初一数学下册知识点总结
七年级数学下册知识点归纳汇总

七年级数学下册知识点归纳汇总一、相交线两条直线相交,形成4个角。
1、两条直线相交所成的四个角中,相邻的两个角叫做邻补角,特点是两个角共用一条边,另一条边互为反向延长线,性质是邻补角互补;相对的两个角叫做对顶角,特点是它们的两条边互为反向延长线。
性质是对顶角相等。
①邻补角:两个角有一条公共边,它们的另一条边互为反向延长线。
具有这种关系的两个角,互为邻补角。
如:∠1、∠2。
②对顶角:两个角有一个公共顶点,并且一个角的两条边,分别是另一个角的两条边的反向延长线,具有这种关系的两个角,互为对顶角。
如:∠1、∠3。
③对顶角相等。
二、垂线1.垂直:如果两条直线相交成直角,那么这两条直线互相垂直。
2.垂线:垂直是相交的一种特殊情形,两条直线垂直,其中一条直线叫做另一条直线的垂线。
3.垂足:两条垂线的交点叫垂足。
4.垂线特点:过一点有且只有一条直线与已知直线垂直。
5.点到直线的距离:直线外一点到这条直线的垂线段的长度,叫点到直线的距离。
连接直线外一点与直线上各点的所有线段中,垂线段最短。
三、同位角、内错角、同旁内角两条直线被第三条直线所截形成8个角。
1.同位角:(在两条直线的同一旁,第三条直线的同一侧)在两条直线的上方,又在直线EF的同侧,具有这种位置关系的两个角叫同位角。
如:∠1和∠5。
2.内错角:(在两条直线内部,位于第三条直线两侧)在两条直线之间,又在直线EF的两侧,具有这种位置关系的两个角叫内错角。
如:∠3和∠5。
3.同旁内角:(在两条直线内部,位于第三条直线同侧)在两条直线之间,又在直线EF 的同侧,具有这种位置关系的两个角叫同旁内角。
如:∠3和∠6。
四、平行线及其判定平行线1.平行:两条直线不相交。
互相平行的两条直线,互为平行线。
a∥b(在同一平面内,不相交的两条直线叫做平行线。
)2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。
3.平行公理推论:平行于同一直线的两条直线互相平行。
如果b//a,c//a,那么b//c平行线的判定:1. 两条平行线被第三条直线所截,如果同位角相等,那么这两条直线平行。
初一下册数学知识点总结归纳

初一下册数学知识点总结归纳初一下册数学知识点总结归纳(一)一、整数的概念和基本性质1. 整数的定义和性质(正整数、负整数、0、相反数等);2. 整数的加、减、乘、除法则;3. 整数比大小(绝对值大小比较);4. 整数的绝对值和相反数的性质。
二、分数的概念和基本性质1. 分数的定义和性质(有理数、分数线、分子、分母等);2. 分数的加、减、乘、除法则;3. 分数化简、约分;4. 分数的比较大小(通分后比较分子);5. 分数和整数的加、减、乘、除法。
三、小数的概念和基本性质1. 小数的定义和性质(有限小数、无限循环小数、无限不循环小数等);2. 小数的转化(小数转分数、分数转小数);3. 小数的加、减、乘、除法则。
四、代数式及其运算1. 代数式的基本概念(字母、常数、系数、项、次数);2. 代数式的加、减、乘、除法则;3. 多项式(单项式、多项式、常数项、一次项、二次项等);4. 四则运算(加、减、乘、除);5. 同类项的合并和分解、因式分解;6. 多项式除以一次式及其余数。
初一下册数学知识点总结归纳(二)五、图形的初步认识1. 图形的分类(平面图形、立体图形等);2. 平面图形(点、线、面、封闭图形、不封闭图形等);3. 立体图形(球、立方体、长方体、圆柱体、圆锥体、棱锥体等);4. 基本图形的名称和性质(正方形、长方形、圆形、三角形等);5. 图形坐标系(直角坐标系、平面直角坐标系、三维坐标系等)。
六、比例与变量1. 比例的基本概念(比、比值、比例等);2. 计算比例的方法(倍数、分数、百分数表示比例等);3. 比例运算的定理(倍数定理、分离变量法等);4. 并、集、差的基本概念;5. 变量的概念和使用。
七、图形的性质和运动1. 学习使用尺规作图;2. 放缩、旋转、平移的概念和性质;3. 图形的对称性和中心对称;4. 角度的概念和计算方法;5. 直线和平面的性质(平面内的角、直线的交角、平行线等)。
初一下册数学知识点总结范本(6篇)

初一下册数学知识点总结范本二元一次方程组1.二元一次方程:含有两个未知数,并且含未知数项的次数是1,这样的方程是二元一次方程.注意:一般说二元一次方程有无数个解.2.二元一次方程组:两个二元一次方程联立在一起是二元一次方程组.3.二元一次方程组的解:使二元一次方程组的两个方程,左右两边都相等的两个未知数的值,叫二元一次方程组的解.注意:一般说二元一次方程组只有解(即公共解).4.二元一次方程组的解法:(1)代入消元法;(2)加减消元法;(3)注意:判断如何解简单是关键.※5.一次方程组的应用:(1)对于一个应用题设出的未知数越多,列方程组可能容易一些,但解方程组可能比较麻烦,反之则难列易解(2)对于方程组,若方程个数与未知数个数相等时,一般可求出未知数的值;(3)对于方程组,若方程个数比未知数个数少一个时,一般求不出未知数的值,但总可以求出任何两个未知数的关系.一元一次不等式(组)1.不等式:用不等号,把两个代数式连接起来的式子叫不等式.2.不等式的基本性质:不等式的基本性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;不等式的基本性质2:不等式两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式两边都乘以(或除以)同一个负数,不等号的方向要改变.3.不等式的解集:能使不等式成立的未知数的值,叫做这个不等式的解;不等式所有解的集合,叫做这个不等式的解集.4.一元一次不等式:只含有一个未知数,并且未知数的次数是1,系数不等于零的不等式,叫做一元一次不等式;它的标准形式是ax+b0或ax+b0,(a0).5.初一下册数学知识点总结范本(二)一.整式※1.单项式①由数与字母的积组成的代数式叫做单项式.单独一个数或字母也是单项式.②单项式的系数是这个单项式的数字因数,作为单项式的系数,必须连同数字前面的性质符号,如果一个单项式只是字母的积,并非没有系数.③一个单项式中,所有字母的指数和叫做这个单项式的次数.※____多项式①几个单项式的和叫做多项式.在多项式中,每个单项式叫做多项式的项.其中,不含字母的项叫做常数项.一个多项式中,次数最高项的次数,叫做这个多项式的次数.②单项式和多项式都有次数,含有字母的单项式有系数,多项式没有系数.多项式的每一项都是单项式,一个多项式的项数就是这个多项式作为加数的单项式的个数.多项式中每一项都有它们各自的次数,但是它们的次数不可能都作是为这个多项式的次数,一个多项式的次数只有一个,它是所含各项的次数中最高的那一项次数.※3.整式单项式和多项式统称为整式.二.整式的加减1.整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.2.括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘.三.同底数幂的乘法※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);⑤公式还可以逆用:(m、n均为正整数)四.幂的乘方与积的乘方※2..※3.底数有负号时,运算时要注意,底数是a与(-a)时不是同底,但可以利用乘方法则化成同底,如将(-a)3化成-a3※4.底数有时形式不同,但可以化成相同.※5.要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零).※6.积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数).※7.幂的乘方与积乘方法则均可逆向运用.五.同底数幂的除法※1.同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n).※2.在应用时需要注意以下几点:①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0.②任何不等于0的数的____次幂等于1,即,如,(-2.50=1),则00无意义.③任何不等于0的数的-p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0-1,0-3都是无意义的;当a>0时,a-p的值一定是正的;初一下册数学知识点总结范本(三)多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。
初一下册数学知识点总结归纳

初一下册数学知识点总结归纳数学作为一门基础学科,对学生的数理思维和逻辑推理能力的培养起着重要的作用。
初一下册数学内容丰富多样,包括数的认识与运算、代数方程、几何初步等知识点。
本文将对初一下册数学的主要知识点进行总结归纳,帮助同学们更好地掌握这些知识。
一、数的认识与运算1. 整数概念及运算:正整数、负整数、零的概念,整数的加减乘除运算规则。
2. 实数的概念:有理数和无理数的区别,实数的基本性质。
3. 分数的概念及运算:真分数、假分数和整数,分数的加减乘除运算。
4. 百分数的概念及应用:百分数的意义、转化和应用。
二、代数方程1. 代数式的概念:代数式的定义及其基本性质。
2. 一元一次方程:解方程的基本方法,一元一次方程的实际应用。
3. 实际问题中的一元一次方程:通过实际问题建立一元一次方程,解决实际问题。
4. 实数的判断与表示:实数的比较大小,实数的表示方法。
三、几何初步1. 二维图形的认识:点、线、线段、射线的概念区分,平面图形的分类及性质。
2. 三角形的分类及性质:三角形的分类,三角形内角和为180度的性质。
3. 平行线与平行四边形:平行线的概念及判定方法,平行四边形的性质。
4. 直角三角形与勾股定理:直角三角形的概念及性质,勾股定理的应用。
四、数据分析1. 统计图的应用:条形图、折线图、饼图等统计图的绘制和应用。
2. 表格的分析与应用:从表格中获取信息,进行简单的统计和分析。
3. 问题解决能力:通过实际问题,掌握统计图和表格的分析应用方法。
五、数学建模初探1. 模式与模型:模式与模型的概念及应用,数学建模的基本思路。
2. 实际问题的数学描述:把实际问题转化为数学模型,建立数学模型求解问题。
3. 生活中的实际问题:通过实例分析,解决生活中的实际问题。
通过对初一下册数学知识点的总结归纳,我们可以清晰地了解到这个学期数学学习的主要内容。
每一个知识点都有其特定的概念、规则和应用方法,因此在学习过程中要注重理论联系实际,强化实际问题的应用能力。
初一下册数学知识点归纳大全

初一下册数学知识点归纳大全初一下册数学知识点主要包括以下几部分:
一、几何基础
1. 直线、射线、线段:定义、表示方法、性质与作图。
2. 角:定义、表示方法、度量。
3. 相交线:对顶角、邻补角、垂线及其性质。
4. 平行线:平行公理、平行线的性质及判定。
5. 垂直平分线:定义、性质及判定。
6. 三角形:三角形的边、角、周长与面积。
7. 全等三角形:全等三角形的性质与判定。
8. 轴对称与中心对称:定义、性质及判定。
9. 四边形:四边形的性质与判定。
10. 尺规作图:定义、基本作图及综合作图。
二、代数基础
1. 代数式:定义、性质及分类。
2. 整式:单项式、多项式、整式的加减法。
3. 因式分解:定义、方法与技巧。
4. 分式:定义、性质及运算。
5. 二次根式:定义、性质及运算。
6. 一元一次方程:解法及应用。
7. 二元一次方程组:解法及应用。
8. 一元一次不等式(组):解法及应用。
9. 方程的根与系数的关系。
10. 函数:定义、性质及图像。
11. 一次函数:定义、性质及图像。
12. 反比例函数:定义、性质及图像。
13. 二次函数:定义、性质及图像。
14. 三角函数:定义、性质及图像。
15. 概率初步知识:概率的定义与计算。
16. 数据收集与整理:方法与技巧。
17. 综合题解题思路与方法。
这些知识点涵盖了初一下册数学的主要内容,建议在学习时结合教材和练习题,掌握每个知识点的细节,提高自己的数学水平。
初一下册数学必考知识点归纳整理

初一下册数学必考知识点归纳整理一、几何图形概念:从实物中抽象出来的各种图形,分为立体图形和平面图形。
1、立体图形:几何图形的各个部分没有都在同一平面内。
2、平面图形:几何图形的各个部分都在同一平面内。
二、点、线、面、体1、组成几何图形点:线和线相交的地方就是点,是几何图形中最基本的图形。
线:面和面相交的地方就是线,包括直线和曲线。
面:包围着体的就是面,包括平面和曲面。
体:几何体简称为体。
2、点动成线,线动成面,面动成体。
三、常见的几何体及其特点长方体:有8个顶点,12条棱,6个面,每个面都是长方形。
正方形是特殊的长方形,正方体是特殊的长方体。
棱柱:上下两个面是棱柱的底面,别的面是侧面,长方体是四棱柱。
棱锥:一个面是多边形,其余各个面是有一个公共顶点的三角形。
圆柱:有上下两个底面和一个侧面,侧面是曲面,两个底面是半径相等的圆。
圆柱的表面展开图是两个相同的圆形和一个长方形组成。
圆锥:有一个底面和一个侧面,侧面展开图是扇形,底面是圆。
球:由一个面围成的几何体,这个面是曲面。
四、棱柱棱:在棱柱中,任何相邻两个面的交线叫做棱。
侧棱:相邻两个侧面的交线叫做侧棱。
n棱柱有两个底面,n个侧面,一共是(n+2)个面,3n条棱,n 条侧棱,2n个顶点。
五、正方体的平面展开图:有11种六、平面截几何体1、用平面去截正方体,截出来的面可能是三角形,四边形,五边形,六边形。
注意:正方体只有六个面,所以截面最多有六条边,截面边数最多的图形是六边形。
长方体、棱柱的截面与正方体的截面有相似的地方。
2、用平面截圆锥,可以截出圆和三角形两种截面。
3、用平面截球体,只能出现圆的截面。
七年级下册数学知识点总结

七年级下册数学知识点总结一、整数与分数1. 整数 operations- 加法:同号相加,异号相减,零与任何数相加结果不变。
- 减法:减去一个数等于加上它的相反数。
- 乘法:正数与正数相乘得正数,负数与负数相乘得正数,正数与负数相乘得负数。
- 除法:除以一个数等于乘以它的倒数,零不能做除数。
2. 分数 operations- 分数的加减:需要找到公共分母后进行加减。
- 分数的乘除:分子乘分子,分母乘分母。
- 带分数与假分数的转换:带分数转换为假分数,分子是原来的整数部分乘以分母加上分子,分母不变。
二、代数表达式1. 单项式- 定义:只包含乘法和除法运算的代数式。
- 系数:单项式中的数字因数。
- 次数:单项式中所有字母的指数之和。
2. 多项式- 定义:由若干个单项式通过加减法组成的代数式。
- 项:多项式中的每一项单项式。
- 合并同类项:将多项式中的系数相加,字母和指数保持不变。
三、方程与不等式1. 一元一次方程- 定义:只含有一个未知数,且未知数的最高次数为1的方程。
- 解法:通过移项、合并同类项、系数化为1等步骤求解。
2. 不等式- 定义:表示不等关系的数学式。
- 解集:满足不等式关系的所有数值集合。
- 基本性质:不等式两边加(或减)同一个数(或式子),不等号方向不变;不等式两边乘(或除以)同一个正数,不等号方向不变;不等式两边乘(或除以)同一个负数,不等号方向改变。
四、几何图形1. 平行线与相交线- 平行线:在同一平面内,永不相交的两条直线。
- 相交线:在平面内相交的两条直线,交点称为垂足。
2. 角的概念与分类- 角:由两条射线的一个公共端点(顶点)构成的图形。
- 锐角:大于0°小于90°的角。
- 直角:等于90°的角。
- 钝角:大于90°小于180°的角。
3. 三角形- 定义:由三条线段顺次首尾相接围成的图形。
- 类型:按边分类为等边三角形、等腰三角形和不等边三角形;按角分类为锐角三角形、直角三角形和钝角三角形。
初一数学下册知识点总结(可编辑打印思维导图)

(1)代数式化简。
4、代数式求值的一般步骤:
(2)代入计算
(3)对于某些特殊的代数式,可采用“ 整体代入”进行计算。
五、同底数幂的乘法
1、n个相同因式(或因数)a相乘,记作 an,读作a的n次方(幂),其中a为底数
,n为指数,an的结果叫做幂。
2、底数相同的幂叫做同底数幂。
3、同底数幂乘法的运算法则:同底数幂 相乘,底数不变,指数相加。即: am﹒an=am+n。
第四章 三角形
一、三角形概念 二、三角形中三边的关系
第一章:整式的运算
一、单项式 二、多项式 三、整式 四、整式的加减 五、同底数幂的乘法 六、幂的乘方 七、积的乘方 八、三种“幂的运算法则”异同点 九、同底数幂的除法 十、零指数幂 十一、负指数幂 十二、整式的乘法 十三、平方差公式 十四、完全平方公式 十五、整式的除法
的项。
3、多项式中不含字母的项叫做常数项。
4、一个多项式有几项,就叫做几项式。
5、多项式的每一项都包括项前面的符号 。
6、多项式没有系数的概念,但有次数的 概念。
7、多项式中次数最高的项的次数,叫做 这个多项式的次数。
三、整式
1、单项式和多项式统称为整式。 2、单项式或多项式都是整式。 3、整式不一定是单项式。 4、整式不一定是多项式。 5、分母中含有字母的代数式不是整式;
七、积的乘方
1、积的乘方是指底数是乘积形式的乘方 。
2、积的乘方运算法则:积的乘方,等于 把积中的每个因式分别乘方,然后把所
得的幂相乘。即(ab)n=anbn。
3、此法则也可以逆用,即:anbn =(ab )n。
八、三种“幂的运算法则”异同点
1、共同点: 2、不同点:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初一数学下册知识点总结
知识点、概念总结
1.不等式:用符号"","","≤","≥"表示大小关系的式子叫做不等式。
2.不等式分类:不等式分为严格不等式与非严格不等式。
一般地,用纯粹的大于号、小于号"",""连接的不等式称为严格不等式,用不小于号(大于或等于号)、不大于号(小于或等于号)"≥","≤"连接的不等式称为非严格不等式,或称广义不等式。
3.不等式的解:使不等式成立的未知数的值,叫做不等式的解。
4.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一个含未知数的不等式有无数个解,其解集是一个范围,这个范围可用最简单的不等式表达出来,例如:x-1≤2的解集是x≤3
(2)用数轴表示:不等式的解集可以在数轴上直观地表示出来,形象地说明不等式有无限多个解,用数轴表示不等式的解集要注意两点:一是定边界线;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x) G(x)与不等式 G(x)F(x)同解。
(2)如果不等式F(x) G(x)的定义域被【解析】式H(x)的定义域所包含,那么不等式 F(x) G(x)与不等式H(x)+F(x)
(3)如果不等式F(x) G(x)的定义域被【解析】式H(x)的定义域所包含,并且H(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)0,那么不等式F(x) G(x)与不等式H(x)F(x)H(x)G(x)同解。
7.不等式的性质:
(1)如果xy,那么yy;(对称性)
(2)如果xy,y那么x(传递性)
(3)如果xy,而z为任意实数或整式,那么x+z(加法那么)
(4)如果xy,z0,那么xz如果xy,z0,那么xz
(5)如果xy,z0,那么x÷z如果xy,z0,那么x÷z
(6)如果xy,mn,那么x+my+n(充分不必要条件)
(7)如果x0,m0,那么xmyn
(8)如果x0,那么x的n次幂y的n次幂(n为正数)
8.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的最高次数是1,像这样的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般顺序:
(1)去分母 (运用不等式性质2、3)
(2)去括号
(3)移项 (运用不等式性质1)
(4)合并同类项
(5)将未知数的系数化为1 (运用不等式性质2、3)
(6)有些时候需要在数轴上表示不等式的解集
10. 一元一次不等式与一次函数的综合运用:
一般先求出函数表达式,再化简不等式求解。
11.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成
了一个一元一次不等式组。
12.解一元一次不等式组的步骤:
(1) 求出每个不等式的解集;
(2) 求出每个不等式的解集的公共部分;(一般利用数轴)
(3) 用代数符号语言来表示公共部分。
(也可以说成是下结论) 13.解不等式的诀窍
(1)大于大于取大的(大大大);
例如:X-1,X2 ,不等式组的解集是X2
(2)小于小于取小的(小小小);
例如:X-4,X-6,不等式组的解集是X-6
(3)大于小于交叉取中间;
(4)无公共部分分开无解了;
14.解不等式组的口诀
(1)同大取大
例如,x2,x3 ,不等式组的解集是X3
(2)同小取小
例如,x2,x3 ,不等式组的解集是X2
(3)大小小大中间找
例如,x2,x1,不等式组的解集是1
(4)大大小小不用找
例如,x2,x3,不等式组无解
15.应用不等式组解决实际问题的步骤
(1)审清题意
(2)设未知数,•根据所设未知数列出不等式组
(3)解不等式组
(4)由不等式组的解确立实际问题的解
(5)作答
16.用不等式组解决实际问题:其公共解不一定就为实际问题的解,所以需结合生活实际具体分析,最后确定结果。