Miniemulsion Polymerization

合集下载

细乳液聚合最新研究进展

细乳液聚合最新研究进展

细乳液聚合最新研究进展包祥俊,吴文辉,宫理想,王建全(北京理工大学材料科学与工程学院,北京100081)摘要:介绍了细乳液聚合体系的制备及聚合机理,分析了细乳液聚合在高固含量聚合物细乳液制备、复合纳米材料制备及活性/可控自由基聚合等方面的研究现状,综述了近年来细乳液聚合用于开发新型材料及细乳液聚合实施方法方面的主要研究进展。

关键词:细乳液;聚合;胶囊化中图分类号:TQ316 334文献标识码:A文章编号:0253-4320(2007)S1-0146-05New progress in miniemulsion polymerizationB AO Xiang jun,WU Wen hui,GONG Li xiang ,W ANG Jian quan(School of Material Science and Engineeri ng ,Beijing Insti tute of Technology ,Beijing 100081,Chi na)Abstract :The preparation of miniemulsion system and polymerization principle are introduced,and the status of miniemulsion polymerization in the preparation of polymer miniemulsion system with high solid content and nano composite materials,and controlled/living radical polymerization,is analyzed.And the recent progress in the utilization of miniemulsion polymerization in developing novel materials and practical use is reviewed.Key w ords :miniemulsion;polymerization;encapsulation收稿日期:2007-03-15作者简介:包祥俊(1984-),女,硕士生,xiangjun1984@;吴文辉(1947-),男,教授,博士生导师,主要研究方向为新型功能高分子、高分子纳米材料、水溶性高分子、靶向医用高分子、特殊结构高分子。

水性环氧树脂

水性环氧树脂

水性环氧树脂的研究进展摘要:本文简要地介绍了水性环氧树脂的原理和特点,系统地介绍了当前国内外水性环氧树脂的制备方法和研究现状,,并对其研究前景进行了展望,指出了今后研究的方向。

关键词:水性;环氧树脂;研究Progress in research on waterborne epoxy resinAbstract: This paper firstly introduced the mechanism and characteristic of waterborne epoxy resin, thenmainly introduced the p resent p reparation methods and investigation status at home and abroad,And its research prospect, points out the future direction of the research.Key words: :water - borne ;epoxy;research0 前言环氧树脂分子结构中含有独特的环氧基、羟基、醚键等活性基团和极性基团,使其固化物具有附着力高、电绝缘性好、耐化学品腐蚀等特点,广泛应用于金属防腐蚀涂料、建筑工程中的防水堵漏材料、灌缝材料、胶粘剂等工业领域。

常用的环氧树脂难溶于水,易溶于有机溶剂,而有机溶剂往往价格较高,且具有挥发性,容易对环境造成污染。

与溶剂型涂料相比,水性环氧涂料的VOC 含量低、气味较小、使用安全、并可用水清洗[1] ,同时它还兼有溶剂型环氧涂料良好的耐化学品性、附着性、机械物理性、电器绝缘性以及低污染、施工简便、价格便宜等优点[2 ] 。

因此以水为分散介质或溶剂的水性环氧树脂不仅是环境友好型材料,而且符合可持续发展战略。

随着世界各国对环境保护的日益重视,开发不含有挥发性有机化合物,制备出环保型的水性环氧树脂涂料已经成为涂料工业新的发展趋势[ 3,4]1水性环氧树脂的原理和特点水性环氧树脂,是指环氧树脂以微粒、液滴或胶体的形式,分散在以水为连续相的介质中,配制成稳定的分散体系[ 5 ] 。

彩色羧基荧光微球的制备

彩色羧基荧光微球的制备

彩色羧基荧光微球的制备张小燕;周齐洋【摘要】采用活性溶胀种子无皂乳液聚合法制备了表面修饰有羧基的彩色且在特定激发下释放荧光的聚苯乙烯微球.采用乳液聚合首先制备尺寸均一的苯乙烯纳米小球作为可溶胀活性种子,采用丙烯酰化的染料分子作为共聚单体,从而制备得到有色苯乙烯微球.所得到的有色微球进一步作为种子,通过溶胀法负载稀土配合物进行荧光标记,并再次通过乳液聚合使其包裹在微球内.为了便于生物分子偶联,在聚合过程中引入甲基丙烯酸作为功能化共聚单体,从而使所得微球表面被羧基功能化.【期刊名称】《中国医疗器械信息》【年(卷),期】2017(023)009【总页数】4页(P45-48)【关键词】标记;无皂乳液聚合;彩色;荧光;羧基化【作者】张小燕;周齐洋【作者单位】江苏省医疗器械检验所南京 210012;江苏省医疗器械检验所南京210012【正文语种】中文【中图分类】TQ325.2聚合物微球因其形态结构稳定、粒径分布窄、比表面积大、表面吸附性强等特点在生命科学、生物医学等领域得到广泛的应用,如细胞表面抗原检测,血流分析,吞噬功能检测,凝集试验为代表的诊断检测,药物筛选等[1-3]。

聚合物微球本身为白色,对比度不强,不易被检测,但对微球进行染料或荧光标记,成为带有色彩或荧光信号的微球时,易于检测。

尤其是对基于聚苯乙烯微球的胶乳凝集试验,有色微球更易于观察,从而大大提高检测的灵敏度[4]。

通过控制有色染料或荧光物质的量,可制备出彩色或荧光强度编码的微球,这样的信号编码微球为抗原分型、药物筛选等高通量检测提供了一种高效便捷的手段[5-6]。

例如,聂书明教授课题[7]组用两种不同颜色的量子点掺杂在树脂微球中,通过控制每种颜色量子点的用量制备出30种不同比例的荧光微球,在不同的微球表面修饰特定的抗体/抗原,就可以通过混合微球实现对靶标分子的高通量筛选。

目前大多选用有机荧光染料分子,通过物理吸附、包覆,化学嫁接到微球表面或者以荧光染料分子为共聚单体,以共聚的方式固定到微球,制得荧光编码微球[8-10]。

硅溶胶的制备及其影响因素

硅溶胶的制备及其影响因素

硅溶胶的制备及其影响因素作者:张翠,李绍纯,金祖权,赵铁军来源:《科技视界》 2015年第5期张翠李绍纯金祖权赵铁军(青岛理工大学土木工程学院,山东青岛 266033)【摘要】硅溶胶是二氧化硅的胶体分散于水中或溶剂中的一种胶体溶液,具有一系列优异的性能,广泛应用于涂料、纺织等行业。

本文综述了以正硅酸乙酯为原料采用溶胶-凝胶法制备硅溶胶的过程及稳定性的影响因素。

【关键词】硅溶胶;正硅酸乙酯;稳定性;溶胶-凝胶法【Abstract】Silica sol is a colloidal dispersion of silica in water or solventin a kind of colloid solution, Silica sol has many excellent performance, thus it widely used in paint, textile and other industries, the ethyl silicate as the raw material is to be the reaction of silica sol prepared by sol-gel method process and the influence factors of stability are summarized in the paper , in order to make certain directive significance to the design process of silica sol.【Key words】Silica sol; Ethyl silicate; Stability; Sol - gel method0 引言硅溶胶是二氧化硅的胶体粒子分散于水中或溶剂中的一种胶体溶液,又名硅酸溶液或二氧化硅水溶液[1]。

根据pH值的不同硅溶胶分为酸性硅溶胶和碱性硅溶胶。

ACQ、AIE_聚合物纳米粒子发光性能及其在喷墨印花中的应用

ACQ、AIE_聚合物纳米粒子发光性能及其在喷墨印花中的应用

第32卷㊀第4期2024年4月现代纺织技术Advanced Textile TechnologyVol.32,No.4Apr.2024DOI :10.19398∕j.att.202310001ACQ 、AIE 聚合物纳米粒子发光性能及其在喷墨印花中的应用梁小琴1,梁梨花2,朱尽顺3,马明月1(1.嘉兴职业技术学院时尚设计学院,浙江嘉兴㊀314036;2.浙江理工大学纺织科学与工程学院(国际丝绸学院),杭州㊀310018;3.湖北省纤维检验局黄冈分局(湖北省纤维制品检测中心黄冈分中心),湖北黄冈㊀438000)㊀㊀摘㊀要:为探究聚集诱导猝灭(ACQ)型和聚集诱导发光(AIE)型聚合物纳米粒子(PNPs)的发光性能,以及二者在喷墨印花中的应用效果,采用细乳液聚合技术原位包覆ACQ 染料尼罗红(NR)和AIE 染料四苯基乙烯(TPE),制得ACQ-PNPs 和AIE-PNPs㊂采用重量法㊁动态光散射㊁扫描电镜㊁紫外-可见分光光度法和荧光光谱法等研究了染料用量对PMMA /NR NPs 和PMMA /TPE NPs 的最终转化率㊁颗粒特征和发光性能的影响;将poly(MMA -co -20%BA)/NR NPs 和poly(MMA -co -20%BA)/TPE NPs 乳液配制成墨水,用于棉织物的喷墨打印,探究两类墨水在棉织物上的喷墨印花效果㊂结果表明:当染料质量分数低于1.5%时,NR 和TPE 染料对PMMA /NR NPs 和PMMA /TPE NPs 体系聚合反应最终转化率和纳米粒子尺寸影响均较小,PMMA /NR NPs 荧光强度随NR 染料质量分数的增加呈现先增加后趋于稳定的趋势,而PMMA /TPE NPs 荧光强度与TPE 染料近乎呈线性正相关㊂此外,经poly(MMA -co -20%BA)/NR 和poly(MMA -co -20%BA)/TPE NPs 墨水喷墨打印后的棉织物,其图案分别呈现出明亮的红色和蓝色荧光㊂研究表明,在合适的染料浓度范围内,采用细乳液聚合法制得的ACQ 和AIE 聚合物纳米粒子乳液在喷墨印花领域中均有良好的应用前景㊂关键词:聚集诱导发光;聚集荧光猝灭;聚合物纳米粒子;细乳液聚合;发光性能;喷墨印花中图分类号:TS194.9㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1009-265X(2024)04-0084-09收稿日期:20230928㊀网络出版日期:20231218基金项目:嘉兴市科技局公益性研究计划项目(2022AY10020);浙江省大学生科技创新活动暨新苗人才计划项目(2022R470A001);嘉兴职业技术学院双高重点专项(jzyz202203)作者简介:梁小琴(1992 ),女,重庆人,讲师,博士,主要从事功能性纺织品及微纳米材料开发方面的研究㊂㊀㊀荧光染料具有响应灵敏㊁视觉冲击力强等特点,在纺织染色㊁生物检测㊁化学传感等领域应用广泛[1-3]㊂相较于易受外界环境影响的小分子荧光染料,由聚合物基体保护的荧光聚合物纳米粒子(PNPs)具有稳定性高㊁水分散性好和表面结构易修饰等优点,因此引起各领域的广泛关注[4-7]㊂聚集诱导发光(Aggregation-induced emission,AIE)概念的提出颠覆了人们对发光材料的传统认知,AIE-PNPs 在众多领域中呈现出巨大应用前景,逐渐成为学术界关注的焦点和研究重点[5-7]㊂但AIE 的出现并不意味着ACQ-PNPs 没有进一步研究和应用挖掘的价值㊂传统荧光染料虽然具有ACQ 效应,但种类丰富,合成技术成熟[8-9],因此深入分析ACQ-PNPs和AIE-PNPs 的发光性能及应用性能差异,探索两类荧光聚合物纳米粒子在喷墨印花领域的应用前景具有重要意义㊂细乳液聚合技术作为一种新型的非均相反应体系[10-12],具有体系和制备过程简单㊁乳化剂使用效率高㊁胶体稳定区间大㊁产品重现性好㊁易于工程放大㊁适用单体种类丰富等优点,能用于制备各类聚合物纳米粒子[13-17]㊂因此本文选用典型ACQ 型染料尼罗红(NR)和AIE 型染料四苯基乙烯(TPE)为荧光组分,通过细乳液聚合反应,成功制得包覆NR 的ACQ-PNPs 和包覆TPE 的AIE-PNPs㊂本文着重研究两类荧光染料质量分数对聚合反应体系最终转化率㊁荧光聚合物纳米粒子颗粒特征和发光性能的影响规律,并对比两类荧光聚合物纳米粒子在棉织物喷墨印花中的应用效果,为荧光聚合物纳米粒子喷墨墨水的开发提供参考㊂1㊀实验部分1.1㊀原料与仪器原料:甲基丙烯酸甲酯(MMA,AR,上海凌峰化学试剂有限公司),丙烯酸(AA,AR,上海阿拉丁生化科技股份有限公司),尼罗红(NR,AR,上海阿拉丁生化科技股份有限公司),正十六烷(HD,98%,上海阿拉丁生化科技股份有限公司),十六烷基三甲基溴化铵(CTAB,AR,上海阿拉丁生化科技股份有限公司),偶氮二异丁基脒盐酸盐(AIBA,AR,上海阿拉丁生化科技股份有限公司),丙烯酸丁酯(BA,99%,上海阿拉丁生化科技股份有限公司),脂肪醇聚氧乙烯醚(O-50,江苏海安石油化工有限公司),蒸馏水(自制)㊂仪器:超声波细胞粉碎机(JY92-II,宁波新芝生物科技股份有限公司),温控磁力搅拌套件(RCT Basic,德国IKA公司),动态光散射纳米粒度仪(Nano-ZS90Zetasizer,英国Malvern公司),荧光光谱仪(F4600,日立建机株式会社),紫外-可见分光光度计(UV-2600,日本岛津公司),场发射扫描电子显微镜(ULTRA55,德国Carl Zeiss SMT Pte公司),差示扫描量热仪(Q2000,美国TA Instruments),紫外灯(WFH-2048,杭州齐威仪器有限公司),数显黏度计(DV-II+Pro,美国博勒飞公司),视频接触角张力仪(Easy Drop,德国KRUSS公司),喷墨印花机(DMP-2831,FUJIFILM Dimatix公司)㊂1.2㊀实验方法1.2.1㊀荧光聚合物纳米粒子的制备聚甲基丙烯酸甲酯/NR(PMMA/NR)和聚甲基丙烯酸甲酯/TPE(PMMA/TPE)NPs的制备流程如图1所示㊂首先称取一定量的NR或TPE溶于0.05g HD和1.00g MMA的单体中,作为细乳液的油相;将0.03g CTAB溶解于12.00g水中,形成乳化剂水溶液,作为单体细乳液的水相㊂将上述两溶液混合,在磁力搅拌(700r/min)下预乳化15min,得到粗乳液㊂然后在冰水浴中,通过超声处理,进一步得到单体细乳液㊂随后,对单体细乳液通氮除氧,加入0.01g引发剂AIBA,并对其密封,在70ħ条件下,以400r/min搅拌速度反应5h,制得包覆NR的ACQ型荧光聚合物纳米粒子(PMMA/NR NPs)和包覆TPE的AIE型聚合物纳米粒子(PMMA/TPE NPs)㊂在制备PMMA/NR NPs时,为使NR更好地溶解在油相溶液,在MMA中添加微量的AA进行混合㊂图1㊀细乳液聚合法制备PMMA/NR和PMMA/TPE NPs的流程示意图Fig.1㊀Schematic diagram of the preparation of PMMA/NR and PMMA/TPE NPs via miniemulsion polymerization1.2.2㊀荧光聚合物纳米粒子墨水的制备分别称取质量分数为1.5%的NR和TPE溶于0.05g HD㊁0.80g MMA和0.20g BA单体中,形成单体混合液,作为细乳液的油相,按照1.2.1中配制CTAB水溶液的实验步骤配制该细乳液的水相,经预乳化㊁超声㊁聚合等多个步骤制得poly(MMA-co-20%BA)/NR NPs和poly(MMA-co-20%BA)/TPENPs乳液㊂将乳液用去离子水稀释5倍,并添加质量分数4%的非离子乳化剂O-50㊂将上述溶液置于40ħ水浴中,在200r/min的转速下搅拌30min,经500nm的滤膜过滤后,得到poly(MMA-co-20%BA)/NR NPs墨水和poly(MMA-co-20%BA)/TPENPs墨水㊂1.2.3㊀Fromm数的计算通常,Fromm数(Z)被用来评价墨水的性能,其与喷墨打印质量密切相关㊂通过方程式(1)计算poly(MMA-co-20%BA)/NR NPs墨水和poly(MMA-co-20%BA)/TPE NPs墨水的Fromm值[18]:Z=σρd/η(1)式中:σ表示墨水的表面张力,mN/m;ρ表示墨水的密度,g/cm3;η表示墨水的动态黏度,mPa㊃s;d表示墨盒喷嘴的直径,μm㊂㊃58㊃第4期梁小琴等:ACQ㊁AIE聚合物纳米粒子发光性能及其在喷墨印花中的应用1.2.4㊀喷墨打印选用未经过荧光增白处理的平纹纯棉白胚作为喷墨印花基材,将1.2.2中配制得到的poly(MMA-co-20%BA)/NR NPs墨水和poly(MMA-co-20% BA)/TPE NPs墨水注入到墨盒中,设定喷墨打印机参数为:分辨率847dpi,16孔道,重复打印50次,样品台温度50ħ㊂通过喷墨印花机连续工作将墨水喷印到棉织物上㊂1.3㊀测试与表征1.3.1㊀最终单体转化率用重量法测定聚合反应的最终转化率㊂具体测定方法如下:取约2.00g的乳液样品,置于铁坩埚中,在80ħ条件下烘至恒重㊂单体转化率(C)按式(2)计算:C/%=m tˑm2-m0m1-m0-m smᶄˑ100(2)式中:m t㊁m s㊁m0㊁m1㊁m2㊁mᶄ分别代表初始总质量㊁不挥发组分的质量㊁铁坩埚质量㊁取出乳液和坩埚的质量㊁干燥后固体样品和坩埚的质量以及所有单体的总质量㊂1.3.2㊀紫外-可见吸收光谱取5μL PMMA/NR NPs样品,用2mL水稀释,然后用紫外-可见分光光度仪测定其在300~800nm 波长范围内的紫外-可见吸收光谱㊂1.3.3㊀动态光散射(DLS)用动态光散射粒度仪测定纳米粒子的粒径和多分布指数(PDI)㊂具体操作如下:在石英比色皿中加入2mL去离子水,加一滴待测乳液样品,摇晃均匀,进行DLS测试,粒径测试3次,取平均值㊂1.3.4㊀荧光光谱取5μL纳米粒子乳液,将其均匀分散于2mL 蒸馏水中,然后用荧光光谱仪测定纳米粒子的荧光光谱㊂用波长为525nm的光激发PMMA/NR NPs 分散液,收集540~800nm波长范围内的荧光发射光谱;用波长为330nm的光激发PMMA/TPE NPs 分散液,收集400~650nm波长范围内的荧光发射光谱㊂1.3.5㊀场发射扫描电镜(SEM)取一滴待测分散液,用去离子水稀释摇匀后,取一滴置于230目的无碳方华膜上,室温晾干,采用场发射扫描电子显微镜观察PMMA/NR NPs 和PMMA/TPE NPs(染料质量分数1.5%)的形态㊂1.3.6㊀玻璃化转变温度(T g)采用差示扫描量热仪测定poly(MMA-co-20% BA)/NR NPs和poly(MMA-co-20%BA)/TPE NPs 的T g值㊂样品经冷冻干燥后,在-50~150ħ的温度区间和氮气氛围下进行测试㊂所有测试的升温和降温速率均为20ħ/min㊂1.3.7㊀Zeta电位测试在25ħ条件下,采用纳米粒度仪测量poly (MMA-co-20%BA)/NR NPs墨水和poly(MMA-co-20%BA)/TPE NPs墨水的zeta电位值㊂zeta电位值取3次测量的平均值㊂1.3.8㊀表面张力测试在20ħ条件下,采用视频接触角系统测定poly (MMA-co-20%BA)/NR NPs和poly(MMA-co-20%BA)/TPE NPs墨水的表面张力值,设定针头直径为0.8mm㊂表面张力值取3次测量的平均值㊂1.3.9㊀黏度测试在20ħ条件下,选用61号转子,设定转速为100r/min,采用数显黏度计测试poly(MMA-co-20%BA)/NR NPs和poly(MMA-co-20%BA)/TPE NPs墨水的黏度㊂最终黏度值取3次测量的平均值㊂2㊀结果与讨论2.1㊀PMMA/NR和PMMA/TPE NPs体系转化率和颗粒特征分析2.1.1㊀单体转化率ACQ和AIE荧光纳米粒子的发光性能均和荧光染料的聚集程度相关,而聚集程度主要受染料的装载量以及单体转换率影响㊂因此,本文探究NR 和TPE荧光染料对PMMA/NR NPs和PMMA/TPE NPs最终转化率的影响,转化率曲线如图2所示㊂在AIBA引发下,当染料质量分数低于1.5%时,两个体系的转化率均高于90%;当染料质量分数进一步提高,PMMA/NR NPs和PMMA/TPE NPs体系转化率均出现不同程度的降低,说明当染料在一定质量分数范围内(0~1.5%),NR和TPE分子的引入均对单体聚合程度几乎无影响㊂2.1.2㊀颗粒特征采用DLS测试PMMA/NR和PMMA/TPE NPs 的粒径及其分布,结果如图3所示㊂NR的质量分㊃68㊃现代纺织技术第32卷图2㊀PMMA/NR NPs和PMMA/TPE NPs聚合体系的转化率曲线Fig.2㊀Conversion curves of PMMA/NR NPs andPMMA/TPE NPs polymerization systems数在0.1%~1.5%,纳米粒子PDI均小于0.2,表明乳液胶体稳定性好㊂DLS测得纳米粒子的Z均粒径在70~80nm之间,说明在此范围内,NR用量几乎不影响PMMA/TPE NPs的粒径大小(见图3(a))㊂但需指出的是,当NR质量分数继续增加,PMMA/ NR NPs粒径分布变宽,当NR质量分数达到3%时, PDI达0.25,说明此时NR用量超过PMMA聚合物基体对NR染料的最大包覆量,体系开始失稳㊂对于PMMA/TPE系列纳米粒子,当TPE质量分数低于0.6%时,TPE质量分数增加,纳米粒子的尺寸略微增大(见图3(b));在0.6%~1.5%,PMMA/TPE NPs的尺寸无明显变化,Z均粒径维持在70nm左右;但当进一步提高TPE质量分数时,PMMA/TPE NPs粒径和PDI值增加,PDI超过0.2,表明体系出现失稳㊂用SEM观察了两种荧光聚合物纳米粒子的形貌,结果如图3(c) (d)所示㊂PMMA/NR NPs与PMMA/TPE NPs均呈现规整的球形,数均粒径分别为65.2nm和61.1nm,与DLS结果相符㊂图3㊀荧光聚合物纳米粒子的形貌特征和粒径分布Fig.3㊀Morphological characteristics and particle size distribution of fluorescent polymer nanoparticles2.2㊀发光性能分析2.2.1㊀ACQ型聚合物纳米粒子的发光性能PMMA/NR NPs的紫外-可见吸收光谱曲线如图4(a)所示,由图可知,PMMA/NR NPs的吸收峰处于450~625nm波长范围内,峰值吸收波长约为550nm㊂在紫外灯照射下,PMMA/NR NPs发出红色荧光(见图4(b))㊂图4(c)为PMMA/NR NPs的荧光光谱曲线,由图可知,在波长为526nm的光激发下,PMMA/NR NPs荧光发射波长范围为580~ 800nm,峰值发射波长约为658nm,NR质量分数不同,纳米粒子的发光波长和荧光强度存在差异㊂为了更好地观察NR质量分数与PMMA/NR NPs峰值荧光发射强度以及发光波长之间的关系,根据图4(c)荧光光谱图绘制峰值荧光强度与NR质量分数的关系直方图以及不同NR质量分数时PMMA/NR NPs的标准荧光光谱图,结果如图4(d)和图4(e)所示㊂由图4(d)可知,PMMA/NR NPs荧光强度随荧光染料质量分数的变化可分为3个阶段:在第一阶段,NR的质量分数在0.1%~0.3%,由于染料浓度较低,染料聚集的可能性和聚集程度较低,没有出现ACQ现象,因此,随着染料质量分数增加,荧光发射强度几乎呈线性增加;当进一步提高NR质量分㊃78㊃第4期梁小琴等:ACQ㊁AIE聚合物纳米粒子发光性能及其在喷墨印花中的应用数,在0.3%~1.5%内,染料开始聚集,ACQ效应对荧光发射产生阻碍作用,荧光强度增加速率减缓;而当NR 质量分数高于1.5%后,进一步增加NR质量分数,染料聚集程度增大,ACQ效应增强,乳液荧光强度降低,当染料质量分数为3%时,所对应的乳液荧光强度甚至低于NR质量分数为0.1%时的乳液荧光强度㊂因此,避免PMMA/NR NPs荧光减弱的染料极限质量分数为1.5%㊂由图4(e)可知,随着NR质量分数增加, PMMA/NR NPs的荧光发射光谱出现一定红移,这可能和NR的溶剂效应有关㊂与基体聚合物PMMA相比, NR有着更强的极性,因此随着NR质量分数增大,NR 所处微环境极性增加,纳米粒子荧光发射波长红移[19]㊂图4㊀PMMA/NR NPs的光学性能Fig.4㊀Optical performance of PMMA/NR NPs2.2.2㊀AIE型聚合物纳米粒子的发光性能PMMA/TPE NPs的荧光发射光谱和在紫外光照下的数码照片如图5(a)所示,从图中可以看出:在330nm紫外光激发下,PMMA/TPE NPs发出蓝㊃88㊃现代纺织技术第32卷色荧光,其荧光发射波长范围为400~600nm,峰值发射波长约为455nm㊂随着TPE质量分数增加,PMMA/TPE NPs荧光增强,最大荧光发射峰无明显变化㊂PMMA/TPE NPs的峰值荧光强度随染料质量分数的变化如图5(b)所示,与PMMA/NR NPs不同的是,随TPE质量分数增加,PMMA/TPE NPs的荧光发射强度一直处于增加趋势㊂当TPE 质量分数低于1.5%时,PMMA/TPE NPs的峰值荧光强度基本与TPE质量分数呈线性关系,这一依赖关系为精确调控PMMA/TPE NP墨水的荧光发射强度提供了可能;当TPE质量分数继续提高至2%和3%时,PMMA/TPE NPs荧光增加幅度减小,这可能受体系稳定性所影响(见图3 (b))㊂图5㊀PMMA/TPE NPs的荧光性能Fig.5㊀Fluorescence performance of PMMA/TPE NPs2.3㊀荧光聚合物纳米粒子墨水在棉织物上的喷墨打印性能分析2.3.1㊀墨水性能为了使荧光聚合物纳米粒子在棉织物上有更好的成膜性,引入一定量软单体BA与MMA共聚,包覆NR和TPE,制得poly(MMA-co-20%BA)/NR NPs和poly(MMA-co-20%BA)/TPE NPs㊂两种荧光聚合物纳米粒子的DSC曲线如图6所示,由图可知:poly(MMA-co-20%BA)/NR NPs和poly(MMA-co-20%BA)/TPE NPs的T g分别为44.1ħ和42.6ħ㊂当烘焙温度高于T g时,纳米粒子的聚合物基体处于高弹态,更易在织物上成膜并粘附在织物上㊂将制得的两种乳液通过稀释㊁添加非离子型乳化剂等方式制得poly(MMA-co-20%BA)/NR NPs和poly (MMA-co-20%BA)/TPE NPs墨水㊂由表1可知, poly(MMA-co-20%BA)/NR NPs和poly(MMA-co-20%BA)/TPE NPs粒径均小于100nm,且二者都具有较好的分散稳定性,在室温下放置3d后,poly (MMA-co-20%BA)/NR NPs和poly(MMA-co-20%BA)/TPE NPs粒径几乎没有变化,分散液PDI 均小于0.1㊂墨水的黏度分别为2.41mPa㊃s和2.63mPa㊃s,满足喷墨印花对着色剂粒径和墨水黏度以及表面张力的要求[20]㊂由于使用阳离子型乳化剂,因此ζ电位为正值,有利于墨水迅速吸附到负电荷的纤维表面㊂根据式(1)计算可知,poly(MMA-co-20%BA)/NR NPs墨水的Z为12.5,poly(MMA-co-20%BA)/TPE NPs墨水的Z为11.8,均满足4< Z<14的喷墨打印要求[18]㊂图6㊀样品的DSC曲线Fig.6㊀DSC thermograms of samples2.3.2㊀喷墨印花产品性能以平纹棉织物为模型基材,将配制好的poly (MMA-co-20%BA)/NRs和poly(MMA-co-20% BA)/TPE NPs墨水用于棉织物的喷墨打印㊂原始棉织物和经喷墨打印后的棉织物在白炽灯光和紫外光(波长为365nm㊁功率为16W)照射下的数码照片如图7所示㊂图7中,I列表示未经喷墨打印的空白对照棉织物在白炽灯光(A行)和紫外灯光(B 行)下的数码照片;II列和III列分别表示经poly㊃98㊃第4期梁小琴等:ACQ㊁AIE聚合物纳米粒子发光性能及其在喷墨印花中的应用㊀㊀表1㊀poly (MMA -co -20%BA )/NR 和poly (MMA -co -20%BA )/TPE NPs 粒径和墨水性能Tab.1㊀Particle and ink properties of poly (MMA -co -20%BA )/NR and poly (MMA -co -20%BA )/TPE NPs 样品名粒径/nmPDI ζ点电位/mV表面张力/(mN㊃m -1)黏度/(mPa㊃s)Zpoly(MMA -co -20%BA)/NR NPs 75.1a0.011a76.2b 0.019b 53.643.1 2.4112.5poly(MMA -co -20%BA)/TPE NPs72.3a0.009a 74.1b 0.012b 57.745.62.6311.8㊀㊀注:喷头直径为21μm,墨水密度为1g /cm 3;a 指初始粒径,b 指放置3d 后的粒径㊂(MMA -co -20%BA)/NR 和poly (MMA -co -20%BA)/TPE NPs 墨水喷墨打印后的棉织物在白炽灯光(A 行)和紫外灯光(B 行)下的数码照片㊂由图7可知,在白炽灯光下,经poly(MMA -co -20%BA)/NR NPs 墨水和poly(MMA -co -20%BA)/TPE NPs 墨水喷墨打印后的棉织物和原始棉织物表现出几乎相同的外观㊂在紫外光照下,经poly (MMA -co -20%BA)/TPE NPs 墨水喷墨打印后的棉织物呈现出明亮的蓝色荧光, Panda 的英文字母和 熊猫图案清晰可见㊂此外,由于在体系稳定条件下,TPE 用量与荧光聚合物纳米粒子荧光强度几乎呈线性增长关系,因此乳液荧光强度可通过纳米粒子制备过程中TPE 含量精确调控,即为了提高喷墨印花产品的荧光强度,可提高聚合物纳米粒子对TPE 染料的装载量㊂这进一步证实,采用细乳液聚合法制备的AIE-PNPs 乳液在喷墨印花领域中有良好的应用前景[21]㊂图7㊀原始棉织物和经喷墨打印后的棉织物在白炽灯光和紫外光照射下的数码照片Fig.7㊀Photos of pristine and printed cotton greigesunder incandescent light and UV light注:图中所有照片的标尺均为1cm㊂值得一提的是,NR 虽然是ACQ 染料,但经poly (MMA -co -20%BA)/NR NPs 墨水喷墨打印后的棉织物则依然可呈现出明亮的红色荧光,这主要和NR 染料的聚集程度有关㊂根据ACQ 效应可知,堆积在一起的NR 分子浓度达到一定程度后,π-π相互作用明显,导致荧光降低甚至猝灭㊂但当浓度处于一定范围内时,荧光仍可以正常发射㊂由此可见,对于poly(MMA -co -20%BA)/NR NPs 而言,由于ACQ 效应,NR 浓度过高会导致荧光减弱,因此乳液荧光强度无法通过增加NR 染料的质量分数进行精确调控,但当NR 染料浓度较低时,聚合物基体可充当避免ACQ 染料堆积的 保护屏障 ,印花产品荧光颜色亮度可通过提高喷墨打印次数,即墨水的使用量实现㊂综上可知,在合适的染料浓度范围内,采用细乳液聚合制备的ACQ 和AIE 聚合物纳米粒子乳液均可作为喷墨印花墨水,用于织物的喷墨打印㊂3 结论本文在细乳液聚合体系中,通过丙烯酸酯类单体的聚合反应,分别包覆了NR 和TPE 染料,制备了ACQ 型和AIE 型聚合物荧光纳米粒子㊂探究了染料类型和用量对聚合体系转化率㊁荧光纳米粒子尺寸和发光性能的影响以及两类纳米粒子乳液在纺织品喷墨印花中的应用,主要结论如下:a)当染料质量分数低于1.5%时,NR 和TPE 对聚合反应过程影响小,最终转化率未见明显变化,均高于90%;NR 和TPE 对荧光纳米粒子的尺寸影响较小,不同染料用量下,粒子的尺寸均小于80nm;PMMA /NR NPs 未出现荧光猝灭现象,随NR 用量的增加,PMMA /NR NPs 的荧光强度先增加后几乎不变,意味着NR 浓度达到最高极限,PMMA /TPE NPs的荧光强度则随TPE 质量分数的增加呈线性增加㊂b)在荧光染料质量分数为1.5%下,采用细乳液聚合制备的poly(MMA -co -20%BA)/NR NPs 乳液和poly(MMA -co -20%BA)/TPE NPs 乳液可作为喷墨印花墨水,用于织物的喷墨打印,喷印织物呈现明亮的红色荧光和蓝色荧光,表明当ACQ 染料处于 临界猝灭浓度 以下制备的ACQ-PNPs,其在喷墨印花领域中同AIE-PNPs 一样具有应用前景㊂㊃09㊃现代纺织技术第32卷参考文献:[1]谢沉着,邵晓莉,赵强强,等.磺化四苯乙烯荧光染料的合成及其发光性能[J].现代纺织技术,2022,30 (6):133-140.XIE Chenzhuo,SHAO Xiaoli,ZHAO Qiangqiang,et al. Synthesis and luminescent properties of sulfonated tetraphenylethylene fluorescent dyes[J].Advanced Textile Technology,2022,30(6):133-140.[2]BAIG M Z K,OH H,SON Y A.Highly visible bis-heterocyclic acridinium and xanthenium-based dyes: Synthesis,AIEE,and modacrylic dyeing[J].Dyes and Pigments,2022,200(1):110159.[3]李况,王秉,彭志勤,等.双配体荧光配合物的合成及其对苦味酸的选择性传感[J].浙江理工大学学报(自然科学版),2021,45(4):520-526.LI Kuang,WANG Bing,PENG Zhiqin,et al.Synthesis of fluorescent complexes with double ligands and its selective sensing of trinitrophenol[J].Journal of Zhejiang University of Science and Technology(Natural Sciences),2021,45 (4):520-526.[4]RUEDAS RAMA M J,WALTERS J D,ORTE A,et al. Fluorescent nanoparticles for intracellular sensing:A review [J].Analytica Chimica Acta,2012,751:1-23. [5]黄圆松,王懿佳,王莉莉,等.具有聚集诱导发光性能的锑离子检测荧光探针的合成与应用[J].浙江理工大学学报(自然科学版),2020,43(4):449-456. HUANG Yuansong,WANG Yijia,WANG Lili,et al. Synthesis and application of fluorescent probe for antimony ion detection with aggregation induced emission properties [J].Journal of Zhejiang University of Science and Technology(Natural Sciences),2020,43(4):449-456.[6]TIAN Y,CHEN C Y,CHENG Y J,et al.Hydrophobic chromophores in aqueous micellar solution showing large two-photon absorption cross sections[J].Advanced Functional Materials,2007,17(10):1691-1697. [7]YOU C C,MIRANDA O R,GIDER B,et al.Detection and identification of proteins using nanoparticle-fluorescent polymer chemical nose sensors[J].Nature Nanotechnology, 2007,2(5):318-323.[8]HORNUM M,MULBERG M W,SZOMEK M,et al. Substituted9-Diethylaminobenzo[a]phenoxazin-5-ones (Nile Red Analogues):Synthesis and Photophysical Properties[J].The Journal of Organic Chemistry,2021, 86(2):1471-1488.[9]THIELBEER F.Fluorescein[J].Synlett,2012,23(11): 1703-1704.[10]KATHARINA L.Miniemulsion polymerization and thestructure of polymer and hybrid nanoparticles[J].Angewandte Chemie International Edition,2009,48(25):4488-4507.[11]QI D M,CAO Z H,ZIENER U.Recent advances in thepreparation of hybrid nanoparticles in miniemulsions[J].Advances in Colloid and Interface Science,2014,211: 47-62.[12]SCHORK F J,LUO Y W,SMULDERS W,et al.Miniemulsion Polymerization[M].Polymer Particles.Berlin,Heidelberg:Springer Berlin Heidelberg,2005: 129-255.[13]LIANG X Q,HU Y X,CAO Z H,et al.Efficientsynthesis of high solid content emulsions of AIE polymeric nanoparticles with tunable brightness and surface functionalization through miniemulsion polymerization[J].Dyes Pigments,2019,163:371-380.[14]TAO M,LIANG X Q,GUO J J,et al.Dynamicphotochromic polymer nanoparticles based on matrix-dependent förster resonance energy transfer and aggregation-induced emission properties[J].ACS Applied Materials&Interfaces,2021,13(28):33574-33583.[15]周鹏,向忠,崔中兰,等.细乳液法制备P(DMS-Acr)/PB颜料纳米胶囊[J].丝绸,2018,55(10):9-14.ZHOU Peng,XIANG Zhong,CUI Zhonglan,et al.Preparation of P(DMS-Acr)/PB pigment nanocapsules by miniemulsion polymerization[J].Journal of Silk,2018, 55(10):9-14.[16]SAUER R,TURSHATOV A,BALUSCHEV S,et al.One-pot production of fluorescent surface-labeled polymeric nanoparticles via miniemulsion polymerization with bodipy surfmers[J].Macromolecules,2012,45(9):3787-3796.[17]项伟,杨宏林,全琼瑛.聚丙烯酸酯/罗丹明B复合乳胶的细乳液聚合制备及其应用[J].纺织学报,2019, 40(9):122-127.XIANG Wei,YANG Honglin,QUAN Qiongying.Preparation and application of polyacrylate/rhodamine B composite latex by miniemulsion polymerization[J].Journal of textile research,2019,40(9):122-127. [18]SUNDRIYAL P,BHATTACHARYA S.Inkjet-printedelectrodes on A4paper substrates for low-cost,disposable, and flexible asymmetric supercapacitors.ACS Applied Materials&Interfaces[J].2017,9(44):38507-38521.[19]YANG Z G,HE Y X,LEE J H,et al.A Nile Red/BODIPY-based bimodal probe sensitive to changes in the micropolarity and microviscosity of the endoplasmic reticulum[J].Chemical Communications,2014,50(79):11672-11675.[20]YOU M L,ZHONG J J,HONG Y,et al.Inkjet printingof upconversion nanoparticles for anti-counterfeit applications [J].Nanoscale,2015,7(10):4423-4431. [21]LIANG X Q,TAO M,WU D,et al.Multicolor AIEpolymeric nanoparticles prepared via miniemulsion polymerization for inkjet printing[J].Dyes and Pigments, 2020,177:108287.㊃19㊃第4期梁小琴等:ACQ㊁AIE聚合物纳米粒子发光性能及其在喷墨印花中的应用㊃29㊃现代纺织技术第32卷The luminescent properties of ACQ and AIE polymeric nanoparticlesand their applications in inkjet printingLIANG Xiaoqin1,LIANG Lihua2,ZHU Jinshun3,MA Mingyue1(1.Fashion Institute of Design,Jiaxing Vocational&Technical College,Jiaxing314036,China;2.College of Textile Science and Engineering(International Institute of Silk),Zhejiang Sci-TechUniversity,Hangzhou310018,China;3.Hubei Province Fiber Inspection Bureau Huanggang Branch(Huanggang Division of Hubei Province Fiber Products Testing Center),Huanggang438000,China) Abstract:Different from the aggregation-caused quenching ACQ effect of traditional fluorescent dyes aggregation-induced emission AIE dyes have become a research hotspot in recent years due to their unique luminescence behavior.The applications of AIE polymer nanoparticles AIE-PNPs have gradually expanded from the fields such as cell imaging and chemical sensing to textile printing and dyeing fields.The research on ACQ-PNPs has been ignored for a long period.It is undeniable that a large number of ACQ dyes such as Nile red NR and fluorescein possess advantages of stable photophysical chemical properties high quantum yield and so on although the fluorescence of dyes would be weaken even quenched when the concentration reaches a certain value. Additionally not all fluorescent polymer nanoparticles FPNPs need to load dyes at a high concentration in many practical applications.Therefore it is of great importance to conduct in-depth analysis of the discrepancies of the luminescence performance between ACQ-PNPs and AIE-PNPs and to explore the practical application value of ACQ-PNPs and AIE-PNPs simultaneously.Enjoying the advantages of green simple and efficient preparation process miniemulsion polymerization technology can be used to prepare various FPNPs flexibly.To compare and analyze the luminescent properties of ACQ-PNPs and AIE-PNPs and further explore their applications in inkjet printing PMMA/NR NPs and PMMA/ TPE NPs were prepared through encapsulation of ACQgen dyes NR and AIEgen dyes tetraphenylethylene TPE in water-borne miniemulsions respectively.Influences of the amount of dyes on the final monomer conversion particle size and luminescent properties of PMMA/NR and PMMA/TPE NPs were investigated and analyzed.The results show that the maximum content of NR and TPE dyes is1.5%and both NR and TPE dyes have negligible influence on the final monomer conversion and particle size.Within the range of0-1.5%of fluorescent dyes the photoluminescence PL intensity of PMMA/NR NPs shows a trend of first increasing and then maintaining unchanged with the increase of NR content without fluorescence weakening or quenching phenomenon whereas the PL intensity of the PMMA/TPE NPs increases linearly with the increase of TPE content.When the content of florescent dyes is higher than1.5% the PL intensity of PMMA/NR NPs begins to decrease while that of PMMA/ TPE NPs keeps increasing with the increase of the fluorescent dye's content.Therefore the critical concentration of dyes to avoid the weakening of fluorescence of PMMA/NR NPs is1.5%.Furtherly in order to improve the film-forming and inkjet printing performance of FPNPs poly MMA-co-20%BA/NR and poly MMA-co-20%BA/ TPE NP emulsions were prepared through miniemulsion polymerization at1.5%content of fluorescent dyes.After diluting adding surfactants and filtering poly MMA-co-20%BA/NR and poly MMA-co-20%BA/TPE NP inks were prepared and used for inkjet printing on cotton fabrics.Under incandescent light the printed fabrics with poly MMA-co-20%BA/NR and poly MMA-co-20%BA/TPE NP inks display the same appearance as the pristine fabric but display a bright red and blue pattern under UV light respectively.This paper unveils the relationship of the amount of dyes and luminescent properties of ACQ-PNPs and AIE-PNPs and further demonstrates both NR-based ACQ-PNPs and TPE-based AIE-PNPs emulsion prepared through miniemulsion polymerization have great potential in inkjet printing application with a suitable amount of fluorescent dyes.Research results can provide reference for the development of photochromic inkjet ink. Keywords:aggregation-induced emission aggregation-caused quenching polymeric nanoparticles miniemulsion polymerization luminescent properties inkjet printing。

聚合物纳米胶囊制备新方法——RAFT细乳液界面聚合

聚合物纳米胶囊制备新方法——RAFT细乳液界面聚合

聚合物纳米胶囊制备新方法——RAFT细乳液界面聚合浙江大学博士论文摘要高到0.94。

这些结果验证了均相成核机理,聚合动力学、液滴/乳胶粒粒径分布、分子量分布的结果也支持了均相成核机理。

3)实验还发现用油溶性引发剂(AIBN)代替水溶性引发剂(KPS),引入水相自由基捕捉剂(NaN02)都可以减少体系发生均相成核,提高了合成纳米胶囊的选择性。

二、在以上机理研究的基础上,论文开展了纳米胶囊的结构调控研究。

针对以St 为单体,ND为核芯材料,poly(MAAl6.CO.St7)RAFT为RAFT试剂,在pH值为6.45下的RAFT界面细乳液聚合,研究了RAFT试剂用量对合成纳米胶囊的粒径影响,制备得到了直径在112~480 nm范围内的纳米胶囊;针对以St为单体,HD为核芯材料,poly(AA2-b—St2)RAFT为RAFT试剂,在pH值为8.3下的RAFT细乳液界面聚合,考察了后补加小分子乳化剂SDS对合成纳米胶囊的粒径分布影响,经离心分离制备得到了形态粒径分布均一的纳米胶囊,直径约为112 nlll,粒径的差异分布系数(CV)为5.4%,壳厚约为20 nm;研究了St/ND用量比对合成纳米胶囊的核壳重量比影响,制备得到了(ND/PS)为1/4至1/1的纳米胶囊。

当进一步减少St用量,设计核壳比为 211时,聚合物壳层变得较薄,强度不够,胶囊出现塌陷现象;研究了交联剂对合成纳米胶囊的壳层强度影响,制备得到了高交联密度聚合物壳层的纳米胶囊,甚至整个聚合物壳层为交联剂均聚物,其强度得到大大提高,进一步用溶剂洗脱除去核芯材料制得了“中空”纳米胶囊。

三、将RAFT细乳液界面聚合制备纳米胶囊技术拓展到反相细乳液聚合中,合成了PNIPAM包裹Na2S04的温敏响应性纳米胶囊,直径为100~250 nin之间,壳层厚度约为30 nna。

关键词:RAFT,界面聚合,细乳液聚合,反相细乳液聚合,纳米胶囊。

IV浙江大学博士论文 AbstractAbstract(Hollow)Nanocapsules have shown highly promising applications in a large variety offields due to the special nanostructures .RAFT(Reversible Addition /FragmentationTransfer)interfacial miniemulsion polymerization offers astraightforward methodtosynthesize nanocapsules .Based on the self-assembly of amphiphilic macro —RAFT agentson the interface of droplets /waterand the radicalpolymerization was confinedon theinterface ,a polymericshell was in-situ formed .This method was not only able to precisely control the structures of nanocapsules .but also offerred such advantages as a simple and environmental process ,which is highly efficient ,easily scale·up.In principle , this method shouldoffer a generally robust way to synthesize naocapsule ,but lots of solidparticles were found in many experimental studies ,ofwhich the mechanism was not clear yet .In the current thesis ,the formation mechanism of the solid particles accompanying the nanocapsules was investigated ,aiming at developing RAFT interfacial miniemulsionpolymerization as a versatile facile way to synthesize nanocapsules of high selectivity .The followingresults were achieved :(1).The formation mechanism of the solid particles was proposed that some of theamphiphilic oligomer radicals(Amphi —R .),which were formed from the reaction ofmacro-RAFT agentanchored on the interface of droplets with the primaryradicals ,woulddesorbed into the water phase .Since it took longer time for the radicals(Amphi-R 。

基于乙基纤维素大分子RAFT试剂的n-BMA细乳液聚合

基于乙基纤维素大分子RAFT试剂的n-BMA细乳液聚合

基于乙基纤维素大分子RAFT试剂的n-BMA细乳液聚合程增会;王基夫;王春鹏;储富祥;许凤【摘要】以大分子乙基纤维素基RAFT试剂(EC-CPADB)为链转移剂,采用可逆加成-断裂链转移聚合(RAFT)聚合法,合成了乙基纤维素接枝聚甲基丙烯酸丁酯(PBMA)细乳液.通过凝胶渗透色谱(GPC)、动态光散射激光粒度仪(DLS)、原子力显微镜(AFM)、差示扫描量热仪(DSC)、拉伸测试等进行表征.结果表明,纤维素大分子RAFT试剂EC-CPADB在细乳液聚合中发挥了一定的活性控制的作用,得到的聚合物分子量为141100,并且分子量分布窄,PDI为2.82,聚合物的玻璃化转变温度为21℃.大分子RAFT试剂EC-CPADB的加入,对聚合体系有一定的缓聚作用,但体系反应效率高,反应2 h,转化率大于90%;大分子RAFT试剂EC-CPADB的存在,对乳液粒子的形貌没有明显影响,乳液粒径大小约为100 nm,呈规则的圆球状,分布较均一.膜循环拉伸实验显示,聚合物弹性恢复系数能够达到90%以上,具有较好的弹性力学性能.【期刊名称】《应用化工》【年(卷),期】2019(048)007【总页数】5页(P1614-1618)【关键词】细乳液;乙基纤维素;RAFT;活性可控;聚合物【作者】程增会;王基夫;王春鹏;储富祥;许凤【作者单位】中国林业科学研究院林产化学工业研究所生物质化学利用国家工程实验室国家林业局林产化学工程重点开放性实验室江苏省生物质能源与材料重点实验室,江苏南京 210042;北京林业大学材料科学与技术学院,北京 100083;中国林业科学研究院林产化学工业研究所生物质化学利用国家工程实验室国家林业局林产化学工程重点开放性实验室江苏省生物质能源与材料重点实验室,江苏南京210042;中国林业科学研究院林产化学工业研究所生物质化学利用国家工程实验室国家林业局林产化学工程重点开放性实验室江苏省生物质能源与材料重点实验室,江苏南京 210042;中国林业科学研究院林产化学工业研究所生物质化学利用国家工程实验室国家林业局林产化学工程重点开放性实验室江苏省生物质能源与材料重点实验室,江苏南京 210042;北京林业大学材料科学与技术学院,北京100083【正文语种】中文【中图分类】TQ316.3可逆加成-断裂链转移聚合(RAFT),不仅可以有效地控制聚合物的分子量和分子量分布[1],同时可以在不同的反应体系中进行[2-3]。

反相微悬浮聚合动力学研究及聚丙烯...

反相微悬浮聚合动力学研究及聚丙烯...

摘要本工作采用自制梳型分散剂,以120“汽油为分散介质,进行了亲水性单体丙烯酸羟乙酯(脏A)的微悬浮聚合研究。

讨论了初始单体浓度、引发剂类型及用量、分散剂用量、反应温度等工艺条件对反应及聚合物微球直径与直径分布的影响,并总结出了亲水性单体HEA的反相微悬浮聚合反应的动力学规律。

在此基础上,在磁性粒子存在下进行了反相微悬浮聚合,制备出了磁性聚丙烯酸羟乙酯微球。

讨论了磁性粒子用量对聚合物微球的直径及其分布、微球铁含量的影响,并提f{I了磁性粒子存在下反相微悬浮聚合的成核及粒子增长机理。

关键词:丙烯酸羟乙酯,反相微悬浮聚合,聚合动力学,磁性聚合物微球,梳型分散剂AbstractTheinverseminiemulsionpolymerizationofhydroxyethylacrylatewascarriedoutin120“gasolinemediumusingazobisisobutyronitrile(AIBN)asinitiatorandself-prepared“comb”dispersant.Theeffectsoftheconcentrationofinitialmonomeranddispersant,typeanddosageoftheinitiator,reactiontemperature,etc.,onthekineticsofthepolymerizationandthemorphologyofthepolymermicrosphereswerestudied.Andthenthemagneticpolydroxyethylacrylatemicrosphereswerepreparedviainverseminiemulsionpolymerization.Theeffectsoftheamountofmagneticparticlesonthemorphology,Fecontentwereinvestigated.Finally,themechanismofnucleationandparticlegrowthforthiskindofpolymerizationswereproposedKeywords:hydroxyethylacrylate,inverseminiemulsionpolymerization,kinetics,magneticpolymermicrosphere,‘‘comb’’dispersant反相微悬浮聚合动力学研究及聚丙烯酸羟乙酯微球的制备削而1.前言美国罩海大学乳液聚合物研究所的Vanderhoff和Brodford教授…于1955年发表了关于成功地合成出单分散聚合物微球的论文,从而为高分子科学开辟了一个全新的研究领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1285Principles and Applications of Emulsion Polymerization , by Chorng-Shyan ChernCopyright © 2008 by John Wiley & Sons, Inc.M INIEMULSION POLYMERIZATIONG enerally, emulsifi ed monomer droplets ( ∼1–10 μ m in diameter, 10 12–10 14 d m − 3in number density) are not considered to signifi cantly contribute to the particle nucleation process to any appreciable extent in conventional emulsion polym-erization. This is simply because the total monomer droplet surface area is so small that monomer droplets are ineffective in competing with monomer -s wollen micelles ( ∼0.05 –1μ m in diameter, 10 19–10 21 d m − 3 in number density)for the incoming oligomeric radicals. However, homogenized submicron monomer droplets containing an extremely hydrophobic, low - m olecular -w eight compound such as hexadecane, cetyl alcohol, or a small amount of dissolved polymer may become the predominant particle nucleation loci (monomer droplet nucleation). This polymerization technique is termedm iniemulsion polymerization [1 –13] . O ne unique characteristic of miniemulsion polymerization is that hydro-phobic compounds can be incorporated into the interior of polymer particles during the reaction, and this cannot be achieved by conventional emulsion polymerization because strongly hydrophobic compounds are incapable of diffusing from monomer droplets, across the continuous aqueous phase, and into latex particles (reaction loci). The extremely hydrophobic, low - m olecular - w eight compound is often termed the cosurfactant in the litera-ture, even though it may not exhibit any surfactant property in the preparation of miniemulsion (e.g., hexadecane). Perhaps a more appropriate terminology for such compounds is c ostabilizer . Such compounds stabilize submicron monomer droplets by reducing the thermodynamic driving force for the transport of monomer. Such transport would result in an increase inPOLYMERIZATION IN MONOMER DROPLETS129 the concentration of the hydrophobe in the monomer droplets, a free energy cost.5.1 P OLYMERIZATION IN MONOMER DROPLETS [14]T he formation of latex particles resulting from free radical polymerization within emulsified monomer droplets is often ignored for many emulsion polymerization systems. This position is usually justifi ed because the amount of polymerization in the monomer droplets is often less than 1% of the total, and the ratio of the number of latex particles originating from monomer droplets to the total number of latex particles is extremely small. Nevertheless, there is no barrier that would prevent oligomeric radicals from entering the monomer droplets and then initiating polymerization therein. When this happens, the monomer droplet becomes a dilute polymer –m onomer solution and the thermodynamic driving force still results in the transport of monomer molecules from the droplets to the latex particles that have a higher polymer concentration. This transport phenomenon continues until the relative concen-trations in both types of monomer -s wollen polymer particles are similar. Thus, for example, a monomer droplet with a diameter of 10 μm may become a latex particle with a diameter of 1 μm—a loss of 99+% of its original monomer to provide for growth of the other, more numerous particles that have been formed by other mechanisms such as micellar nucleation and homogeneous nucleation. Furthermore, the presence of hydrophobic polymer in monomer droplets significantly retards the degradation of droplets; therefore, these droplets may even survive well beyond Smith –E wart Interval II. Nevertheless, the shrinking monomer droplets with polymer inside will gradually lose their characteristics with the progress of polymerization and eventually become indistinguishable, except perhaps for their possible larger size from those latex particles generated via other mechanisms.W hile the extent of polymerization in monomer droplets is often very small, the following reaction conditions and/or recipes can promote polymer reac-tions in the droplets.(a) I ntense emulsifi cation results in a larger population of smaller monomerdroplets with a larger total droplet surface area. Thus, less surfactant is available to form monomer -s wollen micelles and/or to stabilize nucle-ated latex particles. Miniemulsion polymerization represents the extreme limit of polymerization in monomer droplets. Special stabilizersystems and intense homogenization generate numerous very small monomer droplets and particle formation can be shifted almost com-pletely to those droplets. Bimodal particle size distributions can be achieved if this shift is not complete.(b) R elatively slow diffusion of monomer molecules from the monomerdroplets also increases the magnitude of polymerization therein. Even130 MINIEMULSION POLYMERIZATIONin conventional recipes, the monomer droplets remain long after Smith – E wart Interval I and are potential sites for capture of oligomeric radicals. This phenomenon is magnifi ed with fast polymer reactions (i.e., less time for monomer diffusion) and if monomers with water solubility lower than that of styrene, for example, are used. In fact, highly hydrophobic monomers cannot be effectively polymerized in conventional emulsion polymerization processes. In this case, miniemul-sion polymerization is the process of choice for the production of polymer colloids.I n summary, formation of particle nuclei from emulsifi ed monomer drop-lets is almost certain to occur in any emulsion polymerization system in which these droplets are present. As mentioned earlier, however, monomer droplets containing polymer will primarily serve as reservoirs to provide monomer to the much more numerous and smaller latex particles formed by other particle nucleation mechanisms. Polymerization in monomer droplets can be elimi-nated or at least minimized by using seed polymer particles and slowly adding monomer (neat or as an emulsion) to supply the growing seed particles (i.e., seeded semibatch emulsion polymerization under the monomer - s tarved condition).5.2 S TABILITY OF MONOMER EMULSIONS5.2.1 O stwald Ripening EffectSatisfactory monomer droplet stability during storage or particle nucleation is a basic requirement for successful miniemulsion polymerization. In addition to the often observed fl occulation and coalescence of monomer droplets, which are beyond the scope of this chapter, another emulsion degradation mechanism is the Ostwald ripening phenomenon. The solubility of monomer in the continuous aqueous phase increases exponentially with decreasing monomer droplet diameter, according to the following equation originally proposed by Kelvin [15] :C d C V RTd m d m m d ()=∞()()[]exp 4σ (5.1) where C m (d d ) and C m(∞ ) are the solubility of monomer in the aqueous phase for monomer droplets with a diameter of d dand the solubility of the bulk monomer in water, respectively, σ is the droplet – w ater interfacial tension, V m is the molar volume of monomer in the droplets, R is the gas constant, and T is the absolute temperature. Such a chemical potential effect arising from those monomer droplets with different radii of curvature will allow monomer mol-ecules in the smaller droplets to dissolve in water, diffuse through the aqueous phase, and then enter the larger droplets. Thus, larger monomer droplets tendto grow in size at the expense of smaller droplets and, ultimately, such a dif-fusional degradation process will destabilize miniemulsion products (termed the Ostwald ripening effect). Equation (5.1) also predicts that an increase in the monomer droplet – w ater interfacial tension ( σ ) via the adsorption of less surfactant molecules on the droplet surfaces, a decrease in the thermal energy (RT), or an increase in the solubility of the bulk monomer in water results in the increased solubility of monomer in the aqueous phase. Under these cir-cumstances, the stronger Ostwald ripening effect makes it more diffi cult for the emulsion system to achieve satisfactory colloidal stability.A ccording to the Lifshitz –S lezov –W agner (LSW) theory [15 –18] ,the rate of Ostwald ripening ( R O) can be expressed as R d d D V C RT O d m m m =()=∞())3649σ (5.2) where D m is the molecular diffusivity of monomer in water. Equation (5.2) predicts that the rate of Ostwald ripening increases linearly with increasing the solubility of the bulk monomer in water. The validity of this equation was confi rmed by the experimental results obtained from measurements of Ostwald ripening rate for a series of emulsions comprising n -a lkane (C n H 2 n +2,n =9–16) with different water solubility stabilized by sodium dodecyl sulfate, as shown in Figure 5.1 [19] .F igure 5.1. R ate of Ostwald ripening for emulsions as a function of the solubility of the constitu-ent in water. The constituents of the oil phase include n - a lkanes ( n = 9 – 16) [19] and some common monomers. St, BA, and MMA represent styrene, n - b utyl acrylate, and methyl methac-rylate, respectively. The data of the solubility of monomers in water were used to estimate the Ostwald ripening rate of the homogenized monomer droplets via the extrapolation method.1010R O (c m 3 s –1) 10101010101010101010C ∞STABILITY OF MONOMER EMULSIONS 131132 MINIEMULSION POLYMERIZATION5.2.2 R ole of Costabilizer in Stabilizing Monomer EmulsionsI ncorporation of 1 – 5 w t% costabilizer into the colloidal system can effectively retard the diffusion of monomer molecules from small monomer droplets to large ones due to the osmotic pressure effect [15, 20] . Diffusion of monomer species from a small monomer droplet to a large droplet results in a concen-tration gradient for costabilizer between these two droplets. However, unlike common monomers (e.g., styrene and methyl methacrylate), the extremely hydrophobic costabilizer molecules in the small monomer droplet are incapa-ble of being dissolved in water, diffusing across the continuous aqueous phase, and then entering the large droplet. Thus, monomer molecules in the large monomer droplet are forced to migrate back to the small droplet in order to relax the concentration gradient for costabilizer established between these two droplets and a relatively stable miniemulsion product is obtained (Figure5.2 ).B ased on the extended LSW theory, the rate of Ostwald ripening for the costabilizer containing miniemulsion can be calculated by the following equa-tion [15] :R d d dt D V C RT O d c m c c =()=∞()()3649σφ (5.3)F igure 5.2. A schematic representation of the mechanism for the transport of monomer between a small monomer droplet and a large droplet. Monomer molecules tend to diffuse from the small monomer droplet to the large droplet due to the Ostwald ripening effect. This will cause a con-centration gradient for costabilizer between these two monomer droplets. However, the very hydrophobic costabilizer in the small monomer droplet cannot be dissolved in water, diffuse across the continuous aqueous phase, and then enter the large droplet. Thus, monomer mole-cules in the large monomer droplet are forced to migrate back to the small droplet in order to relax the concentration gradient for costabilizer (termed the osmotic pressure effect), and a relatively stable miniemulsion product is obtained.SurfactantMonomerCostabilizerwhere D c is the molecular diffusivity of costabilizer in water, C c(∞ ) is the solu-bility of the bulk costabilizer in water, and φc is the volume fraction of costa-bilizer in the monomer droplets. Lowering the oil – w ater interfacial tension, decreasing the solubility of the bulk costabilizer in water, and increasing the level of costabilizer within the monomer droplets greatly enhance the stability of miniemulsion against the diffusional degradation. These effects form the theoretical basis of potential free radical polymerization of common mono-mers such as styrene and methyl methacrylate in the homogenized monomer droplets containing costabilizer (or hydrophobe).N eglecting the effects of molar volume and interfacial tension, the following empirical equation can be used to reasonably predict the overall rate of Ostwald ripening for the monomer emulsion in the presence of costabilizer[18] :R R R O m O m c O c =()+()[]−φφ,,1 (5.4) where φ m is the volume fraction of monomer in the monomer droplets and R O , m and R O , crepresent the rates of Ostwald ripening for the single - c omponent monomer emulsion and costabilizer emulsion, respectively. As a limiting case, the fi rst term in the denominator can be neglected if R O , c is much smaller than R O , m (i.e., φ m /R O , m << φ c /R O , c ). In this case, the overall rate of Ostwald ripening is primarily controlled by the hydrophobicity and amount of costabilizer present in the monomer droplets.5.3 T YPE OF COSTABILIZERS IN MINIEMULSION POLYMERIZATION I n addition to the conventional long - c hain alkanes (e.g., hexadecane) and alcohols (e.g., cetyl alcohol), the hydrophobic species that have been evaluated as costabilizer in the preparation of miniemulsion include polymers [21 – 27] , oil - s oluble initiators [28, 29] , chain transfer agent [30, 31] , dye [32] , and reactive costabilizers [33 – 39] . In general, the less effective polymeric costabilizers do not generate stable monomer miniemulsion products, but they can retard the Ostwald ripening process to such an extent that nucleation in the monomer droplets can be achieved during polymerization. Miller et al. [22] , for example, demonstrated the feasibility of preparing kinetically stable styrene miniemul-sions using 1 w t% polystyrene as the costabilizer. It should be noted that this kind of miniemulsion in the absence of mechanical mixing creams rather rapidly upon aging.A lduncin et al. [28] studied the effect of a series of initiators with different water solubility (lauroyl peroxide, benzoyl peroxide, and 2,2 ′-a zobisisobutyro-nitrile) on styrene emulsion polymerization. It was concluded that, among these oil - s oluble initiators, only lauroyl peroxide with the lowest water solubil-ity (2 × 10− 9 g per 100 g water) is hydrophobic enough to stabilize the homog-enized monomer emulsion against the degradation of monomer droplets by TYPE OF COSTABILIZERS IN MINIEMULSION POLYMERIZATION 133134MINIEMULSION POLYMERIZATIONthe molecular diffusion process. The unique feature of this approach is that lauroyl peroxide not only acts as a costabilizer in stabilizing the monomer droplets, but also participates in the subsequent free radical polymerization. The initiator radical fragments generated by the thermal decomposition reac-tion eventually become part of the resultant polymer chains during the styrene miniemulsion polymerization.T he chain transfer agent, n-d odecyl mercaptan, was shown to be a quite effective costabilizer in preparing methyl methacrylate miniemulsions [30] or styrene miniemulsions [31] . For example, the shelf life of monomer miniemul-sions comprising the relatively hydrophobic styrene ranges from 17 hours to 3 months. In miniemulsion polymerization, chain transfer agent species compete effectively with monomer molecules for free radicals to form chain transfer agent radicals inside the latex particles. Thus, similar to the idea of using oil -s oluble initiators (e.g., lauroyl peroxide) as the costabilizer, the sub-sequent reinitiation reaction of chain transfer agent radicals with monomer molecules allows these radicals to be incorporated into the propagating polymer chains. The infl uence of the chain transfer agent costabilizer on the rate of polymerization is expected to be insignifi cant. This is simply because it is unlikely for the extremely hydrophobic chain transfer agent radicals to desorb from the latex particles and then reduce the average number of free radicals per particle. As expected, the molecular weight of polymer obtained from the miniemulsion polymerization with chain transfer agent as the costa-bilizer can be quite low.C hern et al. [33 –39] used stearyl methacrylate or lauryl methacrylate as the reactive costabilizer to stabilize styrene miniemulsion polymerizations. Just like conventional costabilizers (e.g., hexadecane), long -c hain alkyl methacry-lates act as costabilizers in stabilizing the homogenized submicron monomer droplets. Furthermore, the methacrylate group ( −C=C(CH 3)COO −)of the polymerizable costabilizer can be chemically incorporated into latex particles in the subsequent free radical polymerization and thereby reduce the level of volatile organic compounds (VOC). As the polymerization proceeds, the reactive costabilizer concentration in the nucleated monomer droplets will decrease. The initial decrease of the costabilizer concentration should not cause any diffusional degradation because the hydrophobic polymer formed inside the nucleated monomer droplets can help stabilize the polymerizing miniemulsion.T hose who are interested in the recipes (e.g., monomers, surfactants, costa-bilizers, and initiators), preparation (e.g., homogenization equipments and processes), and characterization (e.g., monomer droplet size and droplet size distribution and colloidal stability) of monomer miniemulsions are referred to references 12 and 13 .MINIEMULSION POLYMERIZATION MECHANISMS AND KINETICS 1355.4 M INIEMULSION POLYMERIZATION MECHANISMSAND KINETICS5.4.1 I nitial Conditions for Miniemulsion Polymerization Systems The initial conditions for typical monomer miniemulsions are schematically shown in Figure 5.3 . At a relatively low level of surfactant (e.g., lower than the critical micelle concentration), miniemulsions only consist of monomer drop-lets with a relatively broad droplet size distribution (Figure 5.3 a ). In this case, micellar nucleation can be ruled out. On the other hand, at a relatively high level of surfactant, in addition to monomer droplets ( <10 °μ m in diameter), monomer -s wollen micelles ( ∼ 10 ° n m in diameter) may also exist in the polym-erization system (Figure 5.3 b ). The ratio of the number of monomer droplets to that of monomer - s wollen micelles is primarily controlled by the level of surfactant used to stabilize the colloidal system and the average droplet size and droplet size distribution. These factors determine the magnitude of the driving force (i.e., the amount of surfactant available) for the formation of monomer - s wollen micelles. Under such circumstances, any particle nucleation mechanism (monomer droplet nucleation, micellar nucleation or homoge-neous nucleation) can take place during polymerization.T he extremely hydrophobic costabilizer molecules are primarily present in the homogenized monomer droplets, and their concentration in the continu-ous aqueous phase is generally negligible. Initiators used in miniemulsion polymerization can be either water - s oluble or oil - s oluble. The loci in whichF igure 5.3. A schematic representation of the initial condition for the miniemulsion polymeriza-tion stabilized by surfactant below its critical micelle concentration (a) and above its criticalmicelle concentration (b) . The symbols ᭺ ( < 10 3 n m in diameter for miniemulsion polymerization)and ᭹ ( ∼ 10 ° n m in diameter) represent the homogenized monomer droplets and monomer - s wollen micelles, respectively.(a)136MINIEMULSION POLYMERIZATIONinitiator molecules reside should have a signifi cant infl uence on the particle nucleation process. Water -s oluble initiator molecules present in the continuous aqueous phase are capable of not only entering the monomer droplets and monomer -s wollen micelles (if present) to form particle nuclei but also promot-ing homogeneous nucleation, especially for those polymerization systems sta-bilized by very high levels of surfactant. On the other hand, oil -s oluble initiator species experience difficulty in diffusing from the monomer droplets and monomer -s wollen micelles (if present) into the aqueous phase; therefore, homogeneous nucleation is greatly retarded. The subject of competitive par-ticle nucleation mechanisms in miniemulsion polymerization is one of the major foci of this section.5.4.2 P article Nucleation MechanismsT he most important characteristic of miniemulsion polymerization is the trans-formation of the homogenized monomer droplets into latex particles via the capture of free radicals when a water -s oluble initiator such as the persulfate initiator is used to initiate the free radical polymer reactions. However, this feature does not necessarily guarantee that the particle nucleation mecha-nisms other than monomer droplet nucleation can be ruled out. As will be shown later, previous studies dealing with nucleation of particle nuclei in miniemulsion polymerization often resulted in controversial conclusions. This subject is still open to discussion, and it represents a great challenge to polymer scientists.A s an extreme, in ideal miniemulsion polymerization, formation of latex particles directly follows the route of one -t o -o ne copy of the homogenized monomer droplets, as evidenced by small -a ngle neutron scattering, conductiv-ity, and surface tension measurements [40] . In other words, all the monomer droplets can be successfully converted into latex particles during polymeriza-tion, and hence the preservation of the original colloidal particle identity can be achieved. On the other hand, some studies suggest that only a fraction of monomer droplets are nucleated in the styrene or vinyl acetate -n-b utyl acry-late miniemulsion polymerization [5, 6] . This confusing situation may be, to a large extent, due to the lack of reliable characterization methods for the homogenized monomer droplets and the inadequate techniques developed to compare the resultant latex particles with the droplets initially present in the polymerization system [12, 13] . This is because size and size distributions of the original monomer droplets very similar to those of the resultant latex particles have been often taken as the supporting evidence for the preserva-tion of the original colloidal particle identity in miniemulsion polymerization. The polymer particle size and particle size distribution of latex products can be characterized with well -e stablished techniques such as electron microscopy and dynamic light scattering. However, determination of the initial monomer droplet size and droplet size distribution represents a very challenging task toMINIEMULSION POLYMERIZATION MECHANISMS AND KINETICS137 colloidal scientists. Some potential techniques developed for this purpose include the small -a ngle neutron scattering [40] and the indirect method that involves determination of the critical micelle concentration of a particular miniemulsion to calculate the oil –w ater interfacial area and, therefore, the droplet size [41] . In the author ’s opinion, the colloidal particle size and particle size distribution data obtained from a particular monomer miniemulsion and its corresponding latex product alone are insuffi cient to confi rm or deny the predominant nucleation in the monomer droplets.T he following summarizes a general reaction scheme for the formation of particle nuclei in miniemulsion polymerization [13] :(a) F ormation of initiator radicals in the continuous aqueous phase via thethermal decomposition of a water -s oluble initiator such as the persul-fate initiator.(b) P ropagation of initiator radicals with monomer molecules in theaqueous phase. The hydrophobicity of oligomeric radicals (i.e., the tendency for these free radicals to diffuse toward a hydrophobic envi-ronment) increases with increasing the free radical chain length.(c) A fter a critical chain length is reached, oligomeric radicals start to enterinto the monomer droplets (monomer droplet nucleation) or monomer -s wollen micelles (micellar nucleation).U gelstad et al. [1] first reported nucleation and polymerization in the homogenized styrene droplets with a diameter of smaller than 0.7 μm achieved by mechanical agitation. This unique polymerization technique resulted in stable latex products with a broad particle size distribution. This can be attrib-uted to the ineffective homogenization method used in preparing styrene miniemulsions, according to the comments of Antonietti and Landfester [12] . Sodium dodecyl sulfate and cetyl alcohol were used as the surfactant and costabilizer, respectively. Formation of particle nuclei in an ideal miniemul-sion polymerization system is governed by the monomer droplet nucleation mechanism. Every single monomer droplet should be nucleated due to the statistics of the absorption of free radicals by the droplets and the overall droplet size [12] . As a result, the number of latex particles remains relatively constant throughout the polymerization. Predominant nucleation in the monomer droplets was supported by the work of Reimers and Schork [26, 27, 30] and Landfester et al. [40, 42] . On the other hand, Choi et al. [5] studied the styrene miniemulsion polymerization using cetyl alcohol as the costabilizer and observed that only 20% of the initial monomer droplets were successfully transformed into latex particles.C hern et al. [32, 37 –39] used a water -i nsoluble dye as the molecular probe for the particle nucleation loci in styrene miniemulsion polymerizations stabi-lized by a surfactant concentration lower than its critical micelle concentration.138MINIEMULSION POLYMERIZATIONLauryl methacrylate or stearyl methacrylate was used as the costabilizer to retard the Ostwald ripening effect. First, a conventional emulsion polymeriza-tion was carried out to investigate the mass transfer of dye molecules, which were added to the reaction mixture at a monomer conversion of 32.4%, from the dye bulk phase to the growing latex particles. The experimental data show that transport of dye species from the bulk phase, across the continuous aqueous phase, and then into the reaction loci (i.e., latex particles) is insignifi -cant due to the very low solubility of the dye in water. This result also elimi-nates the possibility of forming another population of monomer droplets incorporated with dye via the diffusion of dye molecules from latex particles into the continuous aqueous phase. This is because the extremely hydrophobic dye molecules are content with being buried inside the latex particles and, perhaps, the diffusion coeffi cient of dye with a molecular weight of 10 3in a highly viscous polymeric matrix is not large enough to allow the desorption process to occur. A mass balance was then established to determine the number of latex particles per unit volume of water originating from monomer droplet nucleation and the number of primary particles per unit volume of water generated in the continuous aqueous phase. The accuracy of this method relies on producing a stable monomer miniemulsion during polymerization. The experimental data thus obtained from this series of studies should be consid-ered only as qualitative.I n addition to monomer droplet nucleation, a signifi cant fraction of latex particles are generated by homogeneous nucleation for the lauryl methacry-late containing miniemulsion polymerization system, which exhibits a strong Ostwald ripening effect. Oligomeric radicals generated in the continuous aqueous phase become insoluble when a critical chain length is reached. This water -i nsoluble free radical may thus coil up and form a particle nucleus ( ∼10 °n m in diameter). Subsequently, stable primary particles ( ∼10 1 n m in diameter) are produced by the limited fl occulation of unstable particle nuclei and adsorption of surfactant molecules on their surfaces. The surfactant species required to stabilize these primary particles may come from those dis-solved in the water phase, those released from the shrinking monomer droplet surfaces due to the Ostwald ripening, or even from those adsorbed on the monomer droplet and latex particle surfaces. Homogeneous nucleation becomes less important when the level of lauryl methacrylate is increased (i.e., the Ostwald ripening effect is reduced). On the other hand, particle nucleation in the continuous aqueous phase is greatly suppressed for the polymerization system using the more hydrophobic stearyl methacrylate as the costabilizer. This is simply because the initial monomer droplet size obtained from the stearyl methacrylate -c ontaining polymerization system is smaller in comparison with the lauryl methacrylate counterpart. Thus, the total monomer droplet surface area available for capturing the incoming oligo-meric radicals (i.e., the probability for monomer droplet nucleation to take place) is larger for the polymerization system using stearyl methacrylate as the costabilizer. In addition, the larger monomer droplet surface area associ-。

相关文档
最新文档