2 图形的旋转 第2课时 旋转作图
北师大版八年级数学下册《 2. 图形的旋转 图形的旋转作图》公开课教案_12

第三章图形的平移与旋转2.图形的旋转(二)一、教材分析:“图形的旋转”是义务教育教科书北师大版(2013)八年级数学下册第三章图形的平移与旋转的第二节。
图形的旋转是图形变换的基本形式之一,是“义务教育阶段数学课程标准”中图形变换的一个重要组成部分,学习旋转和旋转作图,对发展学生的空间观念是一个很好的提升,是后续学习中心对称图形的基础。
利用旋转研究平行四边形性质、圆的性质的方式之一,因此本节内容在教材中起着承上启下的作用。
学习旋转作图,学习过程中学生就会经历观察、分析、画图和等过程,掌握画图技能. 进一步培养学生的动手操作能力,发展学生的审美观念。
旋转在日常生活中的应用也非常广泛,利用旋转可以帮助我们解决很多实际问题。
本节课的主要内容是通过实例进一步认识旋转变换,探索、理解旋转的特征,并应用旋转的特征作图、解决简单的图形旋转问题。
二、学生起点分析学生此前已经学习了轴对称、平移,积累了一定的活动经验,基于学生已有的旋转知识、生活经验,并且已经了解了旋转的特征。
教材编者将旋转与旋转作图如此安排,目的是力求让学生从动态的角度观察图形、分析解决,画图动手操作,培养学生的能力。
由于旋转与轴对称、平移都是全等变换,在特征上既存在共性又有特性;而学生已经掌握了旋转特征,因此,旋转作图中的相对复杂一点图形——三角形的旋转就成了本节课的难点所在。
三、教学目标1.简单平面图形旋转后的图形的作法,能够按要求作出简单平面图形旋转后的图形.2.确定一个三角形旋转后的位置的条件,3.对具有旋转特征的图形进行观察、分析、画图和动手操作等过程,掌握画图技能. 进一步培养学生的动手操作能力,发展学生的审美观念.教学重点:作简单平面图形旋转后的图形及步骤的总结.教学难点:以三角形外一点为旋转中心作旋转三角形及步骤的总结.四、教学过程设计第一环节回顾旧知师:在前面我们学习了旋转,也了解了旋转的特征,今天我们来学习如何作图形的旋转。
在学习新课之前,我们先来回顾已知。
23.1第2课时旋转作图+课件+2024-—2025学年人教版数学九年级上册

作图基本步骤
选择不同的旋转角和 旋转角图案不同
课堂训练
1.将图1绕O点顺时针旋转90°,得到图形是( B )
O
O
O
O
图1
A
B
C
课堂训练
2.将图2沿MN翻折180°,再旋转180°,所得图形是( D )
图2
A
B
C
D
课堂训练
3.下图为 4×4 的正方形网格,每个小正方形的边长均为 1,将
△OAB 绕点 O 逆时针旋转 90°, 你能画出△OAB 旋转后的图形 △O'A'B'吗?
a
β
αo
o
(2)两个旋转中,旋转中心不变,_旋__转__角_改变了,产生了不__同__的旋转效果.
新知探究
动手操作 下面的图形是某设计师设计图案的一部分,请你运用旋转 变换的方法,在方格纸中将图形绕点O顺时针依次旋转90°,180°, 270°,依次画出旋转后的图形,你会得到一个美丽的图案,涂色部 分不要涂错,否则不能出现理想的效果,你来试一试吧!B源自A'AB'
O
课堂训练
4. 画出下图所示的四边形 ABCD 以 O为中心,旋转角为 60°的
旋转图形.
A' D'
D B'
A
C
C'
B
O
课堂训练
5. 借助旋转我们可以设计出许多美丽的图案.请自己设计一幅作品.
第二十三章 旋转
23. 1 图形的旋转
第2课时 旋转作图
学习目标-新课导入-新知探究-课堂小结-课堂训练
学习目标
1.掌握旋转作图的一般步骤.(重点) 2.通过旋转设计美丽的图案.(难点)
八年级数学下册(北师版)课件 3.2 第2课时 旋转作图

3.2 图形的旋转 第2课时 旋转作图
1.将△AOB绕点O旋转180°得到△DOC,则下列作图正确的是( C )
2.如图,在正方形网格中有△ABC,△ABC绕点O按逆时针方向旋转 90°后的图案应该是( A )
3.如图,将正方形图案绕中心O旋转180°后,得到的图案是( C)
(2)平移△ABC,使点A的对应点A2的坐标为(-2,-6),请画出平移后对 应的△A2B2C2的图形;
(3)若将△A1B1C绕某一点旋转后可得到△A2B2C2,请直接写出旋转中心 的坐标.
解:(1)(2)画图略
(3)旋转中心的坐标为(0,-2)
15.如图,你能对甲图案进行适当的运动变化,使它与乙图案重合吗? 写出你的操作过程.
(1)画出△OA′B′; (2)写出点A′,B′的坐标; (3)连接AA′,求AA′的长.
解:(1)如图 (2)A′(-2,4),B′(0,3) (3)AA′=2 10
14.如图,方格纸中每个小正方形的边长都是1个单位长度,Rt△ABC的 三个顶点A(-2,2),B(0,5),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,得到△A1B1C,,请画出 △A1B1C的图形;
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1; (2)分别连接AB1,BA1后,求四边形AB1A1B的面积.
解:(1)如图,△A1B1C1即为所求作, (2)四边形 AB1A1B 的面积=4×12×3×2=12
13.如图,小正方形的边长都是1,点O,A,B都在格点上,将△OAB 绕O点逆时针方向旋转90°得到△OA′B′.
A.(5,2) B.(2,5) C.(2,1) D.(1形所在 的平面上可作为旋转中心的点共有__3__个.
人教版九年级数学上册作业课件 第二十三章 旋 转 图形的旋转 第2课时 旋转作图

6.如图,正方形 OABC 在平面直角坐标系中,点 A 的坐标为(2,0),
将正方形 OABC 绕点 O 顺时针旋转 45°,得到正方形 OA′B′C′,则
点 C′的坐标为( A.( 2 , 2 )
A) B.(- 2 , 2 )
C.( 2 ,- 2 ) D.(2 2 ,2 2 )
7.(2020·烟台)如图,已知点A(2,0),B(0,4),C(2,4),D(6,6), 连接AB,CD,将线段AB绕着某一点旋转一定角度,使其与线段CD重合 (点A与点C重合,点B与点D重合),则这个旋转中心的坐标为__(4_,__2_)___.
8.如图,在平面直角坐标系中,△A′B′C′由△ABC绕点P旋转得到, 则点P的坐标为__________(_1_,__-__1_)___________.
易错点:对图形的旋转方式考虑不全面 9.如图,如果正方形CDEF经过旋转后能与正方形ABCD重合,那么 图形所在的平面上可作为旋转中心的点共有_3___个.
角形.
解:如图
4.如图,△ABC绕点O旋转,顶点A的对应点为A′,请画出旋转后的
图形.
解:如图
知识点2:在平面直角坐标系中的图形旋转
5.(孝感中考)如图,在平面直角坐标系中,将点P(2,3)绕原点O顺时
针旋转90°得到点P′,则P′的坐标为(
)D
A.(3,2) B.(3,-1) C.(2,-3) D.(3,-2)
解:(1)如图所示,△A1B1C1 即为所求 (2)如图所示,△A2B2C2 即为所 求 (3)三角形的形状为等腰直角三角形 ,OB=OA1= 16+1 =
17 ,A1B= 25+9 = 34 ,即 OB2+OA12=A1B2,∴三角形的形 状为等腰直角三角形
八年级数学下册-3.2 图形的旋转 第2课时 旋转作图 教案

第2课时旋转作图1.复习旋转及旋转图形的概念与性质;2.能够根据旋转的性质进行简单的旋转作图.一、情境导入在钟面上,从1点到1点6分,分针转了多少度角?时针转了多少度角?1点6分时针与分针的夹角是多少度?二、合作探究探究点:简单的旋转作图【类型一】旋转作图在如图所示的网格图中按要求画出图形:(1)先画出△ABC向下平移5格后的△A1B1C1.(2)再画出△ABC以点O为旋转中心,沿顺时针方向旋转90°后的△A2B2C2.解:(1)如图,△A1B1C1即为△ABC向下平移5格后的图形.(2)△A2B2C2即为△ABC以点O为旋转中心,沿顺时针方向旋转90°后的图形.变式训练:见《学练优》本课时练习“课后巩固提升”第6题【类型二】作旋转图形如图,画出△ABC绕点O逆时针旋转90°后的△A′B′C′.解:(1)如图,连接OA,OB,OC.(2)分别以OA,OB,OC为一边作∠AOA′=∠BOB′=∠COC′=90°.(3)分别在射线OA′,OB′,OC′上截取OA′=OA,OB′=OB,OC′=OC.(4)依次连接A′B′,B′C′,C′A′.则△A′B′C′就是△ABC绕点O顺时针旋转90°后的图形.变式训练:见《学练优》本课时练习“课堂达标训练”第7题【类型三】图形旋转的应用如图①,分别以正方形ABCD的边AD和DC为直径画两个半圆交于点O.若正方形的边长为10cm,求阴影部分的面积.解析:整个阴影部分比较复杂和分散,像此类问题通常使用割补法来计算.连接BD、AC,由正方形的对称性可知,AC与BD必交于点O,正好把左下角的阴影部分分成(Ⅰ)与(Ⅱ)两部分(如图②),把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使整个阴影部分割补成半个正方形.解:如图②,把阴影部分(Ⅰ)绕点O逆时针旋转90°至阴影部分①处,把阴影部分(Ⅱ)绕点O顺时针旋转90°至阴影部分②处,使原阴影部分变为如图②的阴影部分,即正方形的一半,故阴影部分面积为12×10×10=50(cm2).方法总结:本题是利用旋转的特征:旋转前、后图形的形状和大小不变,把图形利用割补法补全为一个面积可以计算的规则图形.变式训练:见《学练优》本课时练习“课后巩固提升”第7题三、板书设计1.简单的旋转作图2.旋转图形的应用教学过程中,强调学生自主探索和合作交流,经历观察、归纳和动手操作,利用旋转的性质作图.。
《图形的旋转》旋转PPT(第2课时)

练习
如图,将ΔABC 绕点P 顺时针旋转90°得到ΔA1B1C1,则点 P 的坐标是(__1_,__2_)_____.
旋转出等腰
如图,正方形A'B 'C 'D '是正方形
ABCD按顺时针方向旋转45°而成的
(1)若AB=4,
S 则 正方形A'B'C'D'=____1_6_____;
(2)∠BAB '= 45°
练习 图是由正方形ABCD 旋转而成. (1)旋转中心是____A______ (2)旋转的角度是___4__5_°___ (3)若正方形的边长是1,则C ’D =_________
练习
下列现象中属于旋转的有___4____个
①地下水位逐年下降;②传送带的移动; ③方向盘的转动;④水龙头开关的转动; ⑤钟摆的运动;⑥荡秋千运动.
探究 (1)线段 OA 和 OA’ 有什么关系? (2)∠AOA’ 和 ∠BOB ’有什么关系?
相等 (3)图中还有哪些类似关系的线段和角?
OB =OB ’,OC =OC ’ ∠COC ’=∠BOB ’=∠AOA’ (4)Δ ABC 和 Δ A’B ’C ’ 有什么关系? 全等
归纳 旋转的性质 1.对应点到旋转中心的距离_相__等___.
总结
确定旋转中心的步骤
1.连接两组对应点.
2.作对应点连线的垂直平分线.
O
3.交点就是旋转中心.
答案:60°,5. 总结:旋转60°会产生等边三角形.
直角绕正方形中心旋转
已知,如图正方形 EFOG 绕与之边长相等的正方形 ABCD 的 中心 O 旋转任意角度.求证图中阴影部分的面积等于正方形 面积的四分之一.
九年级数学上册第二十三章旋转23.1图形的旋转第2课时旋转作图课件人教版

(2)如答图,画出对称点 D,连接 AD,AD 可以看作是由 AB 绕着点 A 逆时针 旋转 90°得到的.
【点悟】 解答此题时应熟练掌握平移、轴对称、旋转的特征.
当堂测评
1.[2018 春·巴州区期末]如图 23-1-16,把以∠ACB 为直角的△ABC 绕点 C 按 顺时针方向旋转 85°,使点 B 转到点 E,点 A 转到点 F,得到△CEF,则下列结论 错误的是( D )
归类探究
类型之一 非网格中的旋转作图 如图 23-1-14,已知将四边形 ABCD 绕点 O 顺时针旋转一定角度后,使
点 A 落在点 A′处,试作出旋转后的图形.
图 23-1-14
解:图略. 作法:(1)连接 OA,OA′; (2)连接 OB,OC,OD,分别以 OB,OC,OD 为始边,点 O 为顶点,顺时针 作∠BOB′,∠COC′,∠DOD′,并使∠BOB′=∠COC′=∠DOD′=∠ AOA′,OB′=OB,OC′=OC,OD′=OD; (3)顺次连接 A′,B′,C′,D′四点. 故四边形 A′B′C′D′就是所要求作的图形.
出了格点三角形 ABC(顶点是网格线的交点)和点 A1. (1)画出一个格点三角形 A1B1C1,并使它与△ABC 全等且点 A 与 A1 是对应点; (2)画出点 B 关于直线 AC 的对称点 D,并指出 AD 可以看作是由 AB 绕点 A
经过怎样的旋转而得到的.
图 23-1-15
解:(1)(答案不唯一)如答图,利用△ABC≌△A1B1C1,图形平移,可得出△ A1B1C1.
图 23-1-19
3.[2018 春·金牛区期末]在平面直角坐标系中,△ABC 的位置如图 23-1-20.(每 个小方格都是边长为 1 个单位长度的正方形).
人教版九年级数学上册作业课件 第二十三章 旋转 图形的旋转 第2课时 旋转作图

8.如图,将小旗ACDB放于平面直角坐标系中,得到各顶点的坐标为 A(-6,12),B(-6,0),C(0,6),D(-6,6).以点B为旋转中心,在平面 直角坐标系内将小旗顺时针旋转90°.
(1)画出旋转后的小旗A′C′D′B; (2)写出点A′,C′,D′的坐标; (3)求出线段BA旋转到BA′时所扫过的扇形的面积.
2.旋转作图的步骤: (1)首先确定___旋__转__中__心________、旋转方向和____旋__转__角_______; (2)其次确定图形的关键点; (3)将这些关键点沿指定的方向旋转指定的角度; (4)连接____对__应___点_______,形成相应的图形.
练习2:如图,△ABC在网格中,画出△ABC绕点C顺时针旋转90°后 的图形△A1B1C.
(3)∵∠AOB=110°,∠DOC=60°,∴∠AOD=360°-∠AOB- ∠BOC-∠DOC=360°-110°-α-60°=190°-α.∵∠ADO= ∠ADC-∠ODC=α-60°,∴∠OAD=180°-(∠AOD+∠ADO)= 50°.①若使AO=AD,需∠AOD=∠ADO,∴190°-α=α-60°,∴α =125°;②若使OA=OD,需∠OAD=∠ADO,∴α-60°=50°, ∴α=110°;③若使OD=AD,需∠OAD=∠AOD,∴190°-α=50°, ∴α=140°.综上所述:当α的度数为125°或110°或140°时,△AOD是 等腰三角形
解:(1)图略 (2)点 A′(6,0),C′(0,-6),D′(0,0) (3)∵点 A 的 坐标为(-6,12),点 B 的坐标为(-6,0),∴AB=12,∴线段 BA 旋
转到 BA′时所扫过的扇形的面积=14 π×122=36π
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
图形的旋转
活动2
教材导学
探究旋转作图的步骤
1.如图3-2-16是一面小旗子,把这面小旗子绕旗杆底端顺
时针旋转90°后,小旗子的位置发生了变化,形成了新的图 案,你能把旋转后的图案画出来吗? [答案] 如图3-2-16所示.
图3-2-16
2
图形的旋转
2.通过前面的操作,你知道旋转作图的主要步骤吗? ◆知识链接——[新知梳理]知识点一
2
图形的旋转
新 知 梳 理
知识点一 旋转作图的一般步骤
1.分析题目的要求,找出旋转中心、旋转方向、旋转角; 2.分析所作的图形,找出构造图形的关键点; 3.沿一定的方向,按一定的角度,通过截取线段的方法, 旋转各个关键点;
4.连接所作的各个关键点,并标上相应的字母;
5.写出结论.
2
图形的旋转
[归纳] (1)为了便于操作与理解,也可归结为以下几个步骤
图3-2-18
2
图形的旋转
[归纳总结] 作旋转图形要注意其三个要素,即旋转中心、旋 转角度和旋转方向,只要作出原图形上的关 键点绕旋转中心旋转后的对应点,再依次连接即可得到旋转 后的图形.
2
图形的旋转
探究问题二
分析与识别图案的变化
例 2 在平面直角坐标系中有△ABC 与△A1B1C1,其位 置如图 3-2-7 所示. (1)将△ABC 绕点 C 按________(填“顺”或“逆”)时针 方向旋转________度(小于平角)时与△A1B1C1 重合. (2)若将△ABC 向右平移 2 个单位长度后, 只通过一次旋 转变换能与△A1B1C1 重合吗?若能,请直接指出旋转中心的 坐标、方向及旋转角度;若不能,请说明理由.
:①连:即连图形中的每一个关键点与旋转中心;②转:即把 连线按要求绕旋转中心转过一定角度(作旋转角);③截:即在 角的另一边上截取线段长等于关键点到旋转中心的距离,得到 各点的对应点;④连:即连接所得到的各点.
(2)常见的旋转作图:①已知原图、旋转中心和一对对应点,
求作旋转后的图形; ②已知原图、旋转中心和一对对应线段,求作旋转后的图形; ③已知原图、旋转中心和旋转角,求作旋转后的图形.
图3-2-17
2
图形的旋转
[解析] 先向右移4个单位长度,准确找到点A,B,C的对应点
A′,B′,C′,画出△A′B′C′后,再根据旋转要求,找到
点A′,B′,C′的对应点A ″,B ″,C ″,顺次连接即可 . 解:如图3-2-18所示,先向右平移4个单位长度,得 △A′B′C′,再绕点A′逆时针旋转90°,得△A″B″C″.
(1)连接两组旋转前后的对应点;
(2)分别作两组对应点连线的垂直平分线,两直线的交点就 是旋转中心.
2 图形的旋转
第2课时 简单的旋转作图
2
图形的旋转
探 究 新 知 活动1 知识准备
1.旋转变换的三要素:_________ 旋转中心 、_________ 旋转方向 、________ 旋转角 , 图形旋转变换的实质是______ 点 的变换. 2.在平面直角坐标系中,已知点P(3,4),将点P绕原点O旋 (5,0) 转到x轴正半轴上的点P′,则点P′的坐标是__________ .
图 3-2-7
2
பைடு நூலகம்
图形的旋转
解:(1)将△ABC 绕点 C 按逆时针方向旋转 90 度时与 △A1B1C1 重合. (2)若将△ABC 向右平移 2 个单位长度后,只通过一次旋 转变换能与△A1B1C1 重合. 如图,△ABC 向右平移 2 个单位长度后得到△A′B′C′, 分别连接 A1A′,B1B′,
2
图形的旋转
知识点二
确定一个图形旋转后的位置的条件
1.图形原来所在的位置;2.旋转中心;
3.图形旋转的方向;4.图形旋转的角度.
2 图形的旋转
重难互动探究
探究问题一 旋转作图
例1 如图3-2-17所示,在10×5的正方形网格中,每个小正 方形的边长均为单位1,将△ABC向右平移4个单位长度,得到 △A′B′C′,再把△A′B′C′绕点A′逆时针旋转90°,得 到△A″B″C″.请你画出△A′B′C′和△A″B″C″.(不要求 写画法)
2
图形的旋转
然后分别作 C1C′,B1B′,A1A′的垂直平分线,可得 三条垂直平分线交于坐标原点 O, 故把平移后的△A′B′C′绕点 O 逆时针旋转 90°后即可与 △A1B1C1 重合. 即旋转中心的坐标为(0,0),方向为逆时针方向,旋转角 度为 90°.
[归纳总结] 直角坐标系中的旋转中心的确定方法: