《三角形三边关系的探究》-练习题

合集下载

小学数学四五年级《三角形的三边关系及内角和》期中复习重难点练习题

小学数学四五年级《三角形的三边关系及内角和》期中复习重难点练习题

1、三种规格木棒长分别是3cm、6cm、9cm,选一根6cm的小棒和两根( )cm的小棒可以围成一个等腰三角形,这个三角形的周长是( )cm。

2、一个三角形的两边长分别为2cm和9cm,第三边长是一个奇数,则第三边的长为____,此三角形的周长为_____.(9,20)
3、一个等腰三角形的两边为2.5和5,这个三角形的周长()。

4、等腰三角形的一边长为3cm,另一边长是5cm,则它的第三边长为()。

5、三角形的三边长为3,a,7,则a的取值范围是();如果这个三角形中有两条边相等,那么它的周长是();
6、若等腰三角形的两边长分别为3和7则它的周长为();若等腰三角形的两边长分别是3和4,则它的周长为()。

二、选择题。

1、等腰三角形的两边长分别是2 和 5,则它的周长是( )
A、7
B、9
C、12
D、9或12
2、已知一个三角形的周长为15cm,且其中的两边都等于第三边的2倍,那么这个三角形的最短边为()(C)
A、1cm
B、2cm
C、3cm
D、4cm
3、已知等腰三角形的两边长分别为3和6,则它的周长为( )
A.9
B.12
C.15
D.12或15
1、用三根分别长13厘米、20厘米和6厘米的小木棒,一定能摆出一个三角形。

( )
5、一个三角形的三条边的长分别是3、4、8分米。

( )
四、想一想,填一填。

用24厘米的铁丝围成一个每边长度都是整厘米的三角形(没有剩余)
(1)如果围成的三角形的三条边长都相等,那么每条边的长是( )厘米。

(2)在围成的三角形中,最长的一条边的长要小于( )厘米。

七年级数学下册 3.1.1 三边关系试题(基础巩固提优+课外拓展提优+开放探究提优,pdf) (新版)北师大版

七年级数学下册 3.1.1 三边关系试题(基础巩固提优+课外拓展提优+开放探究提优,pdf) (新版)北师大版

第三章㊀㊀㊀㊀㊀㊀㊀三 角 形1㊀认识三角形第1课时㊀三边关系㊀㊀1.认识三角形的概念及基本要素.2.掌握三角形三边之间的关系.1.若三角形两条边分别是2c m和7c m,则第三边c的范围是㊀㊀㊀㊀,当周长为偶数时,第三边长为㊀㊀㊀㊀,若周长为5的倍数时,第三边长为㊀㊀㊀㊀.2.若等腰三角形的腰长为6,则它的底边长a的取值范围是㊀㊀㊀㊀;若等腰三角形的底边长为4,则它的腰长b的取值范围是㊀㊀㊀㊀.3.一个木工师傅现有两根木条,它们的长分别为30c m和50c m,他要选择第三根木条,将它们钉成一个三角形木架,设第三根木条为x c m,则x的取值范围是㊀㊀㊀㊀,若第三根木条是整十数,则第三根木条可以有㊀㊀㊀㊀种选择.4.认识三角形后,勤于探索的贝贝和晶晶又用玩游戏的方式探索起来.贝贝:给出下列四组线段,请你找出能构成三角形的一组.晶晶略一思考,就正确地找了出来是(㊀㊀).A.2c m,4c m,6c mB.3c m,8c m,4c mC.7c m,7c m,3c mD.9c m,5c m,3c m5.若三角形的两边长分别为3和5,则其周长l的取值范围是(㊀㊀).A.6<l<15B.6<l<16C.10<l<16D.11<l<136.以长度为5,7,9,13中的三条线段为边,能组成一个三角形的情况有(㊀㊀).A.1种B.2种C.3种D.4种7.在下列各题中给出的三条线段不一定能组成三角形的是(㊀㊀).A.a+1,a+2,a+3(a>0)B.三条线段的比是4ʒ6ʒ8C.3c m,8c m,10c mD.3a,5a,2a-1(a>0)8.在周长为p的三角形中,最长边m的取值范围是(㊀㊀).A.p3ɤm<p2B.p3<m<p2C.p3<mɤp2D.p3ɤmɤp29.已知әA B C的周长为48c m,最大边与最小边之差为14c m,另一边与最小边之和为25c m,求әA B C各边的长.10.已知在әA B C中,A B=A C,点D在A C的延长线上.求证:B D-B C<A D-A B.(第10题)11.若三角形的三边长都是正整数,一边长为4,但它不是最短边,写出8种满足所有条件的三角形的三边长.12.如图,A C㊁B D相交于点O,试说明:A C+B D>12(A B+B C+C D+D A).(第12题)惟有真才能血性,须从本色见英雄. 黄㊀兴受人者,常畏人;与人者,常骄人.皇甫谧13.әA B C 的三边a ,b ,c 都是正整数,且满足a ɤb ɤc ,如果b =4,那么这样的三角形共有(㊀㊀).A.4个B .6个C .8个D.10个14.各边长均为整数且各边均不相等的三角形的周长小于13,这样的三角形有(㊀㊀).A.1个B .2个C .3个D.4个15.如果三角形的两边长分别为2和4,且第三边的长为奇数,试讨论三角形的第三边应为多少?若第三边为偶数,求这个三角形的周长.16.已知a ,b ,c 是三角形三条边的长,试判断代数式a 2-2a b-c 2+b2值的正负.17.已知a ,b ,c 是әA B C 的三边,化简:|a -b -c |+|a +b -c |-|b -c -a |+|c -a -b |.18.如图,草原上有4口油井,位于四边形A B C D 的4个顶点处,现在要建立一个维修站H ,试问维修站H 建在何处,才能使它到4口油井的距离之和HA +H B +H C +HD 为最小?说明理由.(第18题)19.(2012 广东)已知三角形两边的长分别是4和10,则此三角形第三边的长可能是(㊀㊀).A.5B .6C .11D.1620.(2012 湖南长沙)现有3c m ,4c m ,7c m ,9c m 长的四根木棒,任取其中三根组成一个三角形,那么可以组成的三角形的个数是(㊀㊀).A.1B .2C .3D.421.(2012 湖南郴州)以下列各组线段为边,能组成三角形的是(㊀㊀).A.1c m ,2c m ,4c m B .4c m ,6c m ,8c m C .5c m ,6c m ,12c m D.2c m ,3c m ,5c m22.(2012 浙江义乌)如果三角形的两边长分别为3和5,第三边长是偶数,则第三边长可以是(㊀㊀).A.2B .3C .4D.823.(2012 广东茂名)如图所示,建高楼时常需要用塔吊来吊建筑材料,而塔吊的上部都是三角形结构,这是应用了三角形的哪个性质?答:㊀.(第23题)48,则a =23c m ,b =16c m ,c =9c m .10.ȵ㊀A D -A B =A C +C D -A C =C D ,又㊀B D -B C <C D ,ʑ㊀B D -B C <A D -A B .11.如:1,4,4;2,4,4;2,3,4;2,4,5;3,3,4;3,4,4;3,4,5;3,4,6等12.在әA O D 中,A O +D O >A D ;在әA O B 中,A O +B O >A B ;在әB O C 中,B O +C O >B C ;在әC O D 中,C O +D O >C D .四个不等式两边分别相加,并化简,得2A C +2B D >A B +B C +C D +D A ,所以A C +B D >12(A B +B C +C D +D A ).13.D ㊀14.C15.设第三边为x ,根据三边关系,得4-2<x <4+2,所以2<x <6.所以第三边若为奇数,第三边长为3或5;若第三步为偶数,则第三边长为4,此时三角形的周长=2+4+4=10.16.㊀a 2-2a b -c 2+b2=(a -b )2-c2=(a -b -c )(a +c -b ).ȵ㊀a -b -c <0,a +c -b >0,ʑ㊀a 2-2a b -c 2+b 2<0.17.因为a ,b ,c 是әA B C 的三边,所以a -b -c <0,a +b -c >0,b -c -a <0,c -a -b <0,所以原式=-(a -b -c )+(a +b -c )+(b-c -a )-(c -a -b )=-a +b +c +a +b -c +b -c -a -c +a +b=4b -2c .18.维修站H 建在两条对角线A C ㊁B D 的交点处便符合要求,现不妨任取异于H 的一点H ᶄ,连接AH ᶄ㊁B H ᶄ㊁C H ᶄ㊁DH ᶄ,则AH ᶄ+C H ᶄ>A C =AH +C H ,①B H ᶄ+DH ᶄ>B D =B H +DH ,②①+②,得A H ᶄ+C H ᶄ+B H ᶄ+D H ᶄ>A H +C H +B H +D H .ʑ㊀对角线A C ㊁B D 的交点H 处到4口油井的距离之和为最小.(第18题)19.C ㊀20.A㊀21.B ㊀22.C ㊀23.稳定性第三章㊀三角形1㊀认识三角形第1课时㊀三边关系1.5c m<c <9c m㊀7c m㊀6c m 2.0<a <12㊀b >23.20<x <80㊀54.C ㊀5.C ㊀6.C ㊀7.D㊀8.B9.设三角形的三边长为a ,b ,c ,且a >b >c .由已知,可得a -c =14,b +c =25,a +b +c =。

三角形的三边不等式关系练习题

三角形的三边不等式关系练习题

三角形的三边不等式关系练习题1.【2019•扬州】已知n 是正整数,若一个三角形的三边长分别是n +2,n +8,3n ,则满足条件的n 的值有( D )A .4个B .5个C .6个D .7个【点拨】①若n +2<n +8≤3n ,则⎩⎪⎨⎪⎧n +2+n +8>3n ,n +8≤3n ,解得⎩⎪⎨⎪⎧n <10,n ≥4,即4≤n <10, ∴正整数n 有6个,即4,5,6,7,8,9;②若n +2<3n <n +8,则⎩⎪⎨⎪⎧n +2<3n ,3n <n +8,n +2+3n >n +8, 解得⎩⎪⎨⎪⎧n >1,n <4,n >2,即2<n <4, ∴正整数n 有1个,即3;③若3n ≤n +2<n +8,则⎩⎪⎨⎪⎧3n ≤n +2,3n +n +2>n +8,解得⎩⎪⎨⎪⎧n ≤1,n >2,不等式组无解; 综上所述,满足条件的n 的值有7个.故选D.2.如图所示是一个直三棱柱的表面展开图,其中AD =10,CD =2,则下列可作为AB 长的是( B )A .5B .4C .3D .23.【2018·宿迁】若实数m ,n 满足等式|m -2|+n -4=0,且m ,n 恰好是等腰三角形ABC的两条边的长,则△ABC 的周长是( B )A .12B .10C .8D .6【点拨】∵||m -2+n -4=0,∴m -2=0,n -4=0,解得m =2,n =4.当腰长为2时,三边长为2,2,4,不符合三边关系定理;当腰长为4时,三边长为2,4,4,符合三边关系定理,此时周长为2+4+4=10.故选B.本题易忽视组成三角形的条件而错选C.4.已知a ,b ,c 是△ABC 的三边长,a =4,b =6,设三角形的周长是x .(1)直接写出c 及x 的取值范围.(2)若x 是小于18的偶数.①求c 的长;②判断△ABC 的形状.解:(1)c 的取值范围为2<c <10.x 的取值范围为12<x <20.(2) ①因为x 是小于18的偶数,所以x =16或x =14.当x =16时,c =6;当x 为14时,c =4.(2) ②当c =6时,b =c ,△ABC 为等腰三角形;当c =4时,a =c ,△ABC 为等腰三角形.综上,△ABC 是等腰三角形.5.某木材市场上木棒规格与价格如下表:小明的爷爷要做一个三角形的支架养鱼用,现有两根长度为3 m 和5 m 的木棒,还需要到该木材市场上购买一根.(1)有几种规格的木棒可供小明的爷爷选择?(2)在能做成三角形支架的情况下,选择哪一种规格的木棒最省钱?解:(1)设第三根木棒长x m ,由三角形的三边关系可得5-3<x <5+3,即2<x <8.故规格为3 m ,4 m ,5 m ,6 m 的四种木棒可供小明的爷爷选择.(2) 选择规格为3 m 的木棒最省钱.6.如图,P 是△ABC 内部的一点.(1)度量AB ,AC ,PB ,PC 的长,根据度量结果比较AB +AC 与PB +PC 的大小.(2)改变点P 的位置,上述结论还成立吗?(3)你能说明上述结论为什么成立吗?解:(1)度量结果略.AB +AC >PB +PC .(2)成立.(3) 解:延长BP 交AC 于点D .在△ABD 中,AB +AD >BP +PD ①,在△PDC 中,PD +DC >PC ②.①+②,得AB +AD +PD +DC >BP +PD +PC ,即AB +AC >PB +PC .7.小明和小红在一本数学资料书上看到这样一道竞赛题:“已知△ABC 的三边长分别为a,b ,c ,且|b +c -2a |+(b +c -5)2=0,求b 的取值范围.”(1)小明说:“b 的取值范围,我看不出如何求,但我能求出a 的长度.”你知道小明是如何计算的吗?帮他写出求解的过程;(2)小红说:“我也看不出如何求b 的取值范围,但我能用含b 的式子表示c .”帮小红写出过程;(3)小明和小红一起去问数学老师,老师说:“根据你们二人的求解,利用书上三角形的三边满足的关系,即可求出答案.”你知道答案吗?请写出过程.解:(1)∵|b +c -2a |+(b +c -5)2=0,∴b +c -2a =0且b +c -5=0,∴2a =5,解得a =52. (2)∵|b +c -2a |+(b +c -5)2=0,∴b +c -2a =0且b +c -5=0,由b +c -5=0,得c =5-b.(3)由三角形的三边关系,得当5-b ≥52,即b ≤52时,b +52>5-b , ∴54<b ≤52; 当5-b <52,即b >52时,5-b +52>b ,∴52<b <154; ∴b 的取值范围为54<b <154.。

三角形边角关系练习题

三角形边角关系练习题

D D D D D C B A C C C C B B B B A A AA A第11题图第8题图C A 练习1一、选择题1.如图,△ABC 中,∠C =75°,若沿图中虚线截去∠C ,则∠1+∠2=( )A. 360°B. 180°C. 255°D. 145°2.若三条线段中a =3,b =5,c 为奇数,那么由a ,b ,c 为边组成的三角形共有( )A. 1个B. 3个C. 无数多个D. 无法确定 3.有四条线段,它们的长分别为1cm ,2cm ,3cm ,4cm , 从中选三条构成三角形,其中正确的选法有( A. 1种 B. 2种 C. 3种 D. 4种4.能把一个三角形分成两个面积相等的三角形是三角形的( )A. 中线B. 高线C. 角平分线D. 以上都不对5.如果一个三角形的三条高的交点恰是三角形的一个顶点,那么这个三角形是( )A. 锐角三角形B. 钝角三角形C. 直角三角形D.不能确定6.在下列各图形中,分别画出了△ABC 中BC 边上的高AD ,其中正确的是( )7.下列图形中具有稳定性的是( )A. 直角三角形B. 正方形C. 长方形D. 平行四边形8.如图,在△ABC 中,∠A =80°,∠B =40°.D 、E 分别是AB 、AC 上的点,且DE ∥BC ,则∠AED 的度数是( )A.40°B.60°C.80° 9.已知△ABC 中,∠A =80°,∠B 、∠C 的平分线的夹角是( A. 130° B. 60° C. 130°或50°D. 60°或120° 10.若从一多边形的一个顶点出发,最多可引10条对角线, 则它是( ) A.十三边形 B.十二边形 C.十一边形 D.十边形11.将一副直角三角板如图放置,使含30°角的三角板的一条直角边和45°角的三角板的一条直角边重合,则∠1的度数为( )A.45°B.60°C.75°D.85°12.用三个不同的正多边形能够铺满地面的是( )A. 正三角形、正方形、正五边形B. 正三角形、正方形、正六边形C. 正三角形、正方形、正七边形D. 正三角形、正方形、正八边形(3)(2)(1)C F E D B A 22题1()O D C B A O 22题2()E D C B A 22题3()C E D B A 22题4()65432122题5()765432123题图E D C B A 25题图E DB A A /第16题图D C B A 二、填空题:13.三角形的内角和是 ,n 边形的外角和是 .14.已知三角形三边分别为1,x ,5,则整数x = .15.一个三角形的周长为81cm ,三边长的比为2︰3︰4,则最长边比最短边长 .16.如图,Rt ABC 中,∠ACB =90°,∠A =50°,将其折叠,使点A 落在边CB 上的A /处,折痕为CD ,则∠A /DB =17.在△ABC 中,若∠A ︰∠B ︰∠C =1︰2︰3, 则∠A = ,∠B = ,∠C = .18.从n (n >3)边形的一个顶点出发可引 条对角线, 它们将n 边形分为 个三角形.19.已知一个多边形的所有内角与它的一个外角之和是2400°,那么这个多边形的边数是 ,这个外角的度数是 .20.用黑白两种颜色的正六边形地板砖按图所示的规律镶嵌成若干个图案:⑴第四个图案中有白色地板砖 块;⑵第n 个图案中有白色地板砖 块.三、解答题:21.若a ,b ,c 分别为三角形的三边,化简 : |a −b −c |+|b −c −a |+|c −a +b |.22.如图22(1)所示,称“对顶三角形”,其中,∠A +∠B =∠C +∠D ,利用这个结论,完成下列填空. ① 如图22题(2),∠A +∠B +∠C +∠D +∠E = .② 如图22题(3),∠A +∠B +∠C +∠D +∠E = .③ 如图22题(4),∠1+∠2+∠3+∠4+∠5+∠6= .④ 如图22题(5),∠1+∠2+∠3+∠4+∠5+∠6+∠7= .23.如图所示,在△ABC 中,AD ⊥BC ,CE ⊥AB ,垂足分别为D 、E ,已知AB =6,AD =5,BC =4,求CE 的长.24.如图所示,图中共有多少个三角形?请写出这些三角形并指出所有以E 为顶点的角.25.如图所示,∠ACD 是△ABC 的外角,∠A =40°,BE 平分∠ABC ,CE平分∠ACD ,且BE 、CE 交于点E.求∠E 的度数.F E D CB A 第26题图E DC B A26.如图,四边形ABCD 中,AE 平分∠BAD ,DE 平分∠ADC.⑴.如果∠B +∠C =120°,则∠AED 的度数= .(直接写出结果)⑵.根据⑴的结论,猜想∠B +∠C 与∠AED 之间的关系,并说明理由.27. BD 、CD 分别是△ABC 的两个外角∠CBE 、∠BCF 的平分线,求证:∠BDC =90°- 12 ∠A.28.证明:三角形三个内角的和等于180°.29.如图,在直角坐标系中,点A 、B 分别在射线OX 、OY 上移动,BE 的角平分线,BE 的反向延长线与∠OAB 的平分线相交于点C ,试问∠ACB 的大小是否发生变化?如果保持不变,请给出证明.练习2 一、选择题1.以下列各组线段为边,能组成三角形的是( )A .2cm ,3cm ,5cmB .5cm ,6cm ,10cmC .1cm ,1cm ,3cmD .3cm ,4cm ,9cm2.等腰三角形的一边长等于4,一边长等于9,则它的周长是( )A .17B .22C .17或22D .133.适合条件∠A=12∠B=13∠C 的△ABC 是( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .等边三角形4.已知等腰三角形的一个角为75°,则其顶角为( )A .30°B .75°C .105°D .30°或75°5.一个多边形的内角和比它的外角的和的2倍大180°,这个多边形的边数是( )A .5B .6C .7D .86.三角形的一个外角是锐角,则此三角形的形状是( )A .锐角三角形B .钝角三角形C .直角三角形D .无法确定7.下列命题正确的是( )A .三角形的角平分线、中线、高均在三角形内部B .三角形中至少有一个内角不小于60°C .直角三角形仅有一条高D .直角三角形斜边上的高等于斜边的一半9.已知等腰△ABC的底边BC=8cm,│AC-BC│=2cm,则腰AC的长为()A.10cm或6cm B.10cm C.6cm D.8cm或6cm10.如图1,把△ABC纸片沿DE折叠,当点A落在四边形BCDE内部时,则∠A 与∠1+∠2之间有一种数量关系始终保持不变.你发现的规律是(• )A.∠A=∠1+∠2 B.2∠A=∠1+∠2 C.3∠A=2∠1+∠2 D.3∠A=2(∠1+∠2)(10题) (13题) (14题)二、填空题11.三角形的三边长分别为5,1+2x,8,则x的取值范围是________.12.四条线段的长分别为5cm、6cm、8cm、13cm,•以其中任意三条线段为边可以构成___个三角形.13.如图:∠A+∠B+∠C+∠D+∠E+∠F等于________.14.如果一个正多边形的内角和是900°,则这个正多边形是正______边形.15.n边形的每个外角都等于45°,则n=________.16.乘火车从A站出发,沿途经过3个车站方可到达B站,那么A、B两站之间需要安排______种不同的车票.17.将一个正六边形纸片对折,并完全重合,那么,得到的图形是________边形,•它的内角和(按一层计算)是_______度.18.如图,已知∠1=20°,∠2=25°,∠A=55°,则∠BOC的度数是_____.三、解答题19.如图,BD平分∠ABC,DA⊥AB,∠1=60°,∠BDC=80°,求∠C的度数.20.如图:(1)画△ABC的外角∠BCD,再画∠BCD的平分线CE.(2)若∠A=∠B,∠A=∠B,CE是外角∠BCD的平分线.求证:CE∥AB.21.(1)如图4,有一块直角三角形XYZ 放置在△ABC 上,恰好三角板XYZ 的两条直角边XY 、XZ 分别经过点B 、C .△ABC 中,∠A=30°,则∠ABC+∠ACB=_______,∠XBC+∠XCB=_______.(4) (5)(2)如图5,改变直角三角板XYZ 的位置,使三角板XYZ 的两条直角边XY 、XZ•仍然分别经过B 、C ,那么∠ABX+∠ACX 的大小是否变化?若变化,请举例说明;若不变化,请求出∠ABX+∠ACX 的大小.22.引人入胜的火柴问题,成年人和少年儿童都很熟悉.如图是由火柴搭成的图形,拿去其中的4根火柴,使之留下5个正方形,•且留下的每根火柴都是正方形的边或边的一部分,请你给出两种方案,并将它们分别画在图(1)、(2)中.23.在平面内,分别用3根、5根、6根……火柴首尾..依次相接,•能搭成什么形状的三角形呢?通过尝试,列表如下所示:问:(1)4根火柴能拾成三角形吗?(2)8根、12根火柴能搭成几种不同形状的三角形?并画出它们的示意图.24.如图,BC ⊥CD ,∠1=∠2=∠3,∠4=60°,∠5=∠6.(1)CO 是△BCD 的高吗?为什么?(2)∠5的度数是多少?(3)求四边形ABCD 各内角的度数.第24题图。

八年级数学上册试题 第13章《三角形中的边角关系、命题与证明》章节测试卷-沪科版(含解析)

八年级数学上册试题 第13章《三角形中的边角关系、命题与证明》章节测试卷-沪科版(含解析)

第13章《三角形中的边角关系、命题与证明》章节测试卷一.选择题(共10小题,满分30分,每小题3分)1.下列实际情景运用了三角形稳定性的是()A.人能直立在地面上B.校门口的自动伸缩栅栏门C.古建筑中的三角形屋架D.三轮车能在地面上运动而不会倒2.如图,△ABC的三边长均为整数,且周长为22,AM是边BC上的中线,△ABM的周长比△ACM的周长大2,则AC长的可能值有()个.A.3B.4C.5D.63.下列命题是假命题的是( )A.如果∠1=∠2,∠2=∠3,那么∠1=∠3B.对顶角相等C.如果一个数能被6整除,那么它肯定也能被3整除D.内错角相等4.如图所示,∠F=90°,CE⊥AB,C是BF的中点,D是BE上的一点,下列说法正确的是( )A.CD是△ABC的中线B.AF是△ABC的高C.CE是△ABF的中位线D.AC是△ABF的角平分线5.如图,在△ABC中,AD是△ABC的角平分线,DE⊥AC,若∠B=40°,∠C=60°,则∠ADE的度数为()A.30°B.40°C.50°D.60°6.如图,在△ABC中,G是边BC上任意一点,D、E、F分别是AG、BD、CE的中点,S△ABC 的值为()=48,则SΔDEFA.2B.4C.6D.87.如图,用四个螺丝将四条不可弯曲的木条围成一个木框,不计螺丝大小,其中相邻两螺丝的距离依序为3、4、5、7,且相邻两木条的夹角均可调整.若调整木条的夹角时不破坏此木框,则任两螺丝的距离之最大值是( )A.7B.8C.9D.108.如图,△ABC中,∠ABC=3∠C,E分别在边BC,AC上,∠EDC=24°,∠ADE=3∠AED,∠ABC的平分线与∠ADE的平分线交于点F,则∠F的度数是( )A.54°B.60°C.66°D.72°9.如图,在△ABC中,AE平分∠BAC,AD⊥BC于点D.∠ABD的角平分线BF所在直线与射线AE 相交于点G,若∠ABC=3∠C,且∠G=20°,则∠DFB的度数为()A.50°B.55°C.60°D.65°10.如图,∠ABC=∠ACB,BD、CD、BE分别平分∠ABC,外角∠ACP,外角∠MBC,以下结论:①AD∥BC,②BD⊥BE,③∠BDC+∠ABC=90°,④∠BAC+2∠BEC=180°,其中正确的结论有()A.1个B.2个C.3个D.4个二.填空题(共6小题,满分18分,每小题3分)11.如图,有一张三角形纸片ABC,∠B=32°,∠A=100°,点D是AB边上的固定点(BD<1AB),2在BC上找一点E,将纸片沿DE折叠(DE为折痕),点B落在点F处,当EF与AC边平行时,∠BDE的度数为.12.如图,AD为△ABC的中线,DE,DF分别为△ABD,△ACD的一条高,若AB=6,DE=4,则AC=.,DF=8313.已知△ABC的边长a,b,c满足(a−2)2+|b−4|=0,则a、b的值分别是,若c为偶数,则△ABC的周长为.14.如图,在△ABC中,点D是AC边上一点,CD:AD=1:2,连接BD,点E是线段BD上一点,BE:ED=1:3,连接AE,点F是线段AE的中点,连接CF交线段BD于点G,若△ABC的面积是12,则△EFG的面积是.15.如图△AOB和△COD中,∠AOB=∠COD=90°,∠B=40°,∠C=70°,点D在边OA上,将△COD绕点O按每秒10°的速度沿顺时针方向旋转一周,在旋转的过程中当CD∥AB时,旋转时间秒.16.如果三角形中任意两个内角∠α与∠β满足2α−β=60°,那么我们称这样的三角形为“斜等边三角形”.在锐角三角形ABC中,BD⊥AC于点D,若△ABC、△ABD、△BCD都是“斜等边三角形”,则∠ABC=.三.解答题(共7小题,满分52分)17.(6分)(1)一个多边形的内角和是外角和的3倍,这个多边形是几边形?(2)小明求得一个多边形的内角和为1280°,小强很快发现小明所得的度数有误,后来小明复查时发现他重复加了一个内角,求出这个多边形的边数以及他重复加的那个角的度数.18.(6分)如图所示,D是△ABC的边AC上任意一点(不含端点),连结BD,请判断AB+BC+AC 与2BD的大小关系,并说明理由.19.(8分)在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的三个顶点的位置如图所示.将△ABC平移,使点C平移至点D,点A、B的对应点分别是点E、F.(1)在图中请画出△ABC平移后得到的△DEF;(2)在图中画出△ABC的AB边上的高CH;(3)若连接CD、AE,则这两条线段之间的关系是 ;(4)△DEF的面积为 .20.(8分)如图所示,已知AD,AE分别是△ABC的高和中线,AB=6cm,AC=8cm,BC=10 cm,∠CAB=90°.(1)求AD的长;(2)求△ACE和△ABE周长的差.21.(8分)在△ABC中,∠B,∠C均为锐角且不相等,线段AD是△ABC中BC边上的高,AE是△ABC的角平分线.(1)如图1,∠B=70°,∠C=30°,求∠DAE的度数;(2)若∠B=x°,∠DAE=10°,则∠C=______;(3)F是射线AE上一动点,C、H分别为线段A B,BC上的点(不与端点重合),将△BGH沿着GH 折叠,使点B落到点F处,如图2所示,请直接写出∠1,∠2与∠B的数量关系.22.(8分)已知,在△ABC中,∠BAC=∠ABC,点D在AB上,过点D的一条直线与直线AC、BC分别交于点E、F.(1)如图1,∠BAC=70°,则∠CFE+∠FEC=______°.(2)如图2,猜想∠BAC、∠FEC、∠CFE之间的数量关系,并加以证明;(3)如图3,直接写出∠BAC、∠FEC、∠CFE之间的数量关系______.23.(8分)将含30°角的三角板ABC(∠B=30°)和含45°角的三角板FDE及一把直尺按图方式摆放在起.使两块三角板的直角顶点A,F重合.点A,F,C,E始终落在直尺的PQ边所在直线上.将含45°角的三角板FDE沿直线PQ向右平移.(1)当点F与点C重合,请在备用图中补全图形,并求平移后DC与CB形成的夹角∠DCB的度数;(2)如图,点F在线段AC上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线FN与边BC交于点N,请证明在移动过程中,∠NFB的大小保持不变;(3)仿照(2)的探究,点F在射线CQ上移动,M是边AB上的动点,满足∠DFM被FB平分,∠EFM的平分线F N'所在直线与直线BC交于点N,请写出一个与平移过程有关的合理猜想.(不用证明)答案一.选择题1.C【分析】根据三角形的稳定性进行判断即可求解.【详解】解:古建筑中的三角形屋架是利用了三角形的稳定性,故选C2.B【分析】依据ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,可得2<BC<11,再根据ΔABC的三边长均为整数,即可得到BC=4,6,8,10.【详解】解:∵ΔABC的周长为22,ΔABM的周长比ΔACM的周长大2,∴2<BC<22−BC,解得2<BC<11,又∵ΔABC的三边长均为整数,ΔABM的周长比ΔACM的周长大2,∴AC=22−BC−22=10−12BC为整数,∴BC边长为偶数,∴BC=4,6,8,10,即AC的长可能值有4个,故选:B.3.D【分析】利用对顶角的性质、实数的性质、平行线的性质分别判断后即可确定正确的选项.【详解】解:A、如果∠1=∠2,∠2=∠3,那么∠1=∠3,正确,是真命题,故本选项不符合题意;B、对顶角相等,正确,是真命题,故本选项不符合题意;C、如果一个数能被6整除,那么它肯定也能被3整除,正确,是真命题,故本选项不符合题意;D、两直线平行,内错角相等,原命题是假命题,故本选项符合题意.故选:D.4.B【分析】根据三角形中位线的定义,三角形角平分线、中线和高的定义作答.【详解】解:A、AC是△ABC的中线,故本选项不符合题意.B 、由∠F =90°知,AF 是△ABC 的高,故本选项符合题意.C 、CE 是△ABC 的高,故本选项不符合题意.D 、AC 是△ABF 的中线,故本选项不符合题意.故选:B .5.C【分析】根据三角形内角和定理求出∠BAC ,再根据角平分线的定义可得∠BAD=∠DAC =40°,最后利用垂线的定义可得∠AED=90°,进而解答即可.【详解】解:∵∠B =40°,∠C =60°,∴∠BAC=180°−40°−60°=80°.∵AD 平分∠BAC ,∴∠BAD=∠DAC =40°.∵DE ⊥AC ,∴∠AED =90°,∴∠ADE =90°−∠DAE =50°.故选C .6.C【分析】根据三角形的中线把三角形分成两个面积相等的三角形解答.【详解】解:连接CD ,如图所示:∵点D 是AG 的中点,∴S △ABD =12S △ABG ,S △ACD =12S △AGC ,∴S △ABD +S △ACD =12S △ABC =24,∴S △BCD =12S △ABC =24,∵点E 是BD 的中点,∴S△CDE =12S△BCD=12,∵点F是CE的中点,∴S△DEF =12S△CDE=6.故选:C.7.C【分析】若两螺丝的距离最大,则此时这个木框的形状为三角形,根据三角形任意两边之和大于第三边,进行求解即可.【详解】解:①当3、4在一条直线上时,三边长为:5、7、7,此时最大距离为7;②∵4+5<3+7,∴3、7不可能在一条直线上;③当4、5在一条直线上时,三边长为:3、7、9,此时最大距离为9;④∵4+3<5+7,∴5、7不可能在一条直线上;综上所述:最大距离为9.故选:C.8.B【分析】根据题意可知∠FBC=32∠C,设∠C=x,表示出∠ADE,根据角平分线的定义,可得∠EDF的度数,根据∠FDC=∠F+∠FBC列方程,即可求出∠F的度数.【详解】解:∵BF平分∠ABC,∴∠FBC=12∠ABC,∵∠ABC=3∠C,∴∠FBC=32∠C,设∠C=x,则∠FBC=32x,∵∠EDC=24°,∴∠AED=x+24°,∵∠ADE=3∠AED,∴∠ADE=3x+72°,∵DF平分∠ADE,∴∠EDF=32x+36°,∵∠FDC=∠F+∠FBC,∴32x+36°+24°=∠F+32x,∴∠F=60°.故选:B.9.C【分析】由角平分线的定义可以得到∠CAE=∠BAE,∠ABF=∠DBF,设∠CAE=∠BAE=x,假设∠C=y,∠ABC=3y,通过角的等量代换可得到∠DFB=3∠G,代入∠G的值即可.【详解】∵AE平分∠BAC,BF平分∠ABD∴∠CAE=∠BAE,∠ABF=∠DBF设∠CAE=∠BAE=x∵∠ABC=3∠C∴可以假设∠C=y,∠ABC=3y∴∠ABF=∠DBF=∠CBG=12(180°−3y)=90°−32y∵AD⊥CD∴∠D=90°∴∠DFB=90°−∠DBF=32y设∠ABF=∠DBF=∠CBG=z,则{z=x+∠Gz+∠G=x+y∴∠G=12y∴∠DFB=3∠G∵∠G=20°∴∠DFB=60°故答案选:C10.D【分析】根据角平分线的定义、三角形的内角和定理、三角形的外角性质、平行线的判定一一判定即可.【详解】解:①设点A、B在直线MF上,∵BD、CD分别平分△ABC的内角∠ABC,外角∠ACP,∴AD平分△ABC的外角∠FAC,∴∠FAD=∠DAC,∵∠FAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠FAD=∠ABC,∴AD∥BC,故①正确.②∵BD、BE分别平分△ABC的内角∠ABC、外角∠MBC,∴∠DBE=∠DBC+∠EBC=12∠ABC+12∠MBC=12×180°=90°,∴EB⊥BD,故②正确.③∵∠DCP=∠BDC+∠CBD,2∠DCP=∠BAC+2∠DBC,∴2(∠BDC+∠CBD)=∠BAC+2∠DBC,∴∠BDC=12∠BAC,∵∠BAC+2∠ACB=180°,∴12∠BAC+∠ACB=90°,∴∠BDC+∠ACB=90°,故③正确.④∵∠BEC=180°−12(∠MBC+∠NCB)=180°−12(∠BAC+∠ACB+∠BAC+∠ABC)=180°−12(180°+∠BAC)∴∠BEC=90°−12∠BAC,∴∠BAC+2∠BEC=180°,故④正确.故选:D.二.填空题11.124°【分析】根据已知、折叠和平行线,得∠BEF=∠C,再计算∠BED的度数,最后根据三角形内角和为180°计算∠BDE的度数即可.【详解】∵EF∥AC,∠B=32°,∠A=100°,∴∠BEF=∠C=180°−∠A−∠B=180°−100°−32°=48°(两直线平行,同位角相等),∵纸片沿DE折叠(DE为折痕),点B落在点F处,∴∠BED=12∠BEF=12×48°=24°,∴∠BDE=180°−∠B−∠BED=180°−32°−24°=124°(三角形内角和为180°),故答案为:124°.12.9【分析】由AD为△ABC的中线得S△ABD =S△ACD,从而得到12⋅AB⋅DE=12⋅AC⋅DF,代入进行计算即可得到答案.【详解】解:∵AD为△ABC的中线,∴BD=CD,∴S△ABD =S△ACD,∵DE,DF分别为△ABD,△ACD的一条高,∴12⋅AB⋅DE=12⋅AC⋅DF,∵AB=6,DE=4,DF=83,∴AC=9,故答案为:9.13. 2、4 10【分析】由(a −2)2+|b −4|=0,可得a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,由c 为偶数,可得c =4,然后求周长即可.【详解】解:∵(a −2)2+|b −4|=0,∴a −2=0,b −4=0,解得a =2,b =4,由三角形三边关系可得,b −a <c <a +b ,即2<c <6,∵c 为偶数,∴c =4,∴△ABC 的周长为2+4+4=10,故答案为:2、4,10.14.94【分析】连接DF ,CE .由题意中的线段的比和S △ABC =12,可推出S △ABD =23S △ABC =8,S △CBD=13S △ABC =4,从而可求出S △ABE =14S △ABD =2,S △ADE =34S △ABD =6.结合中点的性质即得出S △ADF =S △EDF =12S △ADE =3,从而可求出S △CDF =12S △ADF =32,进而得出S △ECF =S △ACF=S △ADF +S △CDF =92,最后即得出DGEG =S △CDF S △ECF=13,最后即可求出S △EFG =34S △EDF =94.【详解】解:如图,连接DF ,CE .∵CD:AD=1:2,S △ABC =12,∴S △ABD =23S △ABC =8,S △CBD =13S △ABC =4.又∵BE:ED =1:3,∴S△ABE =14S△ABD=2,S△ADE=34S△ABD=6.∵点F是线段AE的中点,∴S△ADF =S△EDF=12S△ADE=3.∵CD:AD=1:2,∴S△CDF =12S△ADF=32,∴S△ACF =S△ADF+S△CDF=92,∴S△ECF =S△ACF=92,∴S△CDFS△ECF =3292=13,即S△DEF+S△DGCS△EFG+S△EGC=13,∴DGEG =13,∴S△EFG =34S△EDF=94.故答案为:94.15.11或29【分析】根据题意,画出图形,进行分类讨论,①当点C在△AOB内时,根据三角形的内角和定理可得∠D=20°,根据平行线的性质得出∠1=∠B=40°,再根据三角形的外角定理求出∠2,进而得出∠AOD=∠AOB+∠2,即可求解;②当点C在△AOB外时,延长BO交CD 于一点,根据平行线的性质得出∠3=∠B=40°,再根据三角形的外角定理求出∠4=20°,即可得出∠AOD,即可求解.【详解】解:①当点C在△AOB内时,如图,在Rt△OCD中,∠C=70°,∴∠D=180°−90°−70°=20°,∵CD∥AB,∠B=40°,∴∠1=∠B=40°,∵∠D+∠2=∠1,∴∠2=40°−20°=20°,∴∠AOD=∠AOB+∠2=90°+20°=110°,∴旋转时间=110÷10=11(秒),②当点C在△AOB外时,延长BO交CD于一点,如图,∵CD∥AB,∠B=40°,∴∠3=∠B=40°,由①可得,∠D=20°,∴∠4=∠3−∠D=40°−20°=20°,∴∠AOD=90°−∠4=70°,∴△COD绕点O沿顺时针方向旋转了360°−70°=290°,∴旋转时间=290÷10=29(秒),故答案为:11或29.16.55°【分析】根据新定义的“斜等边三角形”的特点分情况分析,然后利用三角形内角和定理求解即可.【详解】解:△ABD是“斜等边三角形”,BD⊥AC,∴∠ADB=90°(1)2∠A−∠ABD=60°,∵∠A+∠ABD=90°,∴解得:∠A=50°,∠ABD=40°;(2)2∠A−∠ADB=60°,∴解得:∠A=75°,∠ABD=15°;(3)2∠ABD−∠A=60°,∵∠A+∠ABD=90°,∴解得:∠A=40°,∠ABD=50°;(4)2∠ABD−∠ADB=60°,∴解得:∠ABD=75°,∠A=15°;△BCD是“斜等边三角形”,①2∠C−∠CBD=60°,∵∠C+∠CBD=90°,∴解得:∠C=50°,∠CBD=40°;②2∠C−∠CDB=60°,∴解得:∠C=75°,∠CBD=15°;③2∠CBD−∠C=60°,∵∠C+∠CBD=90°,∴解得:∠C=40°,∠CBD=50°;④2∠CBD−∠CDB=60°,∴解得:∠CBD=75°,∠C=15°;当(1)①成立时,∠A=50°,∠ABD=40°,∠C=50°,∠CBD=40°,∴∠CBA=40°+40°=80°,∴三个角中不满足“斜等边三角形”的定义,不符合题意;当(1)②成立时,∠A=50°,∠ABD=40°,∠C=75°,∠CBD=15°,∴∠CBA=40°+15°=55°,∵2∠CBA−∠A=60°,∴△ABC是“斜等边三角形”,符合题意;同理得:符合题意的只有∠ABC=55°,故答案为:55°三.解答题17.解:(1)设这个多边形的边数是n,由题意得:(n−2)×180=360×3,∴n=8,∴这个多边形是八边形;(2)设这个多边形的边数是m,由题意得:(m−2)×180<1280<(m−2)×180+180,解得:819<m<919,∵m为整数∴m=9,∴重复加的那个角的度数是:1280°−(9−2)×180°=20°答:这个多边形的边数是9,重复加的那个角的度数是20°.18.解:AB+BC+AC>2BD.理由如下:在△ABD中,AB+AD>BD,在△BCD中,BC+CD>BD,∴AB+AD+BC+CD>2BD,即AB+BC+AC>2BD.19.(1)如图所示,△DEF即为所求;(2)如图所示,CH即为所求;(3)如图所示,∵△ABC平移后得到的△DEF∴若连接CD、AE,CD∥AE,CD=AE∴这两条线段之间的关系是平行且相等;(4)如图所示,△DEF的面积=4×6−12×4×3−12×1×3−12×3×6=152.20.(1)解:∵∠BAC=90°,AD是边BC上的高,∴12AB⋅AC=12BC⋅AD,∴AD=AB⋅ACBC =6×810= 4.8(cm),即AD的长度为4.8cm;(2)∵AE为BC边上的中线,∴BE=CE,∴△ACE的周长−△ABE的周长=(AC+AE+CE)−(AB+BE+AE)=AC−AB=8−6=2(cm),即△ACE和△ABE的周长的差是2cm.21.(1)解:在△ABC中,∠B=70°,∠C=30°,∴∠BAC=180°−∠B−∠C=180°−70°−30°=80°,∵AE是△ABC的角平分线.∴∠BAE=12∠BAC=12×80°=40°,∵线段AD是△ABC中BC边上的高,∴∠ADB=90°,∴∠BAD=180°−∠B−∠ADB=180°−70°−90°=20°,∴∠DAE=∠BAE−∠BAD=40°−20°=20°,(2)解:∵∠B=x°,线段AD是△ABC中BC边上的高,∴∠BAD=90°−∠B=90°−x°,∵∠DAE=10°,∴∠BAE=∠BAD+∠DAE=90°−x°+10°=100°−x°,∵AE是△ABC的角平分线,∴∠BAC=2∠BAE=200°−2x°,∴∠C=180°−∠B−∠BAC=180°−x°−(200°−2x°)=(x−20°),故答案为:(x−20)°;(3)解:连接BF,∵∠1=∠GBF+∠GFB,∠2=∠HBF+∠HFB,∴∠1+∠2=∠GBF+∠GFB+∠HBF+∠HFB=∠B+∠GFH,∵△GFH由△GBH折叠所得,∴∠B=∠GFH,∴∠1+∠2=2∠B.22.(1)解:∵∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴∠ACB=180°−2∠BAC,∵∠CFE+∠FEC=180°−∠ACB,∴∠CFE+∠FEC=180°−(180°−2∠BAC)=2∠BAC,∵∠BAC=70°,∴∠CFE+∠FEC=140°;(2)∠FEC+∠CFE=2∠BAC,证明:在△CEF中∵∠C+∠CEF+∠CFE=180°,∴∠CEF+∠CFE=180°−∠C,在△ABC中,∵∠C+∠BAC+∠ABC=180°,∴∠BAC+∠ABC=180°−∠C,∴∠CEF+∠CFE=∠BAC+∠ABC,∵∠BAC=∠ABC,∴∠CEF+∠CFE=2∠BAC;(3)解:∵∠ACB=∠FEC+∠CFE,∠ACB+∠ABC+∠BAC=180°,∠BAC=∠ABC,∴180°−2∠BAC=∠FEC+∠CFE,∴∠FEC+∠CFE=180°−2∠BAC.23.(1)解:如图所示,∵DC∥AB∴∠DCB=∠B=30°,(2)证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵FN平分∠EFM∴∠EFN=∠MFN=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠NFB=∠NFM−∠BFM=45°+α−α=45°,即∠NFB的大小保持不变;(3)解:在移动过程中,∠NFB的大小保持不变;如图所示,证明:∵AB∥FD∴∠DFB=∠MBF,设∠DFB=∠MBF=α∵∠DFM被FB平分∴∠DFB=∠MFB,则∠DFB=∠MFB=α,∴∠AMF=∠MBF+∠MFB=2α,∵∠BAC=90°∴∠MFA=90°−2α,∵F N'平分∠EFM∴∠EF N'=∠MF N'=12(180°−∠MFA)=12(180°−90°+2α)=45°+α∴∠N'FB=∠N'FM−∠BFM=45°+α−α=45°,∴∠NFB=135°,即∠NFB的大小保持不变;。

人教版八年级数学上册《三角形的三边、高线、中线及角平分线》专项练习题-附含答案

人教版八年级数学上册《三角形的三边、高线、中线及角平分线》专项练习题-附含答案

人教版八年级数学上册《三角形的三边、高线、中线及角平分线》专项练习题-附含答案考点一三角形的稳定性考点二三角形的三边关系考点三三角形的高线考点四三角形的中线考点五三角形的角平分线考点一三角形的稳定性例题:(2021·广西·南宁十四中七年级期末)下列图形中没有运用三角形稳定性的是()A.B.C.D.【答案】B【解析】【分析】利用三角形的稳定性解答即可.【详解】解:对于A、C、D选项都含有三角形故利用了三角形的稳定性;而B选项中用到了四边形的不稳定性.故选B.【点睛】本题主要考查了三角形的稳定性需理解稳定性在实际生活中的应用;明确能体现出三角形的稳定性则说明物体中必然存在三角形是解题关键.【变式训练】1.(2022·吉林吉林·二模)如图人字梯中间设计一“拉杆” 在使用梯子时固定拉杆会增加安全性.这样做蕴含的数学道理是()A.三角形具有稳定性B.两点之间线段最短C.经过两点有且只有一条直线D.垂线段最短【答案】A【解析】【分析】人字梯中间设计一“拉杆”后变成一个三角形稳定性提高.【详解】三角形的稳定性如果三角形的三条边固定那么三角形的形状和大小就完全确定了三角形的这个特征叫做三角形的稳定性.故选A【点睛】本题考查三角形的稳定性理解这一点是本题的关键.2.(2022·广东·佛山市惠景中学七年级期中)如图所示的自行车架设计成三角形这样做的依据是三角形具有___.【答案】稳定性【解析】【分析】根据是三角形的稳定性即可求解.【详解】解:自行车的主框架采用了三角形结构这样设计的依据是三角形具有稳定性故答案为:稳定性.【点睛】本题考查的是三角形的性质掌握三角形具有稳定性是解题的关键.考点二三角形的三边关系例题:(2022·黑龙江·哈尔滨市风华中学校七年级期中)下列各组长度的线段为边能构成三角形的是().A.123B.345C.4511D.633【答案】B【解析】【分析】比较三边中两较小边之和与较大边的大小即可得到解答.【详解】解:A、1+2=3不符合题意;B、3+4>5符合题意;C、4+5<11不符合题意;D、3+3=6不符合题意;故选B.【点睛】本题考查构成三角形的条件熟练掌握三角形的三边关系是解题关键.【变式训练】1.(2022·黑龙江·哈尔滨市第六十九中学校七年级期中)下列各组长度的三条线段能够组成三角形的是()A.348B.5611C.5610D.1073【答案】C【解析】【分析】根据三角形三边关系可直接进行排除选项.解:A、3+4<8不符合三角形三边关系故不能构成三角形;B、5+6=11不符合三角形三边关系故不能构成三角形;C、5+6>10符合三角形三边关系故能构成三角形;D、3+7=10不符合三角形三边关系故不能构成三角形;故选C.【点睛】本题主要考查三角形三边关系熟练掌握三角形三边关系是解题的关键.2.(2022·海南·海口市第十四中学七年级阶段练习)在△ABC中三条边长分别为3和6第三边长为奇数那么第三边的长是()A.5或7B.7或9C.3或5D.9【答案】A【解析】【分析】先求出第三边长的取值范围再根据条件具体确定符合条件的值即可.【详解】解:因为三条边长分别为3和6所以6-3<第三边<6+3所以3<第三边<9因为第三边长为奇数∴第三边的长为5或7故选:A.【点睛】本题考查了三角形的三边关系掌握三角形任意两边之和大于第三边任意两边之差小于第三边是解题的关键.3.(2022·江苏·南师附中新城初中七年级期中)已知三角形三边长分别为3x14若x为正整数则这样的三角形个数为()A.4B.5C.6D.7【解析】【分析】直接根据三角形的三边关系求出x的取值范围进而可得出结论.【详解】解:三角形三边长分别为3x14x<<.x143143∴-<<+即1117x为正整数12x=13141516即这样的三角形有5个.故选:B.【点睛】本题考查的是三角形的三边关系熟知三角形两边之和大于第三边两边之差小于第三边是解答此题的关键.考点三三角形的高线例题:(2022·重庆市育才中学七年级阶段练习)下列各组图形中BD是ABC的高的图形是()A.B.C.D.【答案】B【解析】【分析】三角形的高即从三角形的顶点向对边引垂线顶点和垂足间的线段.根据概念即可得到答案.【详解】解:根据三角形高的定义可知只有选项B中的线段BD是∴ABC的高故选:B.【点睛】考查了三角形的高的概念掌握高的作法是解题的关键.【变式训练】1.(2022·浙江杭州·中考真题)如图 CD ∴AB 于点D 已知∴ABC 是钝角 则( )A .线段CD 是ABC 的AC 边上的高线B .线段CD 是ABC 的AB 边上的高线C .线段AD 是ABC 的BC 边上的高线 D .线段AD 是ABC 的AC 边上的高线【答案】B【解析】【分析】根据高线的定义注意判断即可.【详解】∴ 线段CD 是ABC 的AB 边上的高线∴A 错误 不符合题意;∴ 线段CD 是ABC 的AB 边上的高线∴B 正确 符合题意;∴ 线段AD 是ACD 的CD 边上的高线∴C 错误 不符合题意;∴线段AD 是ACD 的CD 边上的高线∴D 错误 不符合题意;故选B .【点睛】本题考查了三角形高线的理解 熟练掌握三角形高线的相关知识是解题的关键.2.(2022·湖南怀化·七年级期末)如图 在直角三角形ABC 中 90ACB ∠=︒ AC =3BC =4 AB =5则点C 到AB 的距离为______.【答案】125【解析】【分析】根据面积相等即可求出点C 到AB 的距离.【详解】解:∴在直角三角形ABC 中 90ACB ∠=︒ ∴1122AC BC AB CD ⨯=⨯ ∴AC =3 BC =4 AB =5 ∴1134522CD ⨯⨯=⨯⨯ ∴CD =125故答案为:125. 【点睛】本题考查求直角三角形斜边上的高 用面积法列出关系式是解题关键.3.(2022·重庆·七年级期中)如图 点A 、点B 是直线l 上两点 10AB = 点M 在直线l 外 6MB = 8MA = 90AMB ∠=︒ 若点P 为直线l 上一动点 连接MP 则线段MP 的最小值是______.【答案】4.8【解析】【分析】根据垂线段最短可知:当MP AB ⊥时 MP 有最小值 再利用三角形的面积可列式计算求解MP 的最小值.【详解】解:当MP AB ⊥时 MP 有最小值10AB = 6MB = 8MA = 90AMB ∠=︒AB MP AM BM ∴⋅=⋅即1068MP =⨯解得 4.8MP =.故答案为:4.8.【点睛】本题主要考查垂线段最短 三角形的面积 找到MP 最小时的P 点位置是解题的关键.考点四 三角形的中线例题:(2021·广西·靖西市教学研究室八年级期中)如图 已知BD 是∴ABC 的中线 AB =5 BC =3 且∴ABD 的周长为12 则∴BCD 的周长是_____.【答案】10【解析】【分析】先根据三角形的中线、线段中点的定义可得AD CD = 再根据三角形的周长公式即可求出结果.【详解】 解:BD 是ABC 的中线 即点D 是线段AC 的中点AD CD ∴=5AB = ABD △的周长为1212AB BD AD ∴++= 即512BD AD ++=解得:7BD AD +=7BD CD ∴+=则BCD △的周长是3710BC BD CD ++=+=.故答案为:10.【点睛】本题主要考查了三角形的中线、线段中点的定义等知识点 掌握线段中点的定义是解题关键.【变式训练】1.(2022·陕西·西安市曲江第一中学七年级期中)在ABC 中 BC 边上的中线AD 将ABC 分成的两个新三角形的周长差为5cm AB 与AC 的和为11cm 则AC 的长为________.【答案】3cm 或8cm【解析】【分析】根据三角形的中线的定义可得BD CD = 然后求出ABD △与ADC 的周长差是AB 与AC 的差或AC 与AB 的差 然后代入数据计算即可得解.【详解】如图1 图2∴AD 是BC 边上的中线∴BD CD =∴中线AD 将ABC 分成的两个新三角形的周长差为5cm∴()()5AB BD AD AC CD AD ++-++=或()()5AC CD AD AB BD AD ++-++=∴5AB AC -=或者5AC AB -=∴AB 与AC 的和为11cm∴11AB AC +=∴83AB AC =⎧⎨=⎩或38AB AC =⎧⎨=⎩故答案为:3cm 或8cm .【点睛】本题考查了三角形的中线熟记概念并求出两个三角形的周长的差等于两边长的差是解题的关键.2.(2022·江苏·泰州市第二中学附属初中七年级阶段练习)如图D E分别是∴ABC边AB BC上的点AD=2BD BE=CE设∴ADF的面积为S1∴FCE的面积为S2若S△ABC=16则S1-S2的值为_________.【答案】8 3【解析】【分析】S△ADF−S△CEF=S△ABE−S△BCD所以求出三角形ABE的面积和三角形BCD的面积即可因为AD=2BD BE=CE且S△ABC=16就可以求出三角形ABE的面积和三角形BCD的面积.【详解】解:∴BE=CE∴BE=12BC∴S△ABC=16∴S△ABE=12S△ABC=8.∴AD=2BD S△ABC=16∴S△BCD=13S△ABC=163∴S△ABE−S△BCD=(S1+S四边形BEFD)−(S2+S四边形BEFD)=S1−S2=8 3故答案为83.【点睛】本题考查三角形的面积关键知道当高相等时面积等于底边的比据此可求出三角形的面积然后求出差.3.(2022·江苏·苏州市相城实验中学七年级期中)如图AD 是∴ABC 的中线BE 是∴ABD 的中线EF ⊥BC 于点F.若24ABCS=BD =4则EF 长为___________.【答案】3【解析】【分析】因为S △ABD =12S △ABC S △BDE =12S △ABD ;所以S △BDE =14S △ABC 再根据三角形的面积公式求得即可. 【详解】解:∴AD 是∴ABC 的中线 S △ABC =24∴S △ABD =12S △ABC =12同理 BE 是∴ABD 的中线 612BDE ABD SS ==∴S △BDE =12BD •EF∴12BD •EF =6 即1462EF ⨯⨯= ∴EF =3.故答案为:3.【点睛】此题考查了三角形的面积 三角形的中线特点 理解三角形高的定义 根据三角形的面积公式求解 是解题的关键.考点五 三角形的角平分线例题:(2022·全国·八年级)如图 在ABC 中 90CAB ∠=︒ AD 是高 CF 是中线 BE 是角平分线 BE 交AD 于G 交CF 于H 下列说法正确的是( )①AEG AGE ∠=∠;②BH CH =;③2EAG EBC ∠=∠;④ACF BCF S S =A.①③B.①②③C.①③④D.②③④【答案】C【解析】【分析】①根据∴CAB=90° AD是高可得∴AEG=90°−∴ABE∴DGB=90°−∴DBG又因为BE是角平分线可得∴ABE=∴DBE故能得到∴AEG=∴DGB再根据对顶角相等即可求证该说法正确;②因为CF是中线BE是角平分线得不到∴HCB=∴HBC故该说法错误;③∴EAG+∴DAB=90° ∴DBA+∴DAB=90° 可得∴EAG=∴DBA因为∴DBA=2∴EBC故能得到该说法正确;④根据中线平分面积可得该说法正确.【详解】解:①∴∴CAB=90° AD是高∴∴AEG=90°−∴ABE∴DGB=90°−∴DBG∴BE是角平分线∴∴ABE=∴DBE∴∴AEG=∴DGB∴∴DGB=∴AGE∴∴AEG=∴AGE故该说法正确;②因为CF是中线BE是角平分线得不到∴HCB=∴HBC故该说法错误;③∴∴EAG+∴DAB=90° ∴DBA+∴DAB=90°∴∴EAG=∴DBA∴∴DBA=2∴EBC∴∴EAG=2∴EBC故该说法正确;④根据中线平分面积可得S△ACF=S△BCF故该说法正确.故选:C.【点睛】本题考查了三角形的高中线角平分线的性质解题的关键是熟练掌握各线的特点和性质.【变式训练】1.(2022·全国·八年级)如图在∴ABC中∴C=90° D E是AC上两点且AE=DE BD平分∴EBC那么下列说法中不正确的是()A.BE是∴ABD的中线B.BD是∴BCE的角平分线C.∴1=∴2=∴3D.S△AEB=S△EDB【答案】C【解析】【分析】根据三角形中线、角平分线的定义逐项判断即可求解.【详解】解:A、∴AE=DE∴BE是∴ABD的中线故本选项不符合题意;B、∴BD平分∴EBC∴BD是∴BCE的角平分线故本选项不符合题意;C、∴BD平分∴EBC∴∴2=∴3但不能推出∴2、∴3和∴1相等故本选项符合题意;D、∴S△AEB=12×AE×BC S△EDB=12×DE×BC AE=DE∴S△AEB=S△EDB故本选项不符合题意;故选:C【点睛】本题主要考查了三角形中线、角平分线的定义熟练掌握三角形中连接一个顶点和它的对边的中点的线段叫做三角形的中线;三角形的一个角的平分线与这个角的对边相交连接这个角的顶点和交点的线段叫三角形的角平分线是解题的关键.2.(2022·全国·八年级)如图AD BE CF依次是ABC的高、中线和角平分线下列表达式中错误的是( )A .AE =CEB .∴ADC =90° C .∴CAD =∴CBE D .∴ACB =2∴ACF【答案】C【解析】【分析】 根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交 连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中 连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线 顶点和垂足间的线段叫做三角形的高线 简称为高.求解即可.【详解】解:A 、BE 是△ABC 的中线 所以AE =CE 故本表达式正确;B 、AD 是△ABC 的高 所以∴ADC =90 故本表达式正确;C 、由三角形的高、中线和角平分线的定义无法得出∴CAD =∴CBE 故本表达式错误;D 、CF 是△ABC 的角平分线 所以∴ACB =2∴ACF 故本表达式正确.故选:C .【点睛】本题考查了三角形的高、中线和角平分线的定义 是基础题 熟记定义是解题的关键.3.(2021·全国·八年级课时练习)填空:(1)如图(1),,AD BE CF 是ABC 的三条中线 则2AB =______ BD =______ 12AE =______. (2)如图(2),,AD BE CF 是ABC 的三条角平分线 则1∠=______ 132∠=______ 2ACB ∠=______.【答案】 AF 或BF CD AC 2∠ ABC ∠ 4∠【解析】【分析】(1)根据三角形的中线定义:三角形一边的中点与此边所对顶点的连线叫做三角形的中线可得E 、F 、D 分别是AC 、AB 、BC 上的中点 进而得到答案.(2)根据角平分线定义 从一个角的顶点出发 把这个角分成两个相等的角的射线 叫做这个角的平分线即可解答.【详解】解:(1)∴CF 是AB 边上的中线∴AB =2AF =2BF ;∴AD 是BC 边上的中线∴BD =CD∴BE 是AC 边上的中线∴AE =12AC(2)∴AD 是BAC ∠的角平分线∴12∠=∠∴BE 是ABC ∠的角平分线 ∴132∠=ABC ∠ ∴CF 是ACB ∠的角平分线∴2ACB ∠=4∠.故答案为:AF 或BF ;CD ;AC ;2∠;ABC ∠;4∠【点睛】此题主要考查了三角形的中线、角平分线解题的关键是掌握三角形的中线及角平分线的定义.一、选择题1.(2022·黑龙江·哈尔滨市风华中学校七年级期中)画ABC的BC边上的高正确的是()A.B.C.D.【答案】A【解析】【分析】利用三角形的高线的定义判断即可.【详解】解:画△ABC的BC边上的高即过点A作BC边的垂线.∴只有选项A符合题意故选:A.【点睛】本题考查了三角形高线的画法从三角形的一个顶点向对边作垂线顶点与垂足间的线段叫做三角形的高线锐角三角形的三条高线都在三角形的内部钝角三角形的高有两条在三角形的外部.直角三角形的高线有两条是三角形的直角边.2.(2022·山东潍坊·七年级期末)在数学实践课上小亮经研究发现:在如图所示的ABC中连接点A和BC上的一点D线段AD等分ABC的面积则AD是ABC的().A.高线B.中线C.角平分线D.对角线【答案】B【解析】【分析】直接利用三角形中线的性质即可得出结果.【详解】解:∴线段AD等分∴ABC的面积∴∴ABD的面积等于∴ACD的面积∴两个三角形的高为同一条高∴BD=CD∴AD为∴ABC的中线故选:B.【点睛】题目主要考查三角形中线的性质理解三角形中线将三角形分成两个面积相同的三角形是解题关键.3.(2022·河北保定外国语学校一模)能用三角形的稳定性解释的生活现象是()A.B.C.D.【答案】C【解析】【分析】根据各图所用到的直线、线段有关知识即可一一判定【详解】解:A、利用的是“两点确定一条直线” 故该选项不符合题意;B、利用的是“两点之间线段最短” 故该选项不符合题意;C、窗户的支架是三角形利用的是“三角形的稳定性” 故该选项符合题意;D、利用的是“垂线段最短” 故该选项不符合题意;故选:C【点睛】本题考查了两点确定一条直线、两点之间线段最短、三角形的稳定性、垂线段最短的应用结合题意和图形准确确定所用到的知识是解决本题的关键.4.(2022·山东青岛·七年级期末)如图BD是ABC的边AC上的中线AE是ABD△的边BD上的中线BF是ABE△的边AE上的中线若ABC的面积是32则阴影部分的面积是()A.9B.12C.18D.20【答案】B【解析】【分析】利用中线等分三角形的面积进行求解即可.【详解】∴BD是ABC的边AC上的中线∴11321622ABD BCD ABCS S S===⨯=△△∴AE是ABD△的边BD上的中线∴1116822ABE ADE ABDS S S===⨯=又∴BF 是ABE △的边AE 上的中线 则CF 是ACE 的边AE 上的中线 ∴118422BEF ABF ABE S S S ===⨯= 182CEF ACF ADE CED ACE S S S S S =====则4812BEF CEF S SS =+=+=阴影故选:B .【点睛】 本题考查了中线的性质 清晰明确三角形之间的等量关系 进行等量代换是解题的关键.5.(2021·江苏·无锡市侨谊实验中学三模)如图为一张锐角三角形纸片ABC 小明想要通过折纸的方式折出如下线段:①BC 边上的中线AD ②BC 边上的角平分线AE ③BC 边上的高AF .根据所学知识与相关活动经验可知:上述三条线中 所有能够通过折纸折出的有( )A .①②B .①③C .②③D .①②③【答案】D【解析】【分析】 根据三角形中线 角平分线和高的定义即可判断.【详解】沿着A 点和BC 中点的连线折叠 其折痕即为BC 边上的中线 故①符合题意;折叠后使B 点在AC 边上 且折痕通过A 点 则其折痕即为BC 边上的角平分线 故②符合题意; 折叠后使B 点在BC 边上 且折痕通过A 点 则其折痕即为BC 边上的高 故③符合题意;故选D . 【点睛】本题考查三角形中线 角平分线和高的定义.掌握各定义是解题关键.二、填空题6.(2022·湖南邵阳·八年级期末)若ABC 的三条边长分别为3cm xcm 4cm 则x 的取值范围______.【答案】17x <<##71x >>【解析】【分析】根据三角形的三边关系进行求解即可.【详解】解:根据“三角形任意两边之和大于第三边 任意两边之差小于第三边”可得到4343x -<<+∴17x <<.故答案为:17x <<.【点睛】本题主要考查三角形三边关系 熟记“三角形任意两边之和大于第三边 任意两边之差小于第三边”是解答此类题目的关键.7.(2022·云南红河·八年级期末)已知a b c 、、是ABC ∆的三边长 a b 、满足()2610a b -+-= c 为偶数则c =_______.【答案】6【解析】【分析】根据非负数的性质列式求出a 、b 的值 再根据三角形的任意两边之和大于第三边 两边之差小于第三边求出c 的取值范围 再根据c 是偶数求出c 的值.【详解】解:∴a b 满足()2610a b -+-=∴a -6=0 b -1=0解得a =6 b =1∴6-1=5 6+1=7∴5<c <7又∴c 为偶数∴c =6故答案为:6【点睛】本题考查非负数的性质:偶次方 解题的关键是明确题意 明确三角形三边的关系.8.(2021·北京市陈经纶中学分校八年级期中)随着人们物质生活的提高手机成为一种生活中不可缺少的东西手机很方便携带但唯一的缺点就是没有固定的支点.为了解决这一问题某工厂研制生产了一种如图所示的手机支架.把手机放在上面就可以方便地使用手机这是利用了三角形的______.【答案】三角形的稳定性【解析】【分析】利用三角形的稳定性的性质直接回答即可.【详解】解:把手机放在上面就可以方便地使用手机这是利用了三角形的稳定性故答案为:三角形的稳定性.【点睛】本题考查了三角形的稳定性解题的关键是掌握三角形具有稳定性.9.(2022·北京市师达中学七年级阶段练习)如图AB∴BD 于点B AC∴CD 于点C且AC 与BD 交于点E已知AE=10DE=5CD=4则AB 的长为_________.【答案】8【解析】【分析】根据三角形高的定义可判断出边上的高然后利用三角形面积求解即可.【详解】解:∴AB∴BD AC∴CD∴AB 是∴ADE 的边DE 上的高 CD 是边AE 上的高∴S △AED =1122DE AB AE CD ⋅=⋅ ∴10485AE CD AB DE ⋅⨯=== 故答案为:8.【点睛】本题考查三角形高的定义 三角形的面积等知识 掌握基本概念是解题关键 学会用面积法求线段的长. 10.(2022·全国·八年级专题练习)如图 在ABC 中 2AB AC == P 是BC 边上的任意一点 PE AB ⊥于点E PF AC ⊥于点F .若ABC S = 则PE PF +=______.【解析】【分析】 根据1122ABC ABP APC S S S AB PE AC PF =+=⋅+⋅ 结合已知条件 即可求得PE PF +的值. 【详解】解:如图 连接APPE AB ⊥于点E PF AC ⊥于点F1122ABC ABP APC S S S AB PE AC PF ∴=+=⋅+⋅2AB AC == ABC S =∴1122AB PE AC PF ⋅+⋅PE PF =+=【点睛】本题考查了三角形的高掌握三角形的高的定义是解题的关键.三、解答题11.(2022·全国·八年级)在∴ABC中BC=8AB=1;(1)若AC是整数求AC的长;(2)已知BD是∴ABC的中线若∴ABD的周长为17求∴BCD的周长.【答案】(1)8(2)24【解析】【分析】(1)根据三角形三边关系“两边之和大于第三边两边之差小于第三边”得7<AC<9根据AC是整数得AC=8;(2)根据BD是∴ABC的中线得AD=CD根据∴ABD的周长为17和AB=1得AD+BD=16即可得.(1)解:由题意得:BC﹣AB<AC<BC+AB∴7<AC<9∴AC是整数∴AC=8.(2)解:如图所示∴BD是∴ABC的中线∴AD=CD∴∴ABD的周长为17∴AB +AD +BD =17∴AB =1∴AD +BD =16∴∴BCD 的周长=BC +BD +CD =BC +AD +CD =8+16=24.【点睛】本题考查了三角形 解题的关键是掌握三角形三边的关系和三角形的中线.12.(2022·全国·八年级专题练习)已知:a 、b 、c 满足2(|0a c -=求:(1)a 、b 、c 的值;(2)试问以a 、b 、c 为边能否构成三角形?若能构成三角形 求出三角形的周长;若不能构成三角形 请说明理由.【答案】(1)a = 5b = c =(2)能构成三角形 周长为(51【解析】【分析】(1)根据非负数之和等于零 则每个非负数等于零 分别建立方程求解即可;(2)先比较长三边的大小 再用较小两边之和与最大边比较即可判断能够构成三角形;然后计算三角形的周长即可.(1)解:∴(20a ≥ 0 0c -≥a 、b 、c 满足(20a c -=∴0a = 50b -= 0c -解得a = 5b = c =(2)解:∴81825<<∴5即a c b <<∴5=>∴能构成三角形三角形的周长)5551a b c =++===. 【点睛】本题考查了非负数的性质 二次根式有意义的条件和构成三角形的条件 解题的关键是根据非负数之和等于零的条件分别建立方程和如何判定三边能否构成三角形.13.(2022·四川·威远中学校七年级期中)(1)已知一个三角形的两边长分别是4cm 、7cm 则这个三角形的周长的取值范围是什么?(2)在等腰三角形ABC 中 AB =AC 周长为14cm BD 是AC 边上的中线 △ABD 比△BCD 周长长4cm 求△ABC 各边长.【答案】(1)14<c <22;(2)AB =6 AC =6 BC =2.【解析】【分析】(1)根据三角形三边关系 先求出三角形第三边长的范围 即可求出周长范围.(2)根据三角形中线的定义可得,AD CD = 从而可得4,AB BC -=再根据ABC 的周长是14 以及,AB AC = 可得214AB BC +=进行计算即可解答. 【详解】解:(1)设第三边长为x 根据三角形的三边关系得7474,x ∴-<<+3,x ∴<<11∴三角形的周长C 的取值范围为:1422.c <<(2)如图所示:∴BD是AC边上的中线,AD CD∴=∴△ABD比△BCD周长长4cm()()4,AB AD BD BC CD BD∴++-++=4,AB BC∴-=4,BC AB∴=-ABC的周长是1414,AB AC BC∴++=,AB AC=214,AB BC∴+=2414,AB AB∴+-=6,AB∴=6,AB AC∴==2.BC∴=【点睛】本题主要考查了三角形三边关系等腰三角形的性质熟练掌握等腰三角形的性质是解题的关键.14.(2022·河北邯郸·七年级阶段练习)如图在直角三角形ABC中∴BAC=90° AD是BC边上的高CE 是AB边上的中线AB=12cm BC=20cm AC=16cm求:(1)AD的长;(2)∴BCE的面积.【答案】(1)485;(2)48.【解析】【分析】(1)利用面积法得到12AD•BC=12AB•AC然后把AB=12cm BC=20cm AC=16cm代入可求出AD的长;(2)由于三角形的中线将三角形分成面积相等的两部分 所以S △BCE =12S △ABC .【详解】解:(1)∴∴BAC =90° AD 是BC 边上的高 ∴12AD •BC =12AB •AC∴AD =121620⨯=485(cm );(2)∴CE 是AB 边上的中线∴S △BCE =12S △ABC =12×12×12×16=48(cm 2).【点睛】本题考查三角形中线的性质 涉及等积法 是重要考点 掌握相关知识是解题关键.15.(2022·黑龙江·哈尔滨市风华中学校七年级期中)如图 在6×10的网格中 每一小格均为正方形且边长是1 已知∴ABC 的每个顶点都在格点上.(1)画出∴ABC 中BC 边上的高线AE ;(2)在∴ABC 中AB 边上取点D 连接CD 使3BCD ACD S S =△△;(3)直接写出∴BCD 的面积是__________.【答案】(1)画图见解析(2)画图见解析(3)7.5【解析】【分析】(1)利用网格线过A 作BC 的垂线即可;(2)利用网格线的特点 取格点D 满足3BD AD = 则D 即为所求作的点;(3)利用三角形的面积公式直接计算即可.(1)解:如图 AE 即为BC 上的高.(2)如图 利用网格特点 可得3BD AD =∴D 即为所求作的点 满足3BCD ACD S S =△△.(3)1537.52BCD S =⨯⨯=. 【点睛】本题考查的是画三角形的高 三角形的面积的计算 熟悉等高的两个三角形的面积之间的关系是解本题的关键.16.(2022·江苏·沭阳县怀文中学七年级阶段练习)如图 在ABC 中 CD 、CE 分别是ABC 的高和角平分线 ,()BAC B ∠α∠βαβ==>.(1)若70,40αβ=︒=︒ 求DCE ∠的度数;(2)试用α、β的代数式表示DCE ∠的度数_________.【答案】(1)15DCE ∠=︒(2)2αβ-【解析】【分析】(1)根据三角形的内角和定理求出∴ACB 的值 再由角平分线的性质以及直角三角形的性质求出∴DCE . (2)由(1)的解题思路即可得正确结果.(1) 解:70BAC ∠=︒ 40B ∠=︒∴()180()180704070ACB BAC B ∠=︒-∠+∠=︒-︒+︒=︒CE 是ACB ∠的平分线∴1352ACE ACB ∠=∠=︒.CD 是高线∴90ADC ∠=︒∴9020ACD BAC ∠=︒-∠=︒∴352015DCE ACE ACD ∠=∠-∠=︒-=︒︒.(2) 解:BAC α∠= B β∠=∴()180()180ACB BAC B αβ∠=︒-∠+∠=︒-+CE 是ACB ∠的平分线∴()1118090222ACE ACB αβαβ+∠=∠=⨯︒-+=︒-⎡⎤⎣⎦.CD 是高线∴90ADC ∠=︒∴9090ACD BAC α∠=︒-∠=︒- ∴909022DCE ACE ACD αβαβα+-∠=∠-∠=︒--︒+=.【点睛】本题主要考查角平分线 高线以及角的转换 掌握角平分线 高线的性质是解题的关键.17.(2022·上海·八年级专题练习)如图 ∴ABC 中 ∴BAC =60º AD 平分∴BAC 点E 在AB 上 EG ∴ADEF ∴AD 垂足为F .(1)求∴1和∴2的度数.(2)联结DE 若S △ADE =S 梯形EFDG 猜想线段EG 的长和AF 的长有什么关系?说明理由.【答案】(1)30º;60º(2)相等 理由见解析【解析】【分析】(1)利用角平分线的定义求得BAD ∠ 然后在直角三角形中利用两锐角互余即可求得∴2 再利用平行线的性质即可求得∴1的度数.(2)根据S △ADE =S 梯形EFDG 可得AD =DF +EG 结合图形即可求解.(1)∴∴BAC =60º AD 平分∴BAC ∴1302BAD BAC ∠=∠=︒ 又∴EF ∴AD∴29060BAD ∠=︒-∠=︒ ∴EG ∴AD∴130BAD ∠=∠=︒.(2)相等. 理由如下: ∴EF ∴AD∴S △ADE =12AD EF ⋅ S 梯形EFDG =1()2DE EG EF +⋅ ∴S △ADE = S 梯形EFDG ∴12AD EF ⋅=1()2DE EG EF +⋅∴AD =DF +EG∴AD =AF +DF∴DF +EG =AF +DF即AF =EG .【点睛】本题考查了平行线的性质 角平分线的定义以及三角形和梯形的面积公式 熟练掌握平行线的性质和角平分线的定义是解题的关键.18.(2021·安徽省六安皋城中学八年级期中)如图 AD 是∴ABC 的边BC 上的中线 已知AB =5 AC =3. (1)边BC 的取值范围是 ;(2)∴ABD 与∴ACD 的周长之差为 ;(3)在∴ABC 中 若AB 边上的高为2 求AC 边上的高.【答案】(1)28BC <<;(2)2;(3)103h =. 【解析】【分析】 (1)直接根据三角形三边关系进行解答即可;(2)根据三角形中线将∴ABD 与∴ACD 的周长之差转换为AB 和AC 的差即可得出答案;(3)设AC 边上的高为h 根据三角形面积公式列出方程求解即可.【详解】解:(1)∴∴ABC 中AB =5 AC =3∴5353BC -<<+即28BC <<故答案为:28BC <<;(2)∴∴ABD 的周长为AB AD BD ++∴ACD 的周长为AC AD CD ++∴AD 是∴ABC 的边BC 上的中线∴BD CD =∴AB AD BD ++-(AC AD CD ++)=532AB AC -=-=故答案为:2;(3)设AC 边上的高为h 根据题意得:11222AB AC h ⨯=⨯ 即1152322h ⨯⨯=⨯⨯ 解得103h =.【点睛】本题考查了三角形三边关系 三角形的中线 三角形的高等知识点 熟练掌握基础知识是解本题的关键.。

三角形计算练习题边长与角度

三角形计算练习题边长与角度

三角形计算练习题边长与角度在几何学中,三角形是研究最为深入的图形之一。

它由三条边和三个角组成,根据给定的条件可以通过各种计算方法来确定三角形的边长和角度。

本文将介绍一些常见的三角形计算练习题,帮助读者增强对三角形相关知识的理解。

一、已知两边及夹角首先考虑一种常见的情况:已知三角形的两条边长及它们之间的夹角。

假设已知三角形的两边分别为a和b,夹角为θ。

我们可以利用余弦定理来计算第三边c:c = √(a² + b² - 2abcosθ)此外,我们还可以利用正弦定理来计算三角形的角度。

根据正弦定理,我们可以得到以下等式:sinθ = sin(180° - θ) = sin(180° - θ) = bsinα / c其中,α为与夹角θ对应的角度,请注意在求夹角的时候可以使用正弦函数。

二、已知两边及一个角度在这种情况下,我们已知三角形的两条边长和一个角度。

假设已知三角形的两边分别为a和b,已知一个角度为θ。

我们可以利用正弦定理来计算第三边c:c = (sinθ / sinα) * a其中,α为与已知角度θ对应的角度,请注意在求第三边的时候需要使用正弦函数。

三、已知一个边及两个角度在这种情况下,我们已知三角形的一条边和两个角度。

假设已知三角形的一条边为a,已知两个角度为θ和α。

我们可以首先利用三角形内角和为180°的性质来计算第三个角度β:β = 180° - θ - α然后,利用正弦定理来计算第二条边b:b = (sinβ / sinθ) * a最后,利用余弦定理来计算第三条边c:c = √(a² + b² - 2abcosα)四、已知三个角度在这种情况下,我们已知三角形的三个角度。

假设已知三个角度分别为θ、α和β。

由于三角形内角和为180°的性质,我们可以直接计算第三个角度γ:γ = 180° - θ - α - β值得注意的是,当已知三个角度后,我们无法直接计算任意一条边的长度,因为我们缺乏相应的边长信息。

角形边角关系专项练习

角形边角关系专项练习

三角形边角关系及三线练习题典型例题【例1】 已知三角形的三边长分别为4、5、x ,则x 不可能是( )A. 3B. 5C. 7D. 91. 【例2】 一个三角形的三条边中有两条边相等,且一边长为4,还有一边长为9,则它的周长为( )2. A. 17 B. 22 C. 17或22 D. 133. 相关变形:一等腰三角形两边长分别为3,5,试求该三角形的周长。

4.5. 等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( ) ° ° °或80° °【例3】 如图SX —02,AD⊥BC,则图中以AD 为高的三角形有___________个。

【例4】 如图SX —03,已知线段AD 、AE 分别是△ABC 的中线和高线,且AB=5cm ,AC=3cm ,(1) △ABD 与△ACD 的周长之差为_________;(2) △ABD 与△ACD 的面积关系为__________。

【例5】 已知△ABC 中,给出下列四个条件:(1) ∠A+∠B=∠C; (2) ∠A=90°-∠B; (3) ∠A:∠B:∠C=1:1:2; (4) ∠A:∠B:∠C=1:2:3. 其中能够判定△ABC 是直角三角形的有( )个。

A. 1B. 2C. 3D. 4【例6】 如图SX —04,Rt△ABC 中,∠ACB=90°,CD 是AB 边上的高,AB=13cm ,BC=12cm ,AC=5cm ,求:(1) △ABC 的面积; (2) CD 的长。

【例7】 如图SX —05,△ABC 中,∠B、∠C 的平分线交于点P ,且∠BPC=130°,求∠BAC 的度数。

SX —02SX —03 SX —04图SX -05SX —06图SX -05-1相关变形:一个零件的形状如图SX —05-1所示,按规定∠BAC=90°,∠B=21°,∠C=20°,检验工人量得∠BDC=130°,于是断定这个零件不合格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、填一填
由三条()围成的图形叫做三角形。

一个三角形有( )个顶点,()个角,()条边。

二、判断
下面三根小棒可以围成一个三角形吗?你是怎么判断的?(能的在下面画“√”)
三、试一试
现有长度为2cm,3cm,4cm,5cm的木棒,从中任取三根围成一个三角形,可以怎样选?
四、选一选
1、下面各组中的三条线段,可以围成一个三角形的()
A、2、4、6
B、2、5、5
C、2、2、5
D、3、4、7
2、已知一个三角形的两条边是7厘米和8厘米,则第三条边不可能是()
A、2厘米
B、3厘米
C、14厘米
D、1厘米
五、先想一想,再小组内说一说
(1)3根同样长的小棒,能否首尾相连地摆成一个三角形?
(2)4根同样长的小棒,能否首尾相连地摆成一个三角形?
六、解决问题
1、小明要做一个三角形的支架,他的手中有两根长度分别是4分米、8分米的木条,他还需
要一根几分米长的木条就能完成他的心愿?
2、已知一个三角形的两条边分别是7cm 、3cm,第三条边可能是多少厘米?
班级:________ 姓名:__________ 成绩:_________
1.判断(能的在下面画“√”)
2. 一个三角形的两边分别是5和6,另一条边可能是()
A、小于11
B、大于
11 C、小于11大于1
3.两根小棒分别是5cm、10cm,再有一根()㎝的小棒就能围成一个三角形。

A、5cm
B、6cm
C、4cm
D、15cm
4. 写出三角形第三边的长度
6厘米和6厘米,第三边可能长_______________厘米
3厘米和4厘米,第三边可能长_______________厘米
5. 如果三角形的两条边的长分别是5cm和8cm,那么第三条边的长最短是()厘米,
最长是()厘米。

(填整厘米数)
6. 一个三角形的各边长都是整厘米数,其中两条边分别是7cm,8cm,那么这个三角形的周长最长是()厘米,最少是()厘米。

相关文档
最新文档