,驱动活塞运动。
四、液压油缸的设计步骤1.确定液压油缸的类型和规格。
2.设计液压油缸的强度、刚度和稳定性。
3.选择密封材料和密封方式。
4.设计液压油缸的安装方式和相关附件。
5.校核液压油缸的性能参数,确保满足实际需求。
6.绘制液压油缸的零件图和总装图。
五、液压油缸的性能参数液压油缸的性能参数主要包括:1.工作压力:液压油缸所能承受的最大压力。
2.有效工作面积:活塞的有效面积,影响液压油缸的输出力。
3.行程:活塞从最下端到最上端移动的距离。
4.安装方式:液压油缸的安装方式有耳轴式、法兰式等。
六、液压油缸的应用领域液压油缸广泛应用于以下领域:1.工程机械:液压挖掘机、液压起重机等。
2.自动化设备:工业机器人、自动化生产线等。
3.交通运输:汽车起重机、液压支撑等。
4.航空航天:火箭发射装置、飞机起落架等。
七、液压油缸的维护与故障排除1.定期检查液压油缸的密封性能,更换密封件。
液压缸的设计和计算

液压缸设计和计算液压缸的设计和计算液压缸的设计是整个液压系统设计中的一部分,它是在对整个系统进行了工况分析,编制了负载图,选定了工作压力之后进行的; 一、设计依据:1了解和掌握液压缸在机械上的用途和动作要求;2了解液压缸的工作条件;3了解外部负载情况;4了解液压缸的最大行程,运动速度或时间,安装空间所允许的外形尺寸以及缸本身的动作;5设计已知液压系统的液压缸,应了解液压系统中液压泵的工作压力和流量的大小、管路的通径和布置情况、各液压阀的控制情况;6了解有关国家标准、技术规范及参考资料;二、设计原则:1保证缸运动的出力、速度和行程;2保证刚没各零部件有足够的强度、刚度和耐用性;3保证以上两个条件的前提下,尽量减小缸的外形尺寸;4在保证刚性能的前提下,尽量减少零件数量,简化结构;5要尽量避免缸承受横向负载,活塞杆工作时最好承受拉力,以免产生纵向弯曲;6缸的安装形式和活塞杆头部与外部负载的连接形式要合理,尽量减小活塞杆伸出后的有效安装长度,增加缸的稳定性;三、设计步骤:1根据设计依据,初步确定设计档案,会同有关人员进行技术经济分析;2对缸进行受力分析,选择液压缸的类型和各部分结构形式;3确定液压缸的工作参数和结构尺寸;4结构强度、刚度的计算和校核;5根据运动速度、工作出力和活塞直径,确定泵的压力和流量;6审定全部设计计算资料,进行修改补充;7导向、密封、防尘、排气和缓冲等装置的设计;8绘制装配图、零件图、编写设计说明书;四、液压缸设计中应注意的问题液压缸的设计和使用正确与否,直接影响到它的性能和是否易于发生故障;所以,在设计液压缸时,必须注意以下几点:1、尽量使液压缸的活塞杆在受拉状态下承受最大负载,或在受压状态下具有良好的稳定性;2、考虑液压缸行程终了处的制动问题和液压缸的排气问题;3、正确确定液压缸的安装、固定方式;4、液压缸各部分的结构需根据推荐的结构形式和设计标准进行设计,尽可能做到结构简单、紧凑、加工、装配和维修方便;5、在保证能满足运动行程和负载力的条件下,应尽可能地缩小液压缸的轮廓尺寸;6、要保证密封可靠,防尘良好;五、计算液压缸的结构尺寸1、缸筒内径D 根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从GB2348-80标准中选取最近的标准值作为所设计的缸筒内径;液压缸的有效工作面积为…… 24D p F A π== 以无杆腔作工作腔时………… p FD π4=以有杆腔作工作腔时………… 24d p F D +=π 2、活塞杆外径d 通常先从满足速度或速度比的要求来选择,然后再校核其结构强度和稳定性;若速度比为v λ,则 vv Dd λλ1-= 也可根据活塞杆受力状况来确定:受拉力作用时,d =~; 受压力作用时,则有3、缸筒长度L 缸筒长度L 由最大工作行程长度加上各种结构需要来确定,即:l —— 活塞的最大工作行程;B —— 活塞宽度,一般为~1D ;A —— 活塞杆导向长度,取~D ;M —— 活塞杆密封长度,由密封方式定;C —— 其他长度; 注意:从制造工艺考虑,缸筒的长度最好不超过其内径的20倍;六、强度校核对液压缸的缸筒壁厚δ、活塞杆直径d和缸盖固定螺栓的直径,在高压系统中必须进行强度校核;1、缸筒壁厚校核δ 缸筒壁厚校核分薄壁和厚壁两种情况;当D/δ≥10时为薄壁,壁厚按下式进行校核:δ≥δδδ2[δ]当D/δ<10时为厚壁,壁厚按下式进行校核:δ≥δ2(√[δ]+0.4δδ[δ]−1.3δδ−1)pt ——缸筒试验压力,随缸的额定压力的不同取不同的值D ——缸筒内径σ——缸筒材料许用应力2、活塞杆直径校核活塞杆的直径d按下式进行校核:3、液压缸盖固定螺栓直径校核液压缸盖固定螺栓直径按下式计算:F ——液压缸负载k ——螺纹拧紧系数~Z ——固定螺栓个数σ——螺栓材料许用应力七、液压缸稳定性校核活塞杆轴向受压时,其直径d一般不小于长度L的1/15;当L/d≥15时,须进行稳定性校核,应使活塞杆承受的力F不能超过使它保持稳定工作所允许的临界负载Fk ,以免发生纵向弯曲,破坏液压缸的正常工作;Fk 的值与活塞杆材料性质、截面形状、直径和长度以及缸的安装方式等因素有关,验算可按材料力学有关公式进行;• 当活塞杆细长比 21/ψψ>k r l 时,则• 当活塞杆细长比21/ψψ≤k r l 且120~2021=ψψl -- 安装长度,其值与安装方式有关;Ψ1 -- 柔性系数,对钢取Ψ1=85;Ψ2 -- 末端系数,由液压缸支承方式决定;E -- 活塞杆材料的弹性模量,对钢取E=× 1011Pa ;J -- 活塞杆横截面惯性矩;A -- 活塞杆横截面面积;f -- 由材料强度决定的实验数值,对钢取f=×108 N /m2; α--系数,对钢取α=1/5000;rk --活塞杆横截面的最小回转半径;八、缓冲计算液压缸的缓冲计算主要是估计缓冲时缸中出现的最大冲击压力,以便用来校核缸筒强度、制动距离是否符合要求;液压缸在缓冲时,缓冲腔内产生的液压能E 1和工作部件产生的机械能E 2分别为:当E 1=E 2时,工作部件的机械能全部被缓冲腔液体所吸收,则有九、油缸的试验1.油缸试验压力,低于16MPa乘以工作压力的,高于16乘以工作压力的;2.最低启动压力:是指液压缸在无负载状态下的最低工作压力,它是反映液压缸零件制造和装配精度以及密封摩擦力大小的综合指标;3.最低稳定速度:是指液压缸在满负荷运动时没有爬行现象的最低运动速度,它没有统一指标,承担不同工作的液压缸,对最低稳定速度要求也不相同;4.内部泄漏:液压缸内部泄漏会降低容积效率,加剧油液的温升,影响液压缸的定位精度,使液压缸不能准确地、稳定地停在缸的某一位置;。
液压油缸设计手册

液压油缸设计手册摘要:一、液压油缸设计手册概述二、液压油缸的工作原理三、液压油缸的设计要点四、液压油缸的制造与材料选择五、液压油缸的性能测试与维护正文:一、液压油缸设计手册概述《液压油缸设计手册》是一本详细介绍液压油缸设计、制造、材料选择、性能测试和维护等方面的专业书籍。
液压油缸是液压系统中的重要执行元件,广泛应用于各种工程机械、机床、汽车等设备中。
本书旨在为广大工程技术人员提供一本实用的液压油缸设计参考书。
二、液压油缸的工作原理液压油缸是一种将液压能转换为机械能的装置,主要由缸体、活塞、密封装置、缓冲装置等组成。
当液压油通过输入口进入油缸时,油压作用在活塞上,使活塞进行往复运动,从而实现对负载的推动或拉动。
三、液压油缸的设计要点1.确定油缸的工作压力:根据液压系统的工作压力和油缸的实际应用需求,合理确定油缸的工作压力。
2.选择合适的缸径和行程:根据负载的大小和运动速度,选择合适的缸径和行程,以保证油缸有足够的承载能力和运动速度。
3.选择合适的密封形式:根据工作环境和压力等级,选择合适的密封形式,以保证油缸具有良好的密封性能。
4.设计缓冲装置:为了减小活塞在行程末端的冲击和噪声,应设计缓冲装置。
5.选择合适的材料:根据油缸的工作压力、温度和介质,选择合适的材料,以保证油缸具有良好的耐压性能、耐磨性能和抗腐蚀性能。
四、液压油缸的制造与材料选择1.制造工艺:油缸的制造工艺主要包括焊接、锻造、热处理、机加工等。
2.材料选择:油缸的材料应具有良好的力学性能、耐磨性能和抗腐蚀性能。
常用的材料有碳钢、不锈钢、铝合金等。
五、液压油缸的性能测试与维护1.性能测试:油缸在制造完成后,应进行压力试验、泄漏试验、运动试验等性能测试,以确保其性能符合设计要求。
2.维护与保养:在使用过程中,应定期检查油缸的密封性能、润滑状况等,发现问题及时处理。
液压油缸设计标准

液压油缸设计标准1. 结构和材料液压油缸的主要结构应设计为耐高压、高强度和耐疲劳的结构。
缸体应采用高强度材料,如铸钢、合金钢或不锈钢。
对于关键部位,如活塞和活塞环,应选择耐磨、耐腐蚀的材料,如不锈钢或高强度合金钢。
2. 密封和防泄漏液压油缸的密封系统应设计为防止内部和外部泄漏。
活塞和活塞环之间应采用高性能的密封圈或密封环,以防止液压油的泄漏。
此外,缸盖和缸体之间也应采用密封圈或密封环,以确保缸体的密封性。
3. 性能要求液压油缸应具有良好的性能,包括推力、速度、精度和稳定性。
推力应足够大,以适应各种应用场景的需要。
速度应可调,以满足不同操作速度的要求。
精度应高,以实现精确的控制。
稳定性应强,以确保在各种操作条件下都能保持稳定的工作状态。
4. 安装和维护液压油缸的安装和维护应简单易行。
在安装过程中,应确保各部件的正确安装和调整,避免因安装不当而引起的泄漏或损坏。
在维护过程中,应定期检查液压油的清洁度和浓度,以及各部件的磨损情况,及时进行更换或维修。
5. 表面处理和涂层液压油缸的表面处理和涂层应能够抵抗腐蚀和磨损。
缸体和活塞等部件应进行防腐蚀处理,如镀锌、喷涂防腐涂料等。
此外,为了提高耐磨性,活塞环等摩擦表面应进行耐磨涂层处理。
6. 环境和安全要求液压油缸的设计应考虑环境和安全要求。
在操作过程中,液压油缸可能会产生热量和压力,因此应确保液压油缸能够安全地承受这些条件。
此外,在设计和制造过程中,应考虑到环境保护的要求,尽可能减少对环境的影响。
7. 测试和检验液压油缸在出厂前应进行严格的测试和检验。
测试应包括性能测试、密封性测试、耐压测试等。
检验应包括外观检验、尺寸检验等。
只有经过合格的测试和检验,液压油缸才能被视为符合设计标准。
8. 标记和文档液压油缸应有清晰的标记和完整的文档。
标记应包括产品名称、型号、规格、生产日期等基本信息。
文档应包括设计图纸、使用说明书、维护手册等。
这些标记和文档应易于理解和使用,以便于用户正确地使用和维护液压油缸。
液压油缸设计手册

液压油缸设计手册
液压油缸设计手册主要包含以下内容:
1. 液压油缸的基本原理与结构特点:详细介绍液压油缸的工作原理,以及其构成部件如缸体、活塞、活塞杆、密封件等。
2. 设计步骤:掌握原始资料和设计依据,包括主机的用途和工作条件,工作机构的结构特点、负载状况、行程大小和动作要求,液压系统所选定的工作压力和流量等。
然后进行缸盖的结构形式设计,计算缸盖与缸筒的连接强度。
根据工作行程要求确定液压缸的最大工作长度L,通常L=D(活塞杆径)。
对于活塞杆细长的情况,应进行纵向弯曲强度校核和液压缸的稳定性计算。
必要时设计缓冲、排气和防尘等装置。
3. 校核与调整:活塞与活塞杆同轴度不好的情况应进行校正、调整。
活塞杆弯曲的情况应校直,活塞杆严重时应镇磨。
双出杆活塞缸的活塞杆两端螺帽太紧的情况应略松螺帽,使活塞处于自然状态。
可以用肉眼判别排气是否彻底。
4. 绘制装配图和零件图:完成设计后,需要绘制液压缸装配图和零件图。
5. 整理设计计算书:整理所有的设计计算书,审定图样及其它技术文件。
以上内容仅供参考,具体内容可能会根据不同的设计手册有所差异。
如需更多信息,建议查阅相关文献或咨询专业工程师。
液压油缸的主要设计技术参数

液压油缸的主要设计技术参数液压油缸是一种将液压能转化为机械能的装置,广泛应用于各种工业设备和机械系统中。
它主要由活塞、油缸、活塞杆、密封件等组成。
设计液压油缸时需考虑诸多技术参数,以下是其中一些重要的参数和设计技术。
1.力量参数:液压油缸的力量参数是指油缸的额定工作压力和最大工作压力。
额定工作压力是指油缸可承受的标准工作压力,最大工作压力是指油缸在短时间内承受的最大压力。
2.动作方式:液压油缸的动作方式可分为单作用和双作用两种。
单作用油缸只能在一侧施加力量,复位需要外力或其他方式来实现;双作用油缸既可以在两侧施加力量,也可以通过外力和其他方式复位。
3.排量:液压油缸的排量是指油缸在单位时间内所能排出的工作油量。
排量大小直接影响油缸的工作速度和效率。
4.动作速度:液压油缸的动作速度是指油缸在工作过程中活塞移动的速度。
速度大小取决于油缸的排量和工作流量。
5.有效工作行程:液压油缸的有效工作行程是指活塞在油缸内可移动的距离,也即活塞杆的伸缩长度。
有效工作行程需要根据具体工作需要进行设计。
6.密封性能:液压油缸在工作过程中需要保持较好的密封性能,以防止液压油泄露,影响工作效果。
常用的密封件有活塞密封、油缸密封、活塞杆密封等。
7.轴向刚度和载荷特征:液压油缸的轴向刚度和载荷特征是指油缸在承受力量时的变形情况。
设计时需考虑油缸的承载能力和支撑结构的稳定性。
8.外部环境适应性:液压油缸在设计时还需考虑其外部环境适应性,包括耐腐蚀性、抗震性、抗冲击性等。
9.运行可靠性:设计液压油缸时需确保其运行可靠性,包括油缸的长寿命、稳定性和操作可靠性。
10.成本和效益:液压油缸的设计还需考虑成本和效益问题,以确保在满足需求的基础上,尽量降低成本和提高效益。
综上所述,液压油缸的设计技术参数包括力量参数、动作方式、排量、动作速度、有效工作行程、密封性能、轴向刚度和载荷特征、外部环境适应性、运行可靠性以及成本和效益等。
这些参数的合理设计和选择,对液压油缸的性能和工作效果至关重要。
液压油缸设计手册

液压油缸设计手册第一章:液压油缸概述1.1 液压油缸的定义和作用液压油缸是一种常用的液压执行元件,利用液压油在缸体中的压力变化,产生线性运动或者转动,用于实现各种机械装置的动作控制。
液压油缸广泛应用于冶金、石化、建筑、造船、机械制造等领域。
1.2 液压油缸的结构和工作原理液压油缸通常由缸体、活塞、密封件、进出油口、安装支架等组成。
其工作原理是通过控制油液的流入和流出,使得油缸内部产生一定的压力,从而驱动活塞做直线运动或旋转运动。
第二章:液压油缸设计原理2.1 液压油缸的选型原则在设计液压油缸时,应考虑载荷大小、工作环境、运动速度、活塞行程等因素,选择适合的型号和规格的液压油缸。
2.2 液压油缸的密封性能设计密封性是液压油缸的重要性能指标,设计时应考虑密封件的选择、布局和工作条件,以确保液压油缸的密封可靠性。
2.3 液压油缸的安全性设计在设计液压油缸时,应考虑其在工作过程中可能遇到的过载、压力变化、温度变化等情况,设计相应的安全保护装置和控制系统,以确保液压油缸的安全可靠运行。
第三章:液压油缸的结构设计3.1 缸体和活塞的材料选择液压油缸的缸体和活塞通常由优质碳素钢、合金钢或不锈钢制成,设计时需考虑材料的强度、刚性、耐磨性和耐腐蚀性等性能。
3.2 活塞杆的设计活塞杆是液压油缸的重要部件,设计时需考虑其长度、直径、表面硬度和表面光洁度等参数,以确保活塞杆的工作可靠性和寿命。
3.3 密封件的设计液压油缸的密封件包括活塞密封、杆密封、缸体密封等,设计时需选择适合的密封材料和结构,以确保液压油缸具有良好的密封性能。
第四章:液压油缸的应用和维护4.1 液压油缸的应用范围液压油缸广泛应用于各种工程机械、航空航天、船舶、起重装备、冶金设备等领域,可实现各种复杂机械动作的控制。
4.2 液压油缸的维护和保养液压油缸在使用过程中需要定期检查和维护,包括液压油的更换、密封件的检查、活塞杆的清洁和润滑等,以保证液压油缸的正常工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
液压缸是液压传动的执行元件,它和主机工作机构有直接的联系,对于不同的机种和机构,液压缸具有不同的用途和工作要求。
因此,在设计液压缸之前,必须对整个液压系统进行工况分析,编制负载图,选定系统的工作压力(详见第九章),然后根据使用要求选择结构类型,按负载情况、运动要求、最大行程等确定其主要工作尺寸,进行强度、稳定性和缓冲验算,最后再进行结构设计。
根据一览旗下液压英才网资深顾问理工分析有以下几大要点:
1.液压油缸的设计内容和步骤
(1)选择液压缸的类型和各部分结构形式。
(2)确定液压缸的工作参数和结构尺寸。
(3)结构强度、刚度的计算和校核。
(4)导向、密封、防尘、排气和缓冲等装置的设计。
(5)绘制装配图、零件图、编写设计说明书。
(液压招聘)下面只着重介绍几项设计工作。
2.计算液压缸的结构尺寸液压缸的结构尺寸主要有三个:缸筒内径D、活塞杆外径d和缸筒长度L。
(1)缸筒内径D。
液压缸的缸筒内径D是根据负载的大小来选定工作压力或往返运动速度比,求得液压缸的有效工作面积,从而得到缸筒内径D,再从
GB2348—80标准中选取最近的标准值作为所设计的缸筒内径。
根据负载和工作压力的大小确定D:
①以无杆腔作工作腔时
(4-32)
②以有杆腔作工作腔时
(4-33)
式中:pI为缸工作腔的工作压力,可根据机床类型或负载的大小来确定;Fmax 为最大作用负载。
(2)活塞杆外径d。
活塞杆外径d通常先从满足速度或速度比的要求来选择,然后
再校核其结构强度和稳定性。
若速度比为λv,则该处应有一个带根号的式子:
(4-34)
也可根据活塞杆受力状况来确定,一般为受拉力作用时,d=0.3~0.5D。
受压力作用时:
pI<5MPa时,d=0.5~0.55D
5MPa<pI<7MPa时,d=0.6~0.7D
pI>7MPa时,d=0.7D
(3)缸筒长度L。
缸筒长度L由最大工作行程长度加上各种结构需要来确定,即:L=l+B+A+M+C
式中:l为活塞的最大工作行程;B为活塞宽度,一般为(0.6-1)D;A为活塞杆导向长度,取(0.6-1.5)D;M为活塞杆密封长度,由密封方式定;C为其他长度。
一般缸筒的长度最好不超过内径的20倍。
另外,液压缸的结构尺寸还有最小导向长度H。
(4)最小导向长度的确定。
当活塞杆全部外伸时,从活塞支承面中点到导向套滑动面中点的距离称为最小导向长度H(如图4-19所示)。
如果导向长度过小,将使液压缸的初始挠度(间隙引起的挠度)增大,影响液压缸的稳定性,因此设计时必须保证有一最小导向长度。
图4-19油缸的导向长度
K—隔套
对于一般的液压缸,其最小导向长度应满足下式:
H≥L/20+D/2 (4-35)
式中:L为液压缸最大工作行程(m);D为缸筒内径(m)。
一般导向套滑动面的长度A,在D<80mm时取A=(0.6-1.0)D,在D>80mm时取A=(0.6-1.0)d;活塞的宽度B则取B=(0.6-1.0)D。
为保证最小导向长度,过分增大A和B都是不适宜的,最好在导向套与活塞之间装一隔套K,隔套宽度C
由所需的最小导向长度决定,即:C=H-(4-36)
采用隔套不仅能保证最小导向长度,还可以改善导向套及活塞的通用性。
3.强度校核? 对液压缸的缸筒壁厚δ、活塞杆直径d和缸盖固定螺栓的直径,在高压系统中必须进行强度校核。
(1)缸筒壁厚校核。
缸筒壁厚校核时分薄壁和厚壁两种情况,当D/δ≥10时为薄壁,壁厚按下式进行校核:
δ>=ptD/2[σ](4-37)
式中:D为缸筒内径;pt为缸筒试验压力,当缸的额定压力pn≤16MPa时,取pt=1.5pn,pn为缸生产时的试验压力;当pn>16MPa时,取
pv=1.25 pn;[σ]为缸筒材料的许用应力,[σ]=σb/n,σb为材料的抗拉强度,n为安全系数,一般取n=5。
当D/σ<10时为厚壁,壁厚按下式进行校核:
δ≥(4-38)
在使用式(4-37)、式(4-38)进行校核时,若液压缸缸筒与缸盖采用半环连接,δ
应取缸筒壁厚最小处的值。
(2)活塞杆直径校核。
活塞杆的直径d按下式进行校核:
d≥(4-39)
式中:F为活塞杆上的作用力;[σ]为活塞杆材料的许用应力,[σ]=σb/1.4。
(3)液压缸盖固定螺栓直径校核。
液压缸盖固定螺栓直径按下式计算:
?d≥4-40)
式中:F为液压缸负载;Z为固定螺栓个数;k为螺纹拧紧系数,k=1.12~1.5,
[σ]=
σs/(1.2-2.5),σs为材料的屈服极限。
4.液压缸稳定性校核? 活塞杆受轴向压缩负载时,其直径d一般不小于长度L的1/15。
当L/d≥15时,须进行稳定性校核,应使活塞杆承受的力F不能超过使它保持稳定工作所允许的临界负载Fk,以免发生纵向弯曲,破坏液压缸的正常工作。
Fk的值与活塞杆材料性质、截面形状、直径和长度以及缸的安装方式等因素有关,验算可按材料力学有关公式进行。
5.缓冲计算? 液压缸的缓冲计算主要是估计缓冲时缸中出现的最大冲击压力,以便用来校核缸筒强度、制动距离是否符合要求。
缓冲计算中如发现工作腔中的液压能和工作部件的动能不能全部被缓冲腔所吸收时,制动中就可能产生活塞和缸盖相碰现象。
液压缸在缓冲时,缓冲腔内产生的液压能E1和工作部件产生的机械能E2分别为:
E1=pcAclc (4-41)
E2=ppAplc+mV2-Fflc (4-42)
式中:pc为缓冲腔中的平均缓冲压力;pp为高压腔中的油液压力;Ac、Ap为缓冲腔、高压腔的有效工作面积;Lc为缓冲行程长度;m为工作部件质量;v0为工作部件运动速度;Ff为摩擦力。
式(4-42)中等号右边第一项为高压腔中的液压能,第二项为工作部件的动能,第三项为摩擦能。
当E1=E2时,工作部件的机械能全部被缓冲腔液体所吸收,由上两式得:
Pc=E2/Aclc (4-43)
如缓冲装置为节流口可调式缓冲装置,在缓冲过程中的缓冲压力逐渐降低,假定缓冲压力线性地降低,则最大缓冲压力即冲击压力为:
Pcmax=Pc+mυ02/2Aclc (4-44)
如缓冲装置为节流口变化式缓冲装置,则由于缓冲压力Pc始终不变,最大缓冲压力的值如式(4-43)所示。
6.液压缸设计中应注意的问题? 液压缸的设计和使用正确与否,直接影响到它的
性能和易否发生故障。
在这方面,经常碰到的是液压缸安装不当、活塞杆承受偏载、液压缸或活塞下垂以及活塞杆的压杆失稳等问题。
所以,在设计液压缸时,必须注意以下几点:
(1)尽量使液压缸的活塞杆在受拉状态下承受最大负载,或在受压状态下具有良好的稳定性
(2)考虑液压缸行程终了处的制动问题和液压缸的排气问题。
缸内如无缓冲装置和排气装置,系统中需有相应的措施,但是并非所有的液压缸都要考虑这些问题。
(3)正确确定液压缸的安装、固定方式。
如承受弯曲的活塞杆不能用螺纹连接,要用止口连接。
液压缸不能在两端用键或销定位。
只能在一端定位,为的是不致阻碍它在受热时的膨胀。
如冲击载荷使活塞杆压缩。
定位件须设置在活塞杆端,如为拉伸则设置在缸盖端。
(4)液压缸各部分的结构需根据推荐的结构形式和设计标准进行设计,尽可能做到结构简单、紧凑、加工、装配和维修方便。
(5)在保证能满足运动行程和负载力的条件下,应尽可能地缩小液压缸的轮廓尺寸。
(6)要保证密封可靠,防尘良好。
液压缸可靠的密封是其正常工作的重要因素。
如泄漏严重,不仅降低液压缸的工作效率,甚至会使其不能正常工作(如满足不了负载力和运动速度要求等)。
良好的防尘措施,有助于提高液压缸的工作寿命。
液压英才网资深顾问理工总结,液压缸的设计内容不是一成不变的,根据具体的情况有些设计内容可不做或少做,也可增大一些新的内容。
设计步骤可能要经过多次反复修改,才能得到正确、合理的设计结果。
在设计液压缸时,正确选择液压缸的类型是所有设计计算的前提。
在选择液压缸的类型时,要从机器设备的动作特点、行程长短、运动性能等要求出发,同时还要考虑到主机的结构特征给液压缸提供的安装空间和具体位置。
如:机器的往复直线运动直接采用液压缸来实现是最简单又方便的。
对于要求往返运动速度一致的场合,可采用双活塞杆式液压缸;若有快速返回的要求,则宜用单活塞杆式液压缸,并可考虑用差动连接。
行程较长时,可采用柱塞缸,以减少加工的困难;行程较长但负载不大时,也可考虑采用一些传动装置来扩大行程。
往复摆动运动既可用摆动式液压缸,也可用直线式液压缸加连杆机构或齿轮——齿条机构来实现。