8.2二元一次方程组的解法1课件

合集下载

《加减消元法—二元一次方程组的解法》二元一次方程组PPT优秀课件

《加减消元法—二元一次方程组的解法》二元一次方程组PPT优秀课件
① + ②
① ②
4x 5 y 3 2 x 5 y 1
① - ②
① ②
感悟规律 揭示本质
两个二元一次方程中同一未知数的
系数相反或相等时,将两个方程的两边
分别相加或相减,就能消去这个未知数,
得到一个一元一次方程,这种方法叫做
加减消元法,简称加减法.
例1、解方程组
2x-5y=7
分析:
x= 1
y=-1
做一做
1、解二元一次方程组

3x-2y=5 ① X+3y=9 ②
6x+5y=25 ①

3x 4y=20 ② 2x+3y=-1 ① (4) 4x -9y=8 ②
(3)
3s+4t=7 ① 3t-2s=1 ②
运用新知 拓展创新
3x-2y= -1 6x+7y=9 ① ②
分析:1、要想用加减法解二元一次方程组 必须具备什么条件? 2、此方程组能否直接用加减法消 元?
3x 5y 21 2 x 5 y -11
互为相反 数……
① ②
分析: (3x + 5y)+(2x - 5y)=21 + (-11)
①左边 + ② 左边 = ① 右边 + ②右边
3x+5y +2x - 5y=10 5x =10 x=2
3x 5y 21 2 x 5 y -11
8命运把人抛入最低谷时,往往是人生转折的最佳期。 若自怨自艾,必会坐失良机!
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •
励志学习的名言警句 1、在强者的眼中,没有最好,只有更好。 2、成功是努力的结晶,只有努力才会有成功。 3、只有一条路不能选择——那就是放弃的路;只有一条路不能拒绝——那就是成长的路。 4、拥有梦想只是一种智力,实现梦想才是一种能力。 5、生命之灯因热情而点燃,生命之舟因拼搏而前行。 6、忍别人所不能忍的痛,吃别人所别人所不能吃的苦,是为了收获得不到的收获。 7、没有天生的信心,只有不断培养的信心。 8、成功需要成本,时间也是一种成本,对时间的珍惜就是对成本的节约。 9、自己打败自己的远远多于比别人打败的。 10、当一个小小的心念变成行为时,便能成了习惯,从而形成性格,而性格就决定你一生的成败。 11、忍耐力较诸脑力,尤胜一筹。 12、高峰只对攀登它而不是仰望它的人来说才有真正意义。 13、你可以这样理解impossible(不可能)——I'm possible(我是可能的)。 14、自己打败自己是最可悲的失败,自己战胜自己是最可贵的胜利。 15、你可以选择这样的三心二意:信心恒心决心;创意乐意。 16、成功与不成功之间有时距离很短——只要后者再向前几步。 17、呈概率分布,关键是你能不能坚持到成功开始呈现的那一刻。 18、书是易事,思索是难事,但两者缺一,便全无用处 19、动是成功的阶梯,行动越多,登得越高。 20、天比昨天好,就是希望。 21、力的人影响别人,没能力的人,受人影响。 22、做的事情总找得出时间和机会; 23、要自卑,你不比别人笨。不要自满,别人不比你笨。 24、面对机遇,不犹豫;面对抉择,不彷徨;面对决战,不惧怕! 25、个人先从自己的内心开始奋斗,他就是个有价值的人。 26、超越自己,向自己挑战,向弱项挑战,向懒惰挑战,向陋习挑战。 27、不必每分钟都学习,但求学习中每分钟都有收获。 28、取时间就是争取成功,提高效率就是提高分数。 29、紧张而有序,效率是关键。 30、永远不要以粗心为借口原谅自己。

人教版数学七年级下册第八章《8.2加减消元法解二元一次方程组》优质课课件(21张PPT)

人教版数学七年级下册第八章《8.2加减消元法解二元一次方程组》优质课课件(21张PPT)
解:由②-①得: x=6
把x=6代入①,得 6+y=10
解得
y=4
所以这个方程组的解是
x
y
6 4
3x +10 y=2.8 ①
15x -10 y=8 ②
解:把 ①+②得: 18x=10.8 x=0.6
把x=0.6代入①,得: 3×0.6+10y=2.8
解得:y=0.1
所以这个方程组的解是
x
y
0.6 0.1
解得 x = 1
把x= 1 代入①得 1+3y=4
解得 y = 1
x 1
所以这个方程组的解是
y
1
2、已知
a 2b 4 3a 2b 8
①②,
则a+b等于_3__

分析:法一,直接解方程组,求出a 与b的值,然后就可以求出a+b
法二,+得4a+4b=12 a+b=3
1、已知 5x3y2 3 (x 3y 7 )20,求 x- y 的值。
1
(3)3xx22yy91
① ②
解:①+②,得 4x=8
解得 x=2
把x =2 代入①得 2+2y=9
解得 y=3.5
所以这个方程组的解是
x 2
y
3.5
(4)xx
y7 3y 17
① ②
解:②-①,得 2y=10
解得 y = 5
把y= 5 代入①得 x+5=7
解得 x = 2
x 2
所以这个方程组的解是
解:① + ②,得
① ②
9u=18
解得 u = 2
把u= 2 代入①得 3×2+2t=7

8.2二元一次方程组的解法(加减消元)

8.2二元一次方程组的解法(加减消元)

5x 6
(4)
x

1
y
5 6

7
y
3 2
解:(1)xy

11(2)xy

3 2
(3)xy

8 x 4(4) y

11 2
14

3
(1)已知关于x、y的方程组( nmx mn)yx6y 5
的解是xy
1,求m, 2

y

2
,所用的消元法是 加减消元法 ,首先用①
Байду номын сангаас
减去 ②,求出 x ,再求出 y 。
2. 解方程组:
(1)22xx

5y 3y

7 1
(3) x
3
y

x
2
y

6
3(x y) 2(x y) 28
(2)32xx

3y 4y

12 17
∴ x y2 x y3 12 33 28
甲、乙两人同解方程组
Ax Cx

By 3y

2 2,
甲正确解得 xy

11,乙抄错C,解得xy

2 ,
6
求A、B、C的值。
(1)解三元一次方程组:
x z 4 (1)z 2 y 1
n的值。
解:将xy
12代入方程组得2mmnn3
, 6
解得:
m 3 n 0
(2)若22000054xx

2005 2004
y y

2003 ,
2006

人教版数学七年级下册8.2-消元——二元一次方程组的解法(第1课时)

人教版数学七年级下册8.2-消元——二元一次方程组的解法(第1课时)
人教版数学七年级下册8.2-消元——二元一 次方程组的解法(第1课时)
复习回顾:
判断下列各方程是否为二元一次方程:
① 2x32y√
② 1 1×
x y
③ 6ab 3ab× ④ x y y 2×
x
⑤ 2R2r6√
复习回顾:
判断下列各方程组是否为二元一次方程组:
√ ①
2x y
3
y
4
z
3 7
×
x
3y
7
0.
解方程组即可得出x,y的值.
【答案】 -3 —130
巩固提高:
4、若方程 5x2m n4y3m 2n9是关于 x, y的二
元一次方程,求m , n的值.
解:根据题意得
2m n 1, 3m 2n 1.
解得 m 3 , n 1 . 77
巩固提高:
5、下列是用代入法解方程组

m
m
n
8
1
③3ab 4 Nhomakorabeaa
5
8
1
9
×
√ ⑤
5 p
p q
q 1
8 2

m m 2
1 2n
4n
9 5
×
复习回顾:
用含x的式子表示 y :
(1)x2y30 (2)2x5y21
y x3 2
y 2x 21 5
(3)0.5xy7
y0.5x7
知识新授:
今有鸡兔同笼 上有三十五头 下有九十四足 问鸡兔各几头
x y 3 ①
【例2】解方程组
3
x
8
y
14

分析:方程①中x的系数是1,用含y的式子表示x,比较简便.

【新】人教版七年级数学下册第八章《8.2 解二元一次方程组(代入法1)》优秀课件.ppt

【新】人教版七年级数学下册第八章《8.2 解二元一次方程组(代入法1)》优秀课件.ppt

2、若 则
x y
a b
是方程2x+y=2的解,
8a+4b-3=_5___.
二、学习目标
1、用含有一个未知数的式子表示 另一个未知数
2、用代入消元法解二元一次方组.
三、研读课文
认真阅读课本第92至93页 的内容,完成下面练习并体 验知识点的形成过程.
三、研读课文
知 识
1、在方程组
x y 10
解这个方程,得x= 2 . 把x= 2 代入①,得y= 1 _
x 2
∴原方程组的解是
y
1
引导学生读懂数学书课题研究成果配套课件 课件制作:何姗
练一练 用代入法解下列方程组:
2x y 5 ①
(2)
3x 4y 2 ②
解:由①,得y=2x-5… ③ 把③代入②,得3x+4(2x-5)= 2 解这个方程,得x=2 把x=2代入③,得y=-1
x+1=3 x=2
把y=-1代入②得: 3x-8×(-1)=14
3x+8=14 3x=14-8 3x=6 x=2
经比较我认为把y=-1代入①比较好
2、用代入法解方程组的时候要注意 格式的规范.
练一练 用代入法解下列方程组:
y 2x 3 ①
(1)
3x 2y 8 ②
解:把①代入②,得
3x+2(2x-3 )= 8 .
新课引入 学习目标 研读课文 归纳小结 学习反思
引导学生读懂数学书课题研究成果 七年级(下)数学学习设计
第二课时 8.2.1 消元 ------二元一次 方程组的解法(代入法1)
黑发不知勤学早,白发方悔读书迟。
一、新课引入
--- 颜真卿
1、二元一次方程组的两个方程的_公__共___

人教版七年级下册 8.2《消元——解二元一次方程组》【 课件】(共18张PPT)

人教版七年级下册 8.2《消元——解二元一次方程组》【 课件】(共18张PPT)

③+④,得 19x=114 x=6
把x=6代入①,得
3×6+4y=16
y=
-
1 2
x=6
所以这个方程组的解是 y= - 1
2
你能不能用加减消元的方法消去x呢?
x+y=10 ① 2x+y=16 ②
解:①×2,得
2x+2y=20

③- ②,得 y=4
把y=4代入①,得 x=6
所以这个方程组的解是 x=6 y=4
x=6 y=4
① -②也能消去 未知数y,求得x 吗?
联系上面的解法,想一想怎样解方程组
3x+10y =2.8

15x-10y =8

解:
① +②,得
18x=10.8 从上面两个方解程得组的解法x=可0.以6 看出:当二元一次方程组的两个方程中同一未知数 的系数相反或相等时,把这两个方程的两边分别相加或相减,就能消去这个未知
x+yy=10 ① 2x+y=16 ② 的解,这个方程组的两个方程中,y的系数有什么关系?利用这 种关系你能发现新的消元方法吗?
这两个方程中未知数y的系数相等,②-①可消去未知数y,得x=6
②-①就是用方程 ②的左边减去①的 左边,方程②的右 边减去方程①的右 边
把x=6代入①,得y=4
所以这个方程组的解是
解:设这些消毒液应该分装x大瓶、y小瓶.根据大、小瓶数的比,以及消毒液分装量 与总生产量的数量关系,得
5x=2y

500x+250y=22500000 ②
5
由①,得y= 2 x ③
把③代入②,得
500x+250×
5 2
x=22500000.

新人教版七年级数学下册第8章《8.2 消元-解二元一次方程组》教学PPT

新人教版七年级数学下册第8章《8.2 消元-解二元一次方程组》教学PPT

课件说明
学习目标: (1)会用加减消元法解简单的二元一次方程组. (2)理解解二元一次方程组的思路是“消元”, 经历由未知向已知转化的过程,体会化归思想.
学习重点: 用加减消元法解简单的二元一次方程组.
探究新知
问题1
我们知道,对于方程组
x y 10,① 2x y 16 ②
可以用代入消元法求解,除此之外,还有没有 其他方法呢?
(1)
y= 2 x-3 3x+ 2 y=8
(2) 2x-y=5 3x+4y=2
设计意图:第1题体现了难点突破中”关键”即二 元一次方程变形的关键,第二题能让学生通过 解决问题,总结归纳出解题的一般步骤和技巧.
·代入法解二元一次方程组的一般步骤:
①变形(选择其中一个方程,把它变形为用一个未知数的 代数式表示另一个未知数);
追问1 代入消元法中代入的目的是什么?
消元
探究新知
问题1
我们知道,对于方程组
x y 10,① 2x y 16 ②
可以用代入消元法求解,除此之外,还有没有其 他方法呢?
追问2 这个方程组的两个方程中,y的系数有什么 关系?利用这种关系你能发现新的消元方法吗?
两个方程中的系数相等;用②-①可消去未知 数y,得(2x+y)-(x+y)=16-10.
把③代入②,得
3(y+3) -8y=14. 解这个方程,得y= -1.
把y = -1代
入① 或②可 以吗?
把y = -1代入③,得
x=2.
所以,这个方程组的解是
x2 y1
2、课堂练习 练习1:把下列方程改写用含x的式子表示y的形式
(1)2x-y=3;(2)3x+y-1=0

人教初中数学七下 8.2 消元-解二元一次方程组课件 【经典初中数学课件 】

人教初中数学七下 8.2 消元-解二元一次方程组课件 【经典初中数学课件 】

P
1 0 7
解:设有x支篮球队和y支排球队参赛.
{ 由题意,得 X+y=48

10x+12y=520 ②
由①, 得 y =48- x ③
把③代入②,得 10x+12(48-x)=520
解这个方程,得 x= 28.
把x= 28代入③ ,得 y=20.
{ X=28
所以这个方程组的解是 y=20
解:设骑车用x小时,步行用y小时.
求原方程组正确的解
x 5
y
4
x 3
y
1
ax by 1,
2①已知方程组 bx ay 3的解为
x y
1, 1, 2
求a,b
②求满足5x+3y=x+2y=7的x,y的值.
1.用代入法解方程组:
2s 3t, (1)3s 2t 5
s=3 t=2

2x y 7 3x 4y 5
提高巩固
1.解下列二元一次方程组
x+1=2(y-1) ⑴
3x+2y=13 ⑵
3(x+1)=5(y-1)+4 3x-2y=5
你认为怎样代入更简便? 请用你最简便的方法解出它的解。 你的思路能解另一题吗?
1.解下列二元一次方程组(分组练习)
⑴ x+1=2(y-1)

3(x+1)=5(y-1)+4 ②
8.2 代入消元法解方程
用代入法
解二元一次 方程组
用代入法解二元一次 方程组的一般步骤
1、将方程组里的一个方程变形, 用含有一个未知数的一次式表 示另一个未知数(变形)
2、用这个一次式代替另一个方程 中的相应未知数,得到一个一元一 次方程,求得一个未知数的值(代 入)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分析: ⑴、由x + y=33 可得y=33-x ⑵、把4x+3y=100中的 y 换成33-x就化 为一元一次方程4x+3(33-x)=100 ⑶、解这个一元一次方程得X =1 ⑷、把X = 1代入y=33-x得y=32 ⑸、解得 X=1
y=32
x –y =3 ① 例1 解方程组 3x -8 y = 14 ②
2 x 7 y 8 y 2 x 32
小结
• 这节课我们学习了 什么知识?
代入消元法
1、二元一次方程组
一元一次方程
2、代入消元法的一般步骤:




1
3、思想方法:转化思想、代入消元思想、 方程(组)思想.


习题8.2第1、2题(①、②小题)
8.2 消元
——用代入消元法解二元一次方程组 (第1课时)
龙桥小学 祝启东
木马板凳三十三,百个脚脚地上翻,问 有多少条板凳和多少个木马?
方法一:解设有x条板凳,则有(33-x)个木马。根据题 意得: 4x+3(33-x)= 100 X=1 33-1 = 32(个) 答:有1条板凳,有32个木马。
解: x = 3+ y ③ 由①得: 把③代入②得: 3(3+y)– 8y= 14 9+3y– 8y= 14 – 5y= 5
说说方法:
用代入法解二元一次 方程组的一般步骤
变 代
1、将方程组里的一个方程变 形,用含有一个未知数的式子 表示另一个未知数; 2、用这个式子代替另一个方 程中相应的未知数,得到一个 一元一次方程,求得一个未知 数的值;
y= – 1
把y= – 1代入③,得 x=2

3、把这个未知数的值代入上 面的式子,求得另一个未知数 的值;
4、写出方程组的解。
x =2 写 ∴方程组的解是 y = -1
尝试应用
1.把下列方程写成用含x的式子表示y的形式 ⑴ 2x-y=3 ⑵ 3x+y-1=0 2.解二元一次方程组

(1)
(2)
x y 7 3x y 17
方法二:解设有x条板凳,有y个木马,由题意得: x+y=33 4x+3y=100
思考:如何解此方程组呢?
一、学习目标: 1、会用代入消元法解二元一次方程组。 2、体会解二元一次方程组的基本思想——消元。 3、通过研究解决问题的方法,培养合作交流意识与 探索精神。
学法指导:结合教材,先独立思考,疑难问题与同伴 进行交流。
相关文档
最新文档