高二数学必修三人教A版模块综合检测题及答案解析B
高中数学人教A版必修3综合测试题及答案 6

必修3综合模块测试(人教A 版必修3)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1. 五进制数(5)444转化为八进制数是( )A.(8)194B.(8)233C.(8)471D.(8)1742、抛掷一枚质地均匀的硬币1000次,第999次正面朝上的概率为 ( )A. 9991B. 21 C .32D .无法确定3、甲乙两名学生,六次数学测验成绩(百分制)如图所示。
①甲同学成绩的中位数大于乙同学成绩的中位数 ②甲同学的平均分比乙同学高 ③甲同学的平均分比乙同学低④甲同学的方差小于乙同学成绩的方差,上面说法正确的是( )A .③④B .①②④C .②④D .①③④4.10个正数的平方和是370,方差是33,那么平均数为( )A .1B .2C .3D .45、运行如图所示的程序框图后,若输出的b 的值为16, 则循环体的判断框内①处应填( )A.2B.3C.4D.56、在三棱锥的六条棱中任意选择两条,则这两条棱是 一对异面直线的概率为( ) A .201 B .151 C .51 D .61 7、将参加军训的600名学生编号为:001,002,……600,采用系统抽样方法抽取一个容量为50的样本,且随机抽得的号码为003.这600名学生分住在三个营区,从001到300在第Ⅰ营区,从301到495住在第Ⅱ营区,从496到600在第Ⅲ营区,则第Ⅱ营区被抽中的人数为( ) A . 16, B .17 C .18 D .198、根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20—80mg/100ml (不含80)之间,属于酒后驾车,血液酒精浓度在80mg/100ml (含80)以上时,属醉酒驾车 据《法制晚报》报道,2009年8月15日至8 月28日,全国查处酒后驾车和醉酒驾车共28800人,如图1是对这28800人酒后驾车血 液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )A .2160B .2880C .4320D .86409.读程序 甲:INPUT i =1 乙:INPUT i =1000 S =0 S =0 WHILE i <=1000 DOS =S +i S =S +ii =i +l i =i 一1 WEND LOOP UNTIL i <1 PRINT S PRINT SEND END对甲乙两程序和输出结果判断正确的是( )A .程序不同,结果不同B .程序不同,结果相同C .程序相同,结果不同D .程序相同,结果相同 10.已知点P 是边长为4的正方形内任一点,则P 到四个顶点的距离均大于2的概率是( )A.44π- B. 14 C. 34π- D. 1811、已知函数f (x )=-x 2+ax -b .若a 、b 都是从区间[0,4]内任取的一个数,则f (1)>0成立的概率是( ) A .916 B .932 C .716 D .233212甲、乙两位同学玩游戏,对于给定的实数1a ,按下列方法操作一次产生一个新的实数:由甲、乙同时各抛一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把1a 乘以2后再减去12;如果出现一个正面朝上,一个反面朝上,则把1a 除以2后再加上12,这样就可得到一个新的实数2a ,对2a 仍按上述方法进行一次操作,又得到一个新的实数3a ,当13a a >时,甲获胜,否则乙获胜。
高中数学人教A版必修三 章末综合测评1 Word版含答案

章末综合测评(一)算法初步(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面对程序框图中的图形符号的说法错误的是()A.起、止框是任何流程不可少的,表明程序开始和结束B.输入、输出可用在算法中任何需要输入、输出的位置C.算法中间要处理数据或计算,可分别写在不同的注释框内D.当算法要求对两个不同的结果进行判断时,判断条件要写在判断框内【解析】算法中间要处理数据或计算,可分别写在不同的处理框内.【答案】 C2.算法共有三种逻辑结构,即顺序结构、条件结构、循环结构,下列说法正确的是()A.一个算法只能含有一种逻辑结构B.一个算法最多可以包含两种逻辑结构C.一个算法必须含有上述三种逻辑结构D.一个算法可以含有上述三种逻辑结构的任意组合【解析】任何一种算法都是由上述三种逻辑结构组成的,它可以含有三种结构中的一种、两种或三种.【答案】 D3.下列赋值语句正确的是()A.s=a+1B.a+1=sC.s-1=a D.s-a=1【解析】赋值语句的格式为“变量=表达式”,“=”的左侧只能是单个变量,B、C、D都不正确.【答案】 A4.用辗转相除法,计算56和264的最大公约数时,需要做的除法次数是()A.3 B.4C.6 D.7【解析】由辗转相除法264=56×4+40,56=40×1+16,40=16×2+8,16=8×2,即得最大公约数为8,做了4次除法.【答案】 B5.下列各进制数中,最小的是()A.1002(3)B.210(6)C.1 000(4)D.111 111(2)【解析】 1 002(3)=29,210(6)=78,1 000(4)=64,111 111(2)=63.【答案】 A6.对于程序:试问,若输入m=-4,则输出的数为()A.9 B.-7C.5或-7 D.5【解析】阅读程序,先输入m,判断m>-4是否成立,因为m =-4,所以不成立,则执行m=1-m,最后输出的结果为5.【答案】 D7.用秦九韶算法求多项式f(x)=12+35x-8x2+79x3+6x4+5x5+3x6在x=-4时,v4的值为()【导学号:28750025】A.-57 B.220C.-845 D.3 392【解析】v0=3,v1=v0x+5=-7,v2=v1x+6=28+6=34,v3=v2x+79=34×(-4)+79=-57,v4=v3x-8=-57·(-4)-8=220.【答案】 B8.如图1所示的程序框图中循环体执行的次数是()图1A.50 B.49C.100 D.99【解析】第1次中:i=2+2=4,第2次中:i=4+2=6…第49次中:i=2×49+2=100.共49次.【答案】 B9.如图2所示是求样本x1,x2,…,x10平均数x的程序框图,图中空白框中应填入的内容为()图2A .S =S +x nB .S =S +x nn C .S =S +nD .S =S +1n【解析】 由循环结构的程序框图可知需添加的运算为S =x 1+x 2+…+x 10的累加求和,故选A.【答案】 A10.下面程序的功能是( )A.求1×2×3×4×…×10 00的值B.求2×4×6×8×…×10 000的值C.求3×5×7×9×…×10 001的值D.求满足1×3×5×…×n>10 000的最小正整数n【解析】S是累乘变量,i是计数变量,每循环一次,S乘以i 一次且i增加2.当S>10 000时停止循环,输出的i值是使1×3×5×…×n>10 000成立的最小正整数n.【答案】 D11.对于任意函数f(x),x∈D,可按下图构造一个数字发生器,其工作原理如下:图3①输入数据x0∈D,经过数字发生器,输出x1=f(x0);②若x1∉D,则数字发生器结束工作;若x1∈D,则将x1反馈回输入端,再输出x2=f(x1),并依此规律继续下去.现定义f(x)=2x+1,D=(0,1 000).若输入x0=0,当发生器结束工作时,输出数据的总个数为()A.8 B.9C .10D .11【解析】 依题中规律,当输入x 0=0时,可依次输出1,3,7,15,31,63,127,255,511,1 023,共10个数据,故选C.【答案】 C12.如图4给出的是计算12+14+16+…+120的值的一个程序框图,其中判断框内应填入的条件是( )图4A .i >10?B .i <10?C .i >20?D .i <20?【解析】 12+12×2+12×3+…+12×10共10个数相加,控制次数变量i 应满足i >10.【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)13.123(8)=________(16).【解析】 123(8)=1×82+2×8+3×80=83.即123(8)=83(10)=53(16).【答案】5314.程序框图如图5所示,若输出的y=0,那么输入的x为________.图5【解析】由框图知,当x=-3,0时,输出的y值均为0.【答案】-3或015.下面程序运行后输出的结果为________.【解析】 ∵输入x =-5<0, ∴y =x -3=-5-3=-8,∴输出x -y =-5-(-8)=3,y -x =-8-(-5)=-3. 【答案】 3,-316.对任意非零实数a ,b ,若a ⊗b 的运算原理如图6所示,则log 28⊗⎝ ⎛⎭⎪⎫12-2=________.图6【解析】 log 28<⎝ ⎛⎭⎪⎫12-2,由题意知,log 28⊗⎝ ⎛⎭⎪⎫12-2=3⊗4=4-13=1.【答案】 1三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)(2015·大同高一检测)分别用辗转相除法和更相减损术求282与470的最大公约数.【解】 辗转相除法: 470=1×282+188,282=1×188+94, 188=2×94.∴282与470的最大公约数为94. 更相减损术:470与282分别除以2得235和141, ∴235-141=94, 141-94=47, 94-47=47,∴470与282的最大公约数为47×2=94.18.(本小题满分12分)下列是某个问题的算法程序,将其改为程序语言,并画出程序框图.算法:第一步,令i =1,S =0.第二步,若i ≤999成立,则执行第三步; 否则,输出S ,结束算法. 第三步,S =S +1i .第四步,i =i +2,返回第二步. 【解】 程序框图如下:程序语言如下:+4x4+3x3+2x2+x,当x=3时的值.【解】f(x)=((((((7x+6)x+5)x+4)x+3)x+2)x+1)x,v0=7,v1=7×3+6=27,v2=27×3+5=86,v3=86×3+4=262,v 4=262×3+3=789,v 5=789×3+2=2 369,v 6=2 369×3+1=7 108,v 7=7 108×3+0=21 324,∴f (3)=21 324.20.(本小题满分12分)在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含 5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客购买唱片的数量a ,输出顾客要缴纳的金额C .并画出程序框图.【导学号:28750026】【解】由题意得C =⎩⎪⎨⎪⎧25a ,a <5,22.5a ,5≤a <10,21.25a ,a ≥10. 程序框图,如图所示:程序如下:21.(本小题满分12分)(2016·武汉高一检测)如图7是为求1~100中所有自然数的平方和而设计的程序框图,将空补上,指明它是循环结构中的哪一种类型,并画出它的另一种循环结构框图.图7【解】这个循环结构是当型循环.①处应该填写sum=sum+i2,②处应该填写i=i+1.求1~100中所有自然数的平方和的直到型循环结构程序框图如图所示:22.(本小题满分12分)已知某算法的程序框图如图8所示,若将输出的(x,y)值依次记为(x1,y1),(x2,y2),…,(x n,y n),…图8(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少;(3)写出程序框图的程序语句.【解】(1)开始x=1时,y=0;接着x=3,y=-2;然后x=9,y=-4,所以t=-4;(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 013时,输出最后一对,共输出(x,y)的组数为1 007;(3)程序框图的程序语句如下:。
高中数学模块综合检测新人教A版选择性必修第三册

模块综合检测(时间:120分钟,满分150分)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合A ={5},B ={1,2},C ={1,3,4},若从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A .36B .35C .34D .33【答案】D 【解析】不考虑限定条件确定的不同点的个数为C 12C 13A 33=36,但集合B ,C 中有相同元素1,由5,1,1三个数确定的不同点的个数只有三个,故所求的个数为36-3=33.2.在4次独立重复试验中,事件A 出现的概率相同,若事件A 至少发生一次的概率是6581,则事件A 在一次试验中出现的概率是( )A .13B .25C .56D .23【答案】A 【解析】设事件A 在一次试验中出现的概率是p .由事件A 至少发生1次的概率为6581,可知事件A 一次都不发生的概率为1-6581=1681,所以(1-p )4=1681,则p =13.3.已知随机变量X 的分布列为P (X =k )=12k ,k =1,2,…,则P (2<X ≤4)等于( )A .516B .316C .116D .14【答案】B 【解析】P (2<X ≤4)=P (X =3)+P (X =4)=123+124=316.4.抛掷一枚质地均匀的硬币两次,在第一次正面向上的条件下,第二次反面向上的概率为( )A .14B .13C .12D .23【答案】C 【解析】记事件A 表示“第一次正面向上”,事件B 表示“第二次反面向上”,则P (AB )=14,P (A )=12,∴P (B |A )=P AB P A =12.5.已知二项式⎝ ⎛⎭⎪⎫x +12x 2n 的展开式的二项式系数之和为64,则展开式中含x 3项的系数是( )A .1B .32C .52D .3【答案】D 【解析】由2n=64得n =6,T r +1=C r 6x 6-r·⎝⎛⎭⎪⎫12x 2r =12rC r 6x 6-3r ,令6-3r =3,得r=1,故含x 3项的系数为121C 16=3.6.为了考察某种中成药预防流感的效果,抽样调查40人,得到如下数据:项目 患流感 未患流感 服用药 2 18 未服用药812下表是χ2独立性检验中几个常用的小概率值和相应的临界值:α 0.1 0.05 0.01 0.005 x α2.7063.8416.6357.579根据表中数据,计算χ2=n ad -bc 2a +bc +d a +cb +d,若由此认为“该药物有效”,则该结论出错的概率不超过( )A .0.05B .0.1C .0.01D .0.005【答案】A 【解析】完成2×2列联表项目 患流感 未患流感 合计 服用药 2 18 20 未服用药 8 12 20 合计103040χ2=40×2×12-8×18210×30×20×20=4.8>3.841=x 0.05.7.某机构对儿童记忆能力x 和识图能力y 进行统计分析,得到如下数据:记忆能力x 4 6 8 10 识图能力y3568由表中数据,求得经验回归方程为y =0.8x +a ,若某儿童记忆能力为12,则预测他的识图能力为( )A .9.5B .9.8C .9.2D .10【答案】A 【解析】∵x =14×(4+6+8+10)=7,y =14×(3+5+6+8)=5.5,∴样本点的中心为(7,5.5),代入回归方程得5.5=0.8×7+a ^,∴a ^=-0.1,∴y =0.8x -0.1,当x =12时,y =0.8×12-0.1=9.5.8.甲、乙、丙3位志愿者安排在周一至周五5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,则不同的安排方法共有( )A .40种B .30种C .20种D .60种【答案】C 【解析】分类解决.甲排周一,乙,丙只能是周二至周五4天中选两天进行安排,有A 24=12(种)方法;甲排周二,乙,丙只能是周三至周五选两天安排,有A 23=6(种)方法;甲排周三,乙,丙只能安排在周四和周五,有A 22=2(种)方法.由分类加法计数原理可知,共有12+6+2=20(种)方法.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.若(3x -1)7=a 7x 7+a 6x 6+…+a 1x +a 0,则( ) A .a 0=1B .a 1+a 2+…+a 7=129C .a 1+a 3+a 5+a 7=8 256D .a 0+a 2+a 4+a 6=8 128【答案】BC 【解析】令x =0,则a 0=-1,A 错误;令x =1,得a 7+a 6+…+a 1+a 0=27=128①,所以a 1+a 2+…+a 7=129,B 正确;令x =-1,得-a 7+a 6-a 5+a 4-a 3+a 2-a 1+a 0=(-4)7②,①-②,得2(a 1+a 3+a 5+a 7)=128-(-4)7,∴a 1+a 3+a 5+a 7=8 256,C 正确;①+②,得2(a 0+a 2+a 4+a 6)=128+(-4)7,∴a 0+a 2+a 4+a 6=-8 128,D 错误.10.设离散型随机变量X 的分布列为若离散型随机变量Y )A .E (X )=2B .D (X )=1.4C .E (Y )=5D .D (Y )=7.2【答案】ACD 【解析】由离散型随机变量X 的分布列的性质得q =1-0.4-0.1-0.2-0.2=0.1,E (X )=0×0.1+1×0.4+2×0.1+3×0.2+4×0.2=2,D (X )=(0-2)2×0.1+(1-2)2×0.4+(2-2)2×0.1+(3-2)2×0.2+(4-2)2×0.2=1.8,∵离散型随机变量Y 满足Y =2X +1,∴E (Y )=2E (X )+1=5,D (Y )=4D (X )=7.2.故选ACD .11.某学生想在物理、化学、生物、政治、历史、地理、技术这七门课程中选三门作为选考科目,下列说法错误的是( )A .若任意选择三门课程,选法总数为A 37 B .若物理和化学至少选一门,选法总数为C 12C 26 C .若物理和历史不能同时选,选法总数为C 37-C 15D .若物理和化学至少选一门,且物理和历史不同时选,选法总数为C 12C 25-C 15【答案】ABD 【解析】对于A,若任意选择三门课程,选法总数为C 37,错误;对于B,若物理和化学选一门,有C 12种方法,其余两门从剩余的5门中选,有C 25种选法,选法为C 12C 25;若物理和化学选两门,有C 22种选法,剩下一门从剩余的5门中选,有C 15种选法,有C 22C 15种,由分类加法计数原理知,总数为C 12C 25+C 22C 15,错误;对于C,若物理和历史不能同时选,选法总数为C 37-C 22C 15=(C 37-C 15)种,正确;对于D,有3种情况:①只选物理且物理和历史不同时选,有C 11C 24种选法;②选化学,不选物理,有C 11C 25种选法;③物理与化学都选,有C 22C 14种选法,故总数为C 11C 24+C 11C 25+C 22C 14=6+10+4=20(种),错误.故选ABD .12.为研究需要,统计了两个变量x ,y 的数据情况如下表:其中数据x 1,x 2,x 3,…,x n 和数据y 1,y 2,y 3,…,y n 的平均数分别为x 和y ,并且计算相关系数r =-0.8,经验回归方程为y ^=b ^x +a ^,则下列结论正确的为( )A .点(x ,y )必在回归直线上,即y =b ^ x +a ^B .变量x ,y 的相关性强C .当x =x 1,则必有y =y 1D .b ^<0【答案】ABD 【解析】A .回归直线y ^=b ^x +a ^过样本点中心(x ,y ),即y =b ^ x +a ^,所以A 正确;B .相关系数r =-0.8,|r |>0.75,变量x ,y 的相关性强,所以B 正确;C .当x =x 1时,不一定有y =y 1,因此C 错误;D .因为r =-0.8<0,是负相关,所以b ^<0,D 正确;故选ABD .三、填空题:本大题共4小题,每小题5分,共20分.13.一射击测试中,每人射击3次,每击中目标一次记10分,没有击中目标记0分,某人每次击中目标的概率为23,则此人得分的均值是________,得分的方差是________.【答案】202003 【解析】记此人3次射击击中目标η次,得分为ξ分,则η~B ⎝ ⎛⎭⎪⎫3,23,ξ=10η,所以E (ξ)=10E (η)=10×3×23=20,D (ξ)=100D (η)=100×3×23×13=2003. 14.在二项式(2+x )9的展开式中,常数项是________.【答案】16 2 【解析】由二项展开式的通项公式可知T r +1=C r 9·(2)9-r·x r,令r =0,得常数项为C 09·(2)9·x 0=(2)9=16 2.15.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的3盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有________种(填数字).【答案】56 【解析】由题意可知,最终剩余的亮着的灯共有9盏,且两端的必须亮着,所以可用插空的方法,共有8个空可选,所以应为C 38=56(种).四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 16.某校高三年级有6个班,现要从中选出10人组成高三女子篮球队参加高中篮球比赛,且规定每班至少要选1人参加.求这10个名额有多少种不同的分配方法.解:除每班1个名额以外,其余4个名额也需要分配.这4个名额的分配方案可以分为以下几类:(1)4个名额全部分给某一个班,有C 16种分法; (2)4个名额分给两个班,每班2个,有C 26种分法;(3)4个名额分给两个班,其中一个班1个,一个班3个,共有A 26种分法;(4)4个名额分给三个班,其中一个班2个,其余两个班每班1个,共有C 16·C 25种分法; (5)4个名额分给四个班,每班1个,共有C 46种分法. 故共有C 16+C 26+A 26+C 16·C 25+C 46=126(种)分配方法.17.已知(a 2+1)n 展开式中的各项系数之和等于⎝⎛⎭⎪⎫165x 2+1x 5的展开式的常数项,而(a 2+1)n的展开式的系数最大的项等于54,求a 的值.解:⎝ ⎛⎭⎪⎫165x 2+1x 5的展开式的通项为T r +1=C r 5⎝ ⎛⎭⎪⎫165x 25-r·⎝ ⎛⎭⎪⎫1x r =⎝ ⎛⎭⎪⎫1655-r C r 5x 20-5r 2,令20-5r =0,得r =4,故常数项T 5=165×C 45=16.又(a 2+1)4展开式的各项系数之和等于2n, 由题意知2n=16,得n =4,由二项式系数的性质知,(a 2+1)4展开式中系数最大的项是中间项T 3, 故有C 24a 4=54,解得a =± 3.18.某饮料公司招聘了一名员工,现对其进行一项测试,以便确定工资级别.公司准备了两种不同的饮料共8杯,其颜色完全相同,并且其中4杯为A 饮料,另外4杯为B 饮料,公司要求此员工一一品尝后,从8杯饮料中选出4杯A 饮料.若4杯都选对,则月工资定为3 500元;若4杯选对3杯,则月工资定为2 800元,否则月工资定为2 100元.令X 表示此人选对A 饮料的杯数,假设此人对A 和B 两种饮料没有鉴别能力.(1)求X 的分布列; (2)求此员工月工资的均值.解:(1)依题意知X 所有可能取值为0,1,2,3,4, P (X =0)=C 04C 44C 48=170,P (X =1)=C 14C 34C 48=835,P (X =2)=C 24C 24C 48=1835,P (X =3)=C 34C 14C 48=835,P (X =4)=C 44C 04C 48=170.所以X 的分布列为X 0 1 2 3 4 P1708351835835170(2)令Y 表示此员工的月工资,则Y 的所有可能取值为2 100,2 800,3 500, 则P (Y =3 500)=P (X =4)=170, P (Y =2 800)=P (X =3)=835,P (Y =2 100)=P (X ≤2)=1835+835+170=5370.所以E (Y )=170×3 500+835×2 800+5370×2 100=2 280(元).所以此员工月工资的均值为2 280元.19.“中国式过马路”存在很大的交通安全隐患.某调查机构为了解路人对“中国式过马路”的态度是否与性别有关,从马路旁随机抽取30名路人进行了问卷调查,得到了如下列联表:态度 性别合计 男性 女性反感 10不反感 8总计30已知在这30人中随机抽取1人,抽到反感“中国式过马路”的路人的概率是815.(1)请将上面的列联表补充完整(直接写结果,不需要写求解过程),并据此资料分析是否有90%的把握认为反感“中国式过马路”与性别是否有关?(2)若从这30人中的女性路人中随机抽取2人参加一活动,记反感“中国式过马路”的人数为X ,求X 的分布列和均值.附:χ2=n ad -bc 2a +bc +d a +c b +d. α 0.10 0.05 0.010 0.005 x α2.7063.8416.6357.879解:(1)态度 性别合计 男性 女性 反感 10 6 16 不反感6814合计1614 30由已知数据得χ2=30×10×8-6×6216×14×16×14≈1.158<2.706=x 0.1.所以,没有90%的把握认为反感“中国式过马路”与性别有关.(2)X 的可能取值为0,1,2,P (X =0)=C 28C 214=413,P (X =1)=C 16C 18C 214=4891,P (X =2)=C 26C 214=1591.所以X 的分布列为X 0 1 2 P41348911591X 的均值为E (X )=0×413+1×4891+2×1591=67.20.近年来,随着以煤炭为主的能源消耗大幅攀升、机动车持有量急剧增加,某市空气中的PM2.5(直径小于等于2.5微米的颗粒物)的含量呈逐年上升的趋势,如图是根据该市环保部门提供的2016年至2020年该市PM2.5年均浓度值画成的散点图(为便于计算,把2016年编号为1,2017年编号为2,…,2020年编号为5).(1)以PM2.5年均浓度值为因变量,年份的编号为自变量,利用散点图提供的数据,用最小二乘法求出该市PM2.5年均浓度值与年份编号之间的经验回归方程y ^=b ^x +a ^;(2)按世界卫生组织(WHO)过渡期-1的标准,空气中的PM2.5的年均浓度限值为35微克/立方米,该市若不采取措施,试预测到哪一年该市空气中PM2.5的年均浓度值将超过世界卫生组织(WHO)过渡期-1设定的限值.解:(1)由散点图可得,变量x i ,y i 组成的几组数据为(1,13),(2,15),(3,20),(4,22),(5,25),则x =3,y =19,所以b ^=-2×-6+-1×-4+0×1+1×3+2×6-22+-12+02+12+22=3.1.a ^=y -b ^x =19-3.1×3=9.7.所以所求经验回归方程为y ^=3.1x +9.7.(2)由3.1x +9.7>35,得x >8.16,因为x ∈N ,所以x =9.故可预测到2024年该市空气中PM2.5的年均浓度值将超过世界卫生组织(WHO)过渡期-1设定的限值.21.某品牌专卖店准备在国庆期间举行促销活动.根据市场调查,该店决定从2种不同型号的洗衣机、2种不同型号的电视机和3种不同型号的空调中(不同种商品的型号不同),选出4种不同型号的商品进行促销,该店对选出的商品采用的促销方案是有奖销售,即在该商品现价的基础上将价格提高150元,同时,若顾客购买任何一种型号的商品,则允许有3次抽奖的机会,若中奖,则每次中奖都获得m (m >0)元奖金.假设顾客每次抽奖时获奖的概率都是12.(1)求选出的4种不同型号商品中,洗衣机、电视机、空调都至少有1种型号的概率; (2)设顾客在3次抽奖中所获得的奖金总额(单位:元)为随机变量X ,请写出X 的分布列,并求X 的均值;(3)该店若想采用此促销方案获利,则每次中奖奖金要低于多少元?解:(1)设“选出的4种不同型号商品中,洗衣机、电视机、空调都至少有1种型号”为事件A ,则P (A )=2C 12C 13+C 12C 12C 23C 47=2435. (2)X 的所有可能的取值为0,m,2m,3m .P (X =0)=C 03⎝ ⎛⎭⎪⎫120×⎝ ⎛⎭⎪⎫123=18, P (X =m )=C 13⎝ ⎛⎭⎪⎫121×⎝ ⎛⎭⎪⎫122=38, P (X =2m )=C 23⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫121=38,P (X =3m )=C 33⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫12=18,所以顾客在3次抽奖中所获得的奖金总额X 的分布列为于是顾客在3E (X )=0×18+m ×38+2m ×38+3m ×18=1.5m .(3)要使促销方案对商场有利,应使顾客获得的奖金总额的均值低于商场的提价数额,因此应有1.5m <150,所以m <100.故每次中奖奖金要低于100元,才能使促销方案对商场有利.。
高二数学 人教A必修3模块综合检测 Word版含解析

模块综合检测一、选择题(本大题共12小题,每小题5分,共60分)1.计算机执行下面的程序段后,输出的结果是( )A .4,-2B .4,1C .1,4D .-2,4答案:B解析:由a=1,b=3得a=a+b=1+3=4,b=a-b=4-3=1.2.x 是x 1,x 2,…,x 100的平均值,a 1为x 1,x 2,…,x 40的平均值,a 2为x 41,…,x 100的平均值,则下列式子中正确的是( ) A .x =40a 1+60a 2100B .x =60a 1+40a 2100C .x =a 1+a 2D .x =a 1+a 22答案:A3.从含有3个元素的集合中任取一个子集,所取的子集是含有两个元素的集合的概率是( ) A .310B .112C .4564D .38答案:D解析:所有子集共8个,其中含有2个元素的为{a ,b },{a ,c },{b ,c },故所求概率为38.4.已知变量x 与y 正相关,且由观测数据算得样本平均数x =3,y =3.5,则由该观测数据算得的线性回归方程可能是( ) A .y ^=0.4x+2.3 B .y ^=2x-2.4 C .y ^=-2x+9.5D .y ^=-0.3x+4.4答案:A解析:由变量x 与y 正相关,可知x 的系数为正,排除C,D .而所有的回归直线必经过点(x,y ),由此排除B .5.在一次运动员选拔中,测得7名选手的身高(单位:cm)分布茎叶图为,有一名候选人的身高记录不清楚,其末位数记为x ,已知记录的平均身高为177 cm,那么x 的值为( ) A .5 B .6C .7D .8答案:D解析:由茎叶图可知180+181+170+173+178+179+170+x7=177,解得x=8.6.已知某地区中小学生人数和近视情况分别如图①和图②所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .200,20B .100,20C .200,10D .100,10答案:A解析:由题图①知该地区中小学生的总人数为2 000+4 500+3 500=10 000,因此样本容量为10 000×2%=200.又高中生人数为2 000,所以应抽取的高中生人数为2 000×2%=40.由题图②知高中生的近视率为50%,所以抽取的高中生近视人数为40×50%=20.7.先后抛掷两枚均匀的正方体骰子(它们六个面上分别标有点数1,2,3,4,5,6),骰子朝上的点数分别为X ,Y ,则log 2X Y=1的概率为( ) A .16 B .536C .112D .12答案:C解析:设“log 2X Y=1”为事件A ,则A 包含的基本事件有3个,(1,2),(2,4),(3,6),故P (A )=336=112. 8.执行下面的程序框图,如果输入的x ,t 均为2,则输出的S=( )A .4B .5C .6D .7答案:D解析:开始x=2,t=2.第一次循环:1≤2成立,M=2,S=5,k=2; 第二次循环:2≤2成立,M=2,S=7,k=3; 此时3≤2不成立,输出S=7. 故输出的S=7.9.A 是圆上固定的一点,在圆上其他位置任取一点A',连接AA',它是一条弦,它的长度大于或等于半径长度的概率为( ) A .13B .23C .√32D .12答案:B解析:如图,当AA'长度等于半径时,A'位于B 或C 点,此时∠BOC=120°,则优弧BC ⏜=43πR.故所求概率P=43πR2πR =23.10.将数字1,2,3填入标号为1,2,3的三个方格里,每格填上一个数字,则每个方格的标号与所填的数字均不相同的概率是( ) A .16 B .13C .12D .23答案:B解析:将数字1,2,3填入标号为1,2,3的三个方格里有6种不同的填法,而每个方格的标号与所填的数字均不相同只有2种不同的填法.11.一只蚂蚁一直在三边长分别为3,4,5的三角形的边上爬行,该蚂蚁距离三角形的三个顶点的距离均超过1的概率为( ) A .34 B .23C .13D .12答案:D 解析:如图,在三角形ABC 中,AB=3,BC=4,AC=5,AD=AI=BE=BF=CG=CH=1,则△ABC 的周长为12,由图分析可得,距离三角形的三个顶点的距离均超过1的部分为线段DE ,FG ,HI ,即其长度为12-6=6,则蚂蚁距离三角形的三个顶点的距离均超过1的概率为612=12,故选D .12.甲、乙两位同学玩游戏,对于给定的实数a 1,按下列方法操作一次产生一个新的实数:由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把a 1乘以2后再减去12;如果出现一个正面朝上,一个反面朝上,则把a 1除以2后再加上12,这样就可得到一个新的实数a 2,对实数a 2仍按上述方法进行一次操作,又得到一个新的实数a 3.当a 3>a 1时,甲获胜,否则乙获胜.若甲获胜的概率为34,则a 1的取值范围是( ) A .(-∞,12] B .[24,+∞) C .(12,24)D .(-∞,12]∪[24,+∞)答案:D解析:依题意得a 3有4种情况:①a 1 a 2=2a 1-12 a 3=2(2a 1-12)-12=4a 1-36; ②a 1 a 2=2a 1-12 a 3=2a 1-122+12=a 1+6; ③a 1 a 2=a12+12 a 3=2(a12+12)-12=a 1+12; ④a 1a 2=a12+12 a 3=a 12+122+12=a 14+18.∵②,③情况中a 3>a 1.又甲获胜的概率为34, ∴{4a 1-36>a 1,a 14+18≤a 1或{4a 1-36≤a 1,a 14+18>a 1.解得a 1≤12或a 1≥24,∴a 1的取值范围为(-∞,12]∪[24,+∞).二、填空题(本大题共4小题,每小题5分,共20分)13.某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取 名学生. 答案:60解析:依题意知,应从一年级本科生中抽取学生44+5+5+6×300=60(名).14.为了了解一片经济林的生长情况,随机抽测了其中60株树木的底部周长(单位:cm),所得数据均在区间[80,130]上,其频率分布直方图如图所示,则在抽测的60株树木中,有 株树木的底部周长小于100 cm .答案:24解析:由频率分布直方图知,底面周长小于100 cm 的频率为(0.015+0.025)×10=0.40,所以在抽测的60株树木中,底面周长小于100 cm 的株数为60×0.40=24.15.有20张卡片,每张卡片上分别标有两个连续的自然数k ,k+1,其中k=0,1,2,…,19.从这20张卡片中任取一张,记事件“该卡片上两个数的各位数字之和(例如:若取到标有9,10的卡片,则卡片上两个数的各位数字之和为9+1+0=10)不小于14”为A ,则P (A )= . 答案:14解析:从20张卡片中任取一张共有20种可能,其中各卡片上的数字之和大于等于14的有(7,8),(8,9),(16,17),(17,18),(18,19)共5种,因此满足各条件的概率为P=520=14.16.向面积为6的△ABC 内任投一点P ,那么△PBC 的面积小于2的概率为 . 答案:59解析:取△ABC 边BC 上的高AE 的三等分点M ,过点M 作BC 的平行线,当点P 落在图中阴影部分时,△PBC 的面积小于2,故概率为1-491=59.三、解答题(共6小题,满分70分)17.(10分)某单位要在甲、乙、丙、丁4人中安排2人分别担任周六、周日的值班任务(每人被安排是等可能的,每天只安排一人). (1)共有多少种安排方法?(2)其中甲、乙两人都被安排的概率是多少?(3)甲、乙两人中至少有一人被安排的概率是多少?解:(1)安排情况如下:甲乙,甲丙,甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丙丁,丁甲,丁乙,丁丙,故共有12种安排方法.(2)甲、乙两人都被安排的情况包括:“甲乙”“乙甲”2种,故甲、乙两人都被安排(记为事件A)的概率:P(A)=212=16.(3)甲、乙两人中至少有一人被安排的情况包括:甲乙,甲丙,甲丁,乙甲,乙丙,乙丁,丙甲,丙乙,丁甲,丁乙,共10种情况,故甲、乙两人至少有一人被安排(记为事件B)的概率为P(B)=1012=56.18.(12分)从某校随机抽取100名学生,获得了他们一周课外阅读时间(单位:小时)的数据,整理得到数据分组及频数分布表和频率分布直方图:(1)从该校随机选取一名学生,试估计这名学生该周课外阅读时间少于12小时的概率;(2)求频率分布直方图中的a,b的值;(3)假设同一组中的每个数据可用该组区间的中点值代替,试估计样本中的100名学生该周课外阅读时间的平均数在第几组.(只需写出结论)解:(1)根据频数分布表,100名学生中课外阅读时间不少于12小时的学生共有6+2+2=10(名),所以样本中的学生课外阅读时间少于12小时的频率是1-10100=0.9.从该校随机选取一名学生,估计其课外阅读时间少于12小时的概率为0.9.(2)课外阅读时间落在组[4,6)的有17人,频率为0.17,所以a=频率组距=0.172=0.085.课外阅读时间落在组[8,10)的有25人,频率为0.25,所以b=频率组距=0.252=0.125.(3)样本中的100名学生课外阅读时间的平均数在第4组.19.(12分)某中学的高二(1)班男同学有45名,女同学有15名,老师按照分层抽样的方法组建了一个4人的课外兴趣小组.(1)求某同学被抽到的概率及课外兴趣小组中男、女同学的人数;(2)经过一个月的学习、讨论,这个兴趣小组决定选出2名同学做某项实验,方法是先从小组里选出1名同学做实验,该同学做完后,再从小组内剩下的同学中选1名同学做实验,求选出的2名同学中恰有一名女同学的概率;(3)实验结束后,第一次做实验的同学得到的实验数据为68,70,71,72,74,第二次做实验的同学得到的实验数据为69,70,70,72,74,请问哪位同学的实验更稳定?并说明理由.解:(1)∵P=nm =460=115,∴某同学被抽到的概率为115.设有x名男同学,则4560=x4,∴x=3.∴男、女同学的人数分别为3,1.(2)把3名男同学和1名女同学记为a1,a2,a3,b,则选取2名同学的基本事件有(a1,a2),(a1,a3),(a1,b),(a2,a1),(a2,a3),(a2,b),(a3,a1),(a3,a2),(a3,b),(b,a1),(b,a2),(b,a3)共12种,其中有1名女同学的有6种,∴选出的2名同学中恰有1名女同学的概率为P=612=12.(3)x1=68+70+71+72+745=71,x2=69+70+70+72+745=71,s1=√(68-71)2+…+(74-71)25=2,s2=√(69-71)2+…+(74-71)25=4√55,∴第二个同学的实验更稳定.20.(10分)已知某山区小学有100名四年级学生,将全体四年级学生随机按00~99编号,并且按编号顺序平均分成10组.现要从中抽取10名学生,各组内抽取的编号按依次增加10进行系统抽样.(1)若抽出的一个号码为22,则此号码所在的组数是多少?据此写出所有被抽出学生的号码;(2)分别统计这10名学生的数学成绩,获得成绩数据的茎叶图如图所示,从这10名学生中随机抽取2名成绩不低于73分的学生,求被抽取到的2名学生的成绩之和不小于154分的概率.解:(1)由题意,得抽出号码为22的组数为3.因为2+10×(3-1)=22,所以第1组抽出的号码应该为02,抽出的10名学生的号码依次分别为:02,12,22,32,42,52,62,72,82,92.(2)从这10名学生中随机抽取2名成绩不低于73分的学生,共有10种不同的取法:(73,76),(73,78),(73,79),(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).其中成绩之和不小于154分的有7种:(73,81),(76,78),(76,79),(76,81),(78,79),(78,81),(79,81).故被抽取到的2名学生的成绩之和不小于154分的概率为P=7.21.(12分)已知高二某班学生语文与数学的学业水平测试成绩抽样统计如下表,若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示语文成绩与数学成绩,例如:表中语文成绩为B等级的共有20+18+4=42人,已知x与y均为B等级的概率是0.18.(1)求抽取的学生人数;(2)设该样本中,语文成绩优秀率是30%,求a,b的值;(3)已知a≥10,b≥8,求语文成绩为A等级的总人数比语文成绩为C等级的总人数少的概率.解:(1)由题意可知,18=0.18,得n=100,故抽取的学生人数是100.(2)由(1)知,n=100,7+9+a=0.3,故a=14.又7+9+a+20+18+4+5+6+b=100,故b=17.(3)设“语文成绩为A等级的总人数比语文成绩为C等级的总人数少”为事件A,由(2)知,a+b=31,且a≥10,b≥8,满足条件的(a,b)有(10,21),(11,20),(12,19),(13,18),(14,17),(15,16),(16,15),(17,14),(18,13),(19,12),(20,11),(21,10),(22,9),(23,8)共14种,其中b+11>a+16的有(10,21),(11,20),(12,19)共3种,故P (A )=314. 22.(12分)设有关于x 的一元二次方程x 2+2ax+b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率;(2)若a 是从区间[0,3]上任取的一个数,b 是从区间[0,2]上任取的一个数,求上述方程有实根的概率. 解:设事件A 为“方程x 2+2ax+b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax+b 2=0有实根的充要条件为a ≥b.(1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2). 其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 中包含9个基本事件,事件A 发生的概率为P (A )=912=34. (2)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}. 构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }. 所以所求的概率为P (A )=3×2-12×223×2=23.。
高中数学 模块综合测评(含解析) 新人教A版必修3

模块综合测评 必修3(A 版)(时间:90分钟 满分:120分) 第Ⅰ卷(选择题,共50分)一、选择题:本大题共10小题,共50分.1.从2 004名学生中抽取50名组成参观团,若采用下面的方法选取,先用简单随机抽样从2 004人中剔除4人,剩下的2 000人再按系统抽样的方法进行,则每人入选的概率是( )A .不全相等B .均不相等C .都相等,且为251 002D .都相等,且为140解析:抽样过程中每个个体被抽取的机会均等,概率相等,题中的抽取过程与从2 004人中抽取50人,每人入选的概率相同,其概率为502 004=251 002.答案:C2.从{1,2,3,4,5}中随机选取一个数为a ,从{1,2,3}中随机选取一个数为b ,则a <b 的概率为( )A.45B.35C.25D.15解析:取出的两个数用数对表示,则数对(a ,b )的不同选法共有15种,即:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),其中a <b 的情形有(1,2),(1,3),(2,3),共3种,故所求事件的概率P =315=15. 答案:D3.(2013·广东卷)执行如图所示的程序框图,若输入n 的值为3,则输出s 的值是( )A .1B .2C .4D .7解析:s =1,i =1;s =1,i =2;s =2,i =3;s =4,i =4,此时输出的s =4. 答案:C4.如图是1,2两组各7名同学体重(单位:kg)数据的茎叶图.设1,2两组数据的平均数依次为x 1和x 2,标准差依次为s 1和s 2,那么( )(注:标准差s =1n[x 1-x2+x 2-x2+…+x n -x2],其中x 为x 1,x 2,…,x n 的平均数)A.x 1>x 2,s 1>s 2B.x 1>x 2,s 1<s 2C.x 1<x 2,s 1<s 2D.x 1<x 2,s 1>s 2解析:x 1=50×4+3+6+7+8+61+70+727=61,x 2=50×3+4+6+8+60+61+72+737=62,∴x 1<x 2;利用标准差的计算公式s =1n[x 1-x2+x 2-x2+…+x n -x2]可知s 1<s 2.答案:C5.点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离|PA |<1的概率为( ) A.14 B.12 C.π4D .π解析:如图所示,动点P 在阴影部分满足|PA |<1,该阴影是半径为1,圆心角为直角的扇形,其面积为S ′=π4,又正方形的面积是S =1,则动点P 到定点A 的距离|PA |<1的概率为S ′S =π4.答案:C6.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( )A .0.95B .0.7C .0.35D .0.05解析:“抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与“抽到一等品或二等品”是对立事件,故其概率为1-0.95=0.05.答案:D7.(2013·江西卷)阅读如下程序框图,如果输出i =4,那么空白的判断框中应填入的条件是( )A .S <8?B .S <9?C .S <10?D .S <11?解析:此程序框图依次执行如下:第一次:i =1,S =0,i =1+1=2,i 是奇数不成立,S =2] 答案:B8.在10支铅笔中,有8支正品和2支次品,从中不放回地任取2支,至少取到1支次品的概率是( )A.29B.1645C.1745D.25解析:将8支正品分别记为1,2,3,4,5,6,7,8;2支次品分别记为9,10,所以Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(1,7),(1,8),(1,9),(1,10),(2,3),(2,4),…,(9,10)},共有9+8+7+6+5+4+3+2+1=45种,至少取到1支次品共有A ={(1,9),(2,9),…,(8,9),(1,10),(2,10),…,(8,10),(9,10)},共有17种.∴P (A )=1745.答案:C9.(2013·重庆卷)如图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的频率为( )A.0.2 B .0.4 C .0.5D .0.6解析:由茎叶图可知数据落在区间[22,30)的频数为4,所以数据落在区间[22,30)的频率为410=0.4,故选B.答案:B10.(2013·福建卷)已知x 与y 之间的几组数据如下表:x 1 2 3 4 5 6 y21334假设根据上表数据所得线性回归直线方程为y =b x +a ,若某同学根据上表中的前两组数据(1,0)和(2,2)求得的直线方程为y =b ′x +a ′,则以下结论正确的是( )A.b ^>b ′,a ^>a ′B.b ^>b ′,a ^<a ′C.b ^<b ′,a ^>a ′ D.b ^<b ′,a ^<a ′解析:画出散点图如图所示,根据散点图大致画出回归直线,再画出过(1,0)和(2,2)的直线,比较可知选C.答案:C第Ⅱ卷(非选择题,共70分)二、填空题:本大题共4小题,每小题5分,共20分.11.(2013·浙江卷)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于__________.解析:三个男生分别用a 、b 、c 表示,三个女生分别用A 、B 、C 表示,则从中选2名的情况有(ab )、(ac )、(aA )、(aB )、(aC )、(bc )、(bA )、(bB )、(bC )、(cA )、(cB )、(cC )、(AB )、(AC )、(BC )一共15种,2名都是女同学有(AB )、(AC )、(BC )共3种,所以P =315=15.答案:1512.(2013·湖北卷)某学员在一次射击测试中射靶10次,命中环数如下:7,8,7,9,5,4,9,10,7,4则(1)平均命中环数为__________; (2)命中环数的标准差为__________. 解析:(1)平均命中的环数为7+8+7+9+5+4+9+10+7+410=7;(2)命中环数的标准差为 错误! =2.答案:(1)7 (2)213.(2013·江苏卷)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为__________. 解析:x 甲=x 乙=90,s 2甲=87-902+91-902+90-902+89-902+93-9025=4.s 2乙=89-902+90-902+91-902+88-902+92-9025=2.答案:214.(2013·江苏卷)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为__________.解析:m ,n 都取到奇数的概率是4×57×9=2063.答案:2063三、解答题:本大题共4小题,满分50分.15.(12分)袋子中放有大小和形状相同的小球若干个,其中标号为0的小球1个,标号为1的小球1个,标号为2的小球n 个.已知从袋子中随机抽取1个小球,取到标号是2的小球的概率是12.(1)求n 的值;(2)从袋子中不放回地随机抽取2个小球,记第一次取出的小球标号为a ,第二次取出的小球标号为b .记事件A 表示“a +b =2”,求事件A 的概率.解:(1)由题意可知:n 1+1+n =12,解得n =2.4分(2)不放回地随机抽取2个小球的所有等可能基本事件为:(0,1),(0,21),(0,22),(1,0),(1,21),(1,22),(21,0),(21,1),(21,22),(22,0),(22,1),(22,21),共12个,事件A 包含的基本事件为:(0,21),(0,22),(21,0),(22,0),共4个.(10分)∴P (A )=412=13.(12分)16.(12分)一个袋中装有四个形状大小完全相同的球,球的编号分别为1,2,3,4, (1)从袋中随机取出两个球,求取出的球的编号之和不大于4的概率;(2)先从袋中随机取一个球,该球的编号为m ,将球放回袋中,然后再从袋中随机取一个球,该球的编号为n ,求n <m +2的概率.解:(1)从袋子中随机取两个球,其一切可能的结果组成的基本事件有1和2,1和3,1和4,2和3,2和4,3和4,共6个.从袋中随机取出的球的编号之和不大于4的事件共有1和2,1和3两个. 因此所求事件的概率为13.(6分)(2)先从袋中随机取一个球,记下编号为m ,放回后,在从袋中随机取一个球,记下编号为n ,其中一切可能的结果(m ,n )有:(1,1)(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1)(3,2),(3,3)(3,4),(4,1),(4,2),(4,3),(4,4),共16个.所有满足条件n ≥m +2的事件为(1,3)(1,4)(2,4),共3个, 所以满足条件n ≥m +2的事件的概率为P 1=316.故满足条件n <m +2的事件的概率为1-P 1=1-316=1316.(12分)17.(12分)(2013·陕西卷)有7位歌手(1至7号)参加一场歌唱比赛,由500名大众评委现场投票决定歌手名次.根据年龄将大众评委分为五组,各组的人数如下:组别 ABCDE人数5010015015050(1)B 组抽取了6人,请将其余各组抽取的人数填入下表.组别 ABCDE人数 50100 150 150 50 抽取人数6A B 分别任选1人,求这2人都支持1号歌手的概率.解:(1)由题设知,分层抽样的抽取比例为6%,所以各组抽取的人数如下表:组别 ABCDE人数 50 100 150 150 50 抽取人数36993(4(2)记从A 组抽到的3个评委为a 1,a 2,a 3,其中a 1,a 2支持1号歌手;从B 组抽到的6个评委为b 1,b 2,b 3,b 4,b 5,b 6,其中b 1,b 2支持1号歌手.从{a 1,a 2,a 3}和{b 1,b 2,b 3,b 4,b 5,b 6}中各抽取1人的所有结果为:由以上树状图知所有结果共18种,其中2人都支持1号歌手的有a1b1,a1b2,a2b1,a2b2共4种,故所求概率p=418=29.(12分)18.(14分)(2013·四川卷)某算法的程序框图如图所示,其中输入的变量x在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按程序框图正确编程运行时输出y的值为i的概率P i(i=1,2,3);(2)甲、乙两同学依据自己对程序框图的理解,各自编写程序重复运行n次后,统计记录了输出y的值为i(i=1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.当n =2 100时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为i (i =1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大.解:(1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12;当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13;当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16.所以,输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16.(8分)(2)当n =2 100时,甲、乙所编程序各自输出y 的值为i (i =1,2,3)的频率如下:比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大.(14分)。
高中数学人教A版必修三课时作业:模块综合测试卷Word版含答案

解析:85(9)=8×9+5=77,210(6)=2×62+1×6+0=78,1000(4)=1×43=64,111111(2)=1×25+1×24+1×23+1×22+1×2+1=63,故选B.8.在棱长为a 的正方体ABCD -A 1B 1C 1D 1内任取一点P ,则点P 到点A 的距离小于等于a 的概率为( )A.22B.22πC.16D.16π答案:D解析:满足条件的点在半径为a 的18球内,所以所求概率为p =18×43πa 3a 3=π6,选D.9.阅读如图所示的程序框图,运行相应的程序,则输出i 的值为( )A .3B .4C .5D .6答案:B解析:因为该程序框图执行4次后结束,所以输出的i 的值等于4.10.某班级有50名学生,其中30名男生和20名女生,随机询问了该班五名男生和五名女生在某次数学测试中的成绩,五名男生的成绩分别是86,94,88,92,90五名女生的成绩分别为88,93,93,88,93,下列说法一定正确的是( )A .这种抽样方法是一种分层抽样B .这种抽样方法是一种系统抽样C .这五名男生成绩的方差大于这五名女生成绩的方差D .该班男生成绩的平均数小于该班女生成绩的平均数解析:根据分层抽样和系统抽样定义判断A,B,求出五名男生和五名女生成绩的方差判断C.A,不是分层抽样,因为抽样比不同.B,不是系统抽样,因为随机询问,抽样间隔未知.C,五名男生成绩的平均数是x=86+94+88+92+905=90,五名女生成绩的平均数是y=88+93+93+88+935=91,五名男生成绩的方差为s21=15(16+16+4+4+0)=8,五名女生成绩的方差为s22=15(9+4+4+9+4)=6,显然,五名男生成绩的方差大于五名女生成绩的方差.D,由于五名男生和五名女生的成绩无代表性,不能确定该班男生和女生的平均成绩.11.问题:①有1 000个乒乓球分别装在3个箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ.随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是()A.①Ⅰ,②ⅡB.①Ⅲ,②ⅠC.①Ⅱ,②ⅢD.①Ⅲ,②Ⅱ答案:B解析:本题考查三种抽样方法的定义及特点.12.某中学号召学生在暑假期间至少参加一次社会公益活动(以下简称活动).该校文学社共有100名学生,他们参加活动的次数统计如图所示,则从文学社中任意选1名学生,他参加活动次数为3的概率是()A.110 B.3 10C.610 D.7 10答案:B解析:从中任意选1名学生,他参加活动次数为3的概率是30 100=310.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先检测的5袋牛奶的编号________.(下面摘取了随机数表第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 07 44 39 52 38 7933 21 12 34 2978 64 56 07 8252 42 07 44 3815 51 00 13 42 99 66 02 79 54答案:785、567、199、507、175解析:首先找到第8行第7列的数7向右读第一个三位数785,然后是916>799舍去,接着是955,同样舍去,接着读取567、199,然后是810>799舍去,接着是507、175,所以最先检查的5袋牛奶的编号为785、567、199、507、175.14.如下图所示的框图表示算法的功能是________.答案:求和S=1+2+22+23+…+26415.甲、乙两人在10天中每天加工零件的个数用茎叶图表示如图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为________和________.答案:24,23解析:甲的平均数为:18+19+20+22+23+21+20+35+31+3110=24,乙的平均数为:19+17+11+21+24+22+24+30+32+3010=23.16.执行如图所示的程序框图,若P=0.8,则输出的n=________.答案:4三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)为了对某课题进行研究,用分层抽样的方法从三所高校A,B,C的相关人员中,抽取若干人组成研究小组,有关数据如下表(单位:人)高校相关人数抽取人数A18xB362C54y(1)求x,y;(2)若从高校B、C抽取的人中选2人作专题发言,求这2人都来20.(12分)有一容量为50的样本,数据的分组及各组的频数如下:[10,15),4;[15,20),5;[20,25),10;[25,30),11;[30,35),9;[35,40),8;[40,45],3.(1)列出样本的频率分布表;(2)画出频率分布直方图和频率分布折线图;(3)估计总体在[20,35)之内的概率.解:(1)样本频率分布表:分组频数频率[10,15)44 50[15,20)51 10[20,25)101 5[25,30)1111 50[30,35)99 50[35,40)84 25[40,45]33 50(2)频率分布直方图与折线图如下:第11页共11页。
高中数学人教A版必修3综合测试题及答案 4

必修3综合模块测试(人教A 版必修3)时间120分钟,满分150分。
一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.分层抽样又称为类型抽样,即将相似的个体归入一类(层),然后每层各抽若干个个体构成样本,所以分层抽样为保证每个个体等可能入样,必须进行( )A .每层等可能抽样B .每层不等可能抽样C .所有层用同一抽样比等可能抽样D .所有层抽同样多个体,每层都是等可能抽样 [答案] C[解析] 由分层抽样的定义可知,选C . 2.下列说法正确的有( )①随机事件A 的概率是频率的稳定性,频率是概率的近似值. ②一次试验中不同的基本事件不可能同时发生. ③任意事件A 发生的概率P(A)总满足0<P(A)<1. ④若事件A 的概率为0,则A 是不可能事件. A .0个 B .1个 C .2个 D .3个 [答案] C[解析] 不可能事件的概率为0,但概率为0的事件不一定是不可能事件,如几何概型中“单点”的长度、面积、体积都是0,但不是不可能事件,∴④不对;抛掷一枚骰子出现1点和出现2点是不同的基本事件,在同一次试验中,不可能同时发生,故②正确;任意事件A 发生的概率P (A )满足0≤P (A )≤1,∴③错误;又①正确.∴选C.3.如图是计算12+14+16+…+120的值的一个程序框图,其中在判断框中应填入的条件是( )A .i <10B .i>10C .i <20D .i >20[答案] B[解析] 最后一次执行循环体时i 的值为10,又条件不满足时执行循环体,∴i =11>10时跳出循环.4.一组数据的方差为s 2,将这组数据中的每一个数都乘以2所得到的一组新数据的方差为( )[答案] C5.在100个零件中,有一级品20个、二级品30个、三级品50个,从中抽取20个作为样本.①将零件编号为00,01,…,99,抽签取出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组中随机抽取1个; ③采用分层抽样法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.对于上述问题,下面说法正确的是( )A .不论采用哪一种抽样方法,这100个零件中每一个被抽到的概率都是15B .①②两种抽样方法,这100个零件中每一个被抽到的概率为15,③并非如此C .①③两种抽样方法,这100个零件中每一个被抽到的概率为15,②并非如此D .采用不同的抽样方法,这100个零件中每一个零件被抽到的概率是各不相同的 [答案] A [解析] 由于随机抽样、系统抽样、分层抽样的共同特点是:每个个体被抽到的概率都相等,所以无论采用哪种抽样方法,这100个零件中每个零件被抽到的概率都是15.6.用秦九韶算法求多项式f(x)=0.5x 5+4x 4-3x 2+x -1当x =3的值时,先算的是( ) A .3×3=9 B .0.5×35=121.5 C .0.5×3+4=5.5 D .(0.5×3+4)×3=16.5 [答案] C [解析] 按递推方法,从里到外先算0.5x +4的值. 7.有2个人从一座10层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则2个人在不同层离开的概率为( )A.19B.29C.49D.89 [答案] D[解析] 设2个人分别在x 层,y 层离开,则记为(x ,y )基本事件构成集合Ω={(2,2),(2,3),(2,4)…(2,10)(3,2),(3,3),(3,4)…(3,10) ⋮(10,2),(10,3),(10,4)…(10,10)},所以除了(2,2),(3,3),(4,4),…,(10,10)以外,都是2个人在不同层离开,故所求概率P =9×9-99×9=89.解法2:其中一个人在某一层离开,考虑另一个人,也在这一层离开的概率为19,故不在这一层离开的概率为89.8.下列程序计算的数学式是( )[答案] C[解析] 本题是一个递推累加问题,由T =T*i 经过循环依次得到1!,2!,3!,…,n !,由s =s +1/T 实现累加.故选C .[答案] C10.下面一段程序的目的是( )[答案] B[解析] 程序中,当m ≠n 时总是用较大的数减去较小的数,直到相等时跳出循环,显然是“更相减损术”.11.在所有两位数(10~99)中任取一个数,则这个数能被2或3整除的概率是( ) A.56 B.45 C.23 D.12 [答案] C12.运行如图的程序框图,设输出数据构成的集合为A ,从集合A 中任取一个元素α,则函数y =x α x ∈[0,+∞)是增函数的概率为( )A.37 B.45 C.35D.34[答案] C[解析] 当x 依次取值-3,-2,-1,0,1,2,3时,对应的y 的值依次为:3,0,-1,0,3,8,15, ∴集合A ={-1,0,3,8,15},∵α∈A ,∴使y =x α在x ∈[0,+∞)上为增函数的α的值为3,8,15,故所求概率P =35.二、填空题(本大题共4个小题,每小题4分,共16分,把正确答案填在题中横线上)13.已知直线l过点(-1,0),l与圆C:(x-1)2+y2=3相交于A、B两点,则弦长|AB|≥2的概率为________.[答案]3 3[解析]设直线方程为y=k(x+1),代入(x-1)2+y2=3中得,(k2+1)x2+2(k2-1)x+k2-1=0,∵l与⊙C相交于A、B两点,∴Δ=4(k2-1)2-4(k2+1)(k2-2)>0,∴k2<3,∴-3 <k<3,又当弦长|AB|≥2时,∵圆半径r=3,∴圆心到直线的距离d≤2,即|2k|1+k2≤2,∴k2≤1,∴-1≤k≤1.由几何概型知,事件M:“直线l与圆C相交弦长|AB|≥2”的概率P(M)=1-(-1) 3-(-3)=33.14.把七进制数305(7)化为五进制数,则305(7)=______(5).[答案]1102[解析]∵305(7)=3×72+5=152,又152=30×5+2,30=6×5+0,6=1×5+1,1=0×5+1,∴152=1102(5),即305(7)=1102(5).15.若以连续掷两次骰子得到的点数m,n作为点P的坐标,则点P落在圆x2+y2=16外的概率是________.[答案]7 9[解析]基本事件组成集合Ω={(m,n)|1≤m≤6,1≤n≤6,m,n∈N}中共36个元素.事件A=“点P(m,n)落在圆x2+y2=16外”的对立事件中含有基本事件(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2)共8个,∴P(A)=1-836=7 9.16.在半径为1的圆周上有一定点A,以A为端点任作一弦,另一端点在圆周上等可能的选取,则弦长超过1的概率为________.[答案]2 3[解析]如图,作半径为1的圆的内接正六边形ABCDEF,则其边长为AB=AF=1,当另一端点落在上时,弦长小于1,当另一端点落在上时,弦长大于1,由几何概型定义可知,概率P=23.三、解答题(本大题共6个大题,共74分,解答应写出文字说明,证明过程或演算步骤)17.(本题满分12分)(08·广东文)某初级中学共有学生2000名,各年级男、女生人数如下表:初一年级初二年级初三年级女生373x y男生377370z(1)求x的值;(2)现用分层抽样的方法在全校抽取48名学生,问应在初三年级抽取多少名?(3)已知y≥245,z≥245,求初三年级中女生比男生多的概率.[解析](1)∵x2000=0.19,∴x=380.(2)初三年级人数为y+z=2000-(373+377+380+370)=500,现用分层抽样的方法在全校抽取48名学生,应在初三年级抽取的人数为:482000×500=12名.(3)设初三年级女生比男生多的事件为A,初三年级女生、男生数记为(y,z),由(2)知y+z=500,且y、z∈N,基本事件有:(245,255)、(246,254)、(247,253),…,(255,245)共11个,事件A包含的基本事件有:(251,249)、(252,248)、(253,247)、(254,246)、(255,245)共5个,∴P(A)=511.18.(本题满分12分)某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如下部分频率分布直方图.观察图形给出的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分;(3)从成绩是[40,50)和[90,100]的学生中选两人,求他们在同一分数段的概率.[分析]对于(1)可利用各组的频率和等于1,从而可求第四小组的频率;而(2)则是利用组中值求平均分;(3)利用古典概型的概率公式可求其概率.[解析](1)因为各组的频率和等于1,故第四组的频率:f4=1-(0.025+0.015×2+0.01+0.005)×10=0.03.其频率分布直方图如图所示.(2)依题意,60分及以上的分数所在的第三、四、五、六组,频率和为(0.015+0.030+0.025+0.005)×10=0.75.所以,估计这次考试的合格率是75%. 利用组中值估算这次考试的平均分,可得: 45·f 1+55·f 2+65·f 3+75·f 4+85·f 5+95·f 6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71. 所以估计这次考试的平均分是71分.(3)[40,50)与[90.100]的人数分别是6和3,所以从成绩是[40,50)与[90,100]的学生中选两人,将[40,50]分数段的6人编号为A 1,A 2,…A 6,将[90,100]分数段的3人编号为B 1,B 2,B 3,从中任取两人,则基本事件构成集合Ω={(A 1,A 2),(A 1,A 3)…(A 1,A 6),(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,A 3),(A 2,A 4),…,(B 2,B 3)}共有36个,其中,在同一分数段内的事件所含基本事件为(A 1,A 2),(A 1,A 3)…(A 1,A 6),(A 2,A 3)…(A 5,A 6),(B 1,B 2),(B 1,B 3),(B 2,B 3)共18个,故概率P =1836=12.19.(本题满分12分)有人提出如下的圆周率的近似算法:在右图的单位正方形内均匀地取n 个点P i (x i ,y i )(i ∈{1,2,…,n }),然后统计出以x i 、y i 、1为边长的三角形中锐角三角形的个数m ,则当n 充分大时,π≈4(n -m )n,试分析这种算法是否正确.[解析] 根据题中提出的算法, 有0<x i <1,0<y i <1,所以以x i ,y i,1为边长的三角形中,长为1的边所对的角A 为最大角,当且仅当0°<A <90°时,以x i ,y i,1为边长的三角形为锐角三角形,x 2i +y 2i >1,此时点P 在以O 为圆心,1为半径的圆的外部,即图中阴影部分.所以在图中的单位正方形内任意取一点P i ,满足以x i ,y i,1为边长的三角形为锐角三角形的概率为P =阴影部分的面积/单位正方形的面积=1-π4,当n 充分大时,m n ≈P =1-π4,∴π≈4⎝⎛⎭⎫1-m n =4(n -m )n ,所以题中给出的圆周率的近似算法是正确的.20.(本题满分12分)编写程序求1~1000的所有不能被3整除的整数之和. [解析] S =0 i =1WHILE i <=1000r =i MOD 3IF r <>0 THEN S =S +i END IF i =i +1 WEND PRINT S END21.(本题满分12分)一次掷两粒骰子,得到的点数为m 和n ,求关于x 的方程x 2+(m +n )x +4=0有实数根的概率.[解析] 基本事件共36个,∵方程有实根,∴Δ=(m +n )2-16≥0, 又∵m ,n ∈N ,∴m +n ≥4,其对立事件是m +n <4,其中有(1,1),(1,2),(2,1)共3个基本事件,∴所求概率为P =1-336=1112.22.(本题满分14分)某化工厂的原料中含有两种有效成份A 和B .测得原料中A 和B 的i 1 2 3 4 5 6 7 8 9 10 x i :A (%) 24 15 23 19 16 11 20 16 17 13 y i :B (%) 67 54 72 64 39 22 58 43 46 34 (1)作出散点图;(2)求出回归直线方程:y ^=ax +b ;(3)计算回归直线y ^=ax +b 对应的Q =∑i =110[y i -(ax i +b )]2,并和另一条直线y ^=a ′x +b ′(a ′=2a ,b ′=2b )对应的Q ′=∑i =110[y i -(a ′x i +b ′)]2比较大小.(可使用计算器)[解析] (1)散点图见下图(2)把数据代入公式,计算可知,x -=17.4,y -=49.9,∑i =110x 2i =3182,∑i =110x i y i =9228,b =∑i =110x i y i -10x -y-∑i =110x 2i -10x-2=9228-8682.63182-3027.6≈3.5324,a =y --b x -≈-11.5635,回归线方程为y ^=3.5324x -11.5635.(3)经计算:Q =∑i =110[y i -(ax i +b )]2=353.8593,Q ′=∑i =110[y i -(2ax i +2b )]2=27175.6120,∴Q <Q ′.关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。
2021学年高中数学模块综合测试含解析人教A版必修3.doc

模块综合测试时间:120分钟 分值:150分第Ⅰ卷(选择题,共60分)一、选择题(每小题5分,共60分)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( D )A .0.95B .0.7C .0.35D .0.05解析:“抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与“抽到一等品或二等品”是对立事件,故其概率为1-0.95=0.05.2.已知样本3,5,7,4,6,则该样本的标准差为( B ) A .1 B . 2 C . 3D .2解析:∵x =15×(3+5+7+4+6)=5,∴s =15×[(3-5)2+…+(6-5)2] =15×(4+0+4+1+1)= 2. 3.如图所示是一容量为100的样本的频率分布直方图,则由图形中的数据,样本落在[15,20]内的频数为( B )A .20B .30C .40D .50解析:样本落在[15,20]内的频率是1-5(0.04+0.1)=0.3,则样本落在[15,20]内的频数为0.3×100=30.4.某赛季,甲、乙两名篮球运动员都参加了11场比赛,他们每场比赛得分的情况用如图所示的茎叶图表示,则甲、乙两名运动员得分的中位数分别是( A )A .19,15B .15,19C .25,22D .22,25解析:由茎叶图及中位数的定义可以得到甲、乙两名运动员得分的中位数分别是19,15,故选A .5.某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分为五组,并绘制频率分布直方图(如图所示).根据一般标准,高三男生的体重超过65 kg 属于偏胖,低于55 kg 属于偏瘦.已知图中从左到右第一、第三、第四、第五小组的纵坐标分别为0.05,0.04,0.02,0.01,第二小组的频数为400,则该校高三年级的男生总数和体重正常的频率分别为( D )A .1 000,0.50B .800,0.50C .800,0.60D .1 000,0.60解析:第二小组的频率为0.40,所以该校高三年级的男生总数为4000.40=1 000(人);体重正常的频率为0.40+0.20=0.60.6.现有甲、乙两颗骰子,从1点到6点出现的概率都是16,掷甲、乙两颗骰子,设分别出现的点数为a ,b 时,则满足a <|b 2-2a |<10a的概率为( B )A .118B .112C .19D .16解析:∵试验发生包含的总的基本事件有36种,满足条件的事件需要进行讨论. 若a =1时,b =2或3;若a =2时,b =1, ∴共有3种情况满足条件,∴概率为P =336=112.7.甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示(如图).s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是( C )A .s 1>s 2B .s 1=s 2C .s 1<s 2D .不确定解析:由茎叶图可知:甲得分为78,81,84,85,92;乙得分为76,77,80,94,93.则x 甲=84,x乙=84,则s 1=15[(78-84)2+…+(92-84)2]=22, 同理s 2=62,故s 1<s 2,所以选C .8.某考察团对全国10大城市职工人均工资x 与居民人均消费y 进行统计调查,y 与x 具有相关关系,回归方程是y ^=0.66x +1.562(单位:千元).若某城市居民消费为7.675千元,由此可估计该城市消费额占人均工资收入的百分比约为( D )A .66%B .72.3%C .67.3%D .83%解析:把y ^=7.675代入方程y ^=0.66x +1.562,解得x ≈9.262,则所求百分比≈7.6759.262≈83%.9.某小组有三名女生,两名男生,现从这个小组中任意选出一人当组长,则其中女生小丽当选为组长的概率是( B )A .23B .15C .25D .13解析:共5个基本事件,小丽当选为组长是其中一个基本事件,故其概率为15.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高二数学必修三人教A 版模块综合检测题及答案解析B模块综合检测(B)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.某林场有树苗30 000棵,其中松树苗4 000棵,为调查树苗的生长情况,采用分层抽样的方法抽取一个容量为150的样本,则样本中松树苗的数量为( ) A .30 B .25 C .20 D .152.根据《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20~80 mg/100 mL(不含80)之间,属于酒后驾车,处暂扣一个月以上三个月以下驾驶证,并处200元以上500元以下罚款;血液酒精浓度在80 mg/100 mL(含80)以上时,属醉酒驾车,处十五日以下拘留和暂扣三个月以上六个月以下驾驶证,并处500元以上2 000元以下罚款.据《法制晚报》报道,2009年8月15日至8月28日,全国查处酒后驾车和醉酒驾车共28 800人,如图是对这28 800人血液中酒精含量进行检测所得结果的频率分布直方图,则属于醉酒驾车的人数约为( )A .2 160B .2 880C .4 320D .8 640 3.下列说法正确的是( )A .任何事件的概率总是在(0,1)之间B .频率是客观存在的,与试验次数无关C .随着试验次数的增加,频率一般会越来越接近概率D .概率是随机的,在试验前不能确定4.下图是把二进制的数11111(2)化成十进制的数的一个程序框图,则判断框内应填入的条件是( )A .i >5?B .i ≤5?C .i >4?D .i ≤4? 5.从1、2、3、4、5、6这6个数字中,不放回地任取两数,两数都是偶数的概率是( ) A.12 B.13 C.14 D.156.如果执行下边的程序框图,输入x =-2,h =0.5,那么输出的各个数的和等于( )A .3B .3.5C .4D .4.57.已知直线y =x +b ,b ∈[-2,3],则直线在y 轴上的截距大于1的概率为( ) A.15 B.25 C.35 D.458.如图是根据某校10位高一同学的身高(单位:cm)画出的茎叶图,其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,从图中可以得到这10位同学身高的中位数是( )A .161 cmB .162 cmC .163 cmD .164 cm9.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是( )A .12.5 12.5B .12.5 13C .13 12.5D .13 1310.甲、乙两位同学在高三的5次月考中数学成绩统计如茎叶图所示,若甲、乙两人的平均成绩分别是x 甲,x 乙,则下列叙述正确的是( )A .x 甲>x 乙;乙比甲成绩稳定B .x 甲>x 乙;甲比乙成绩稳定C .x 甲<x 乙;乙比甲成绩稳定D .x 甲<x 乙;甲比乙成绩稳定11.在如图所示的程序框图中,如果输入的n =5,那么输出的i 等于( )A .3B .4C .5D .612.某车间生产一种玩具,为了要确定加工玩具所需要的时间,进行了10次实验,数如回归方程的斜率是b ,则它的截距是( )A.a ^ =11b ^-22 B.a ^ =22-11b ^^^^^13.某鱼贩一次贩运草鱼、青苗、鲢鱼、鲤鱼及鲫鱼分别为80条、20条、40条、40条、20条,现从中抽取一个容量为20的样本进行质量检测,若采用分层抽样的方法抽取样本,则抽取的青鱼与鲤鱼共有________条.14.),对应数据如下:则x =________, y =________,∑i =1x 2i =_____,∑i =1x i y i =________, 回归方程为: ______________________________________________________________.15.阅读下面的程序框图,若输入m =4,n =6,则输出a =________,i =________.16.甲、乙两人下棋,甲获胜的概率是40%,甲不输的概率为90%,则甲、乙两人下成平局的概率为________.三、解答题(本大题共6小题,共70分)17.(10其中,5(1)把这7天的参观人数看成一个总体,求该总体的平均数(精确到0.1)(2)用简单随机抽样方法从非指定参观日中抽取2天,它们的参观人数组成一个样本.求该样本平均数与总体平均数之差的绝对值不超过2万的概率.18.(12分)设点M(p,q)在|p|≤3,|q|≤3中按均匀分布出现,试求方程x2+2px-q2+1=0的两根都是实数的概率.19.(12分)下列语句是求S=2+3+4+…+99的一个程序.请回答问题:i=1S=0DOS=i+Si=i+1LOOP UNTIL i>=99PRINT SEND(1)程序中是否有错误?若有请加以改正;(2)把程序改成另一种类型的循环语句.20.(12(1)(2)用最小二乘法求回归直线方程,并在散点图上加上回归直线;(3)估计房屋的大小为90 m2时的销售价格.21.(12分)假设小明家订了一份报纸,送报人可能在早上6∶30至7∶30之间把报纸送到小明家,小明爸爸离开家去工作的时间在早上7∶00至8∶00之间,问小明的爸爸在离开家前能得到报纸的概率是多少?22.(12分)设有关于x 的一元二次方程x 2+2ax +b 2=0.(1)若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.(2)若a 是从区间[0,3]任取的一个数,b 是从区间[0,2]上任取的一个数,求上述方程有实根的概率.模块综合检测(B)1.C [样本中松树苗的数量为15030 000×4 000=20.]2.C [由题意及频率分布直方图可知,醉酒驾车的频率为(0.01+0.005)×10=0.15,故醉酒驾车的人数为28 800×0.15=4 320.]3.C [概率总在是[0,1]之间,故A 错误;概率是客观存在的,与试验次数无关,而频率随试验次数产生变化,故B 、D 错误;频率是概率的近似,故选C.]4.D [根据程序框图,要使得输出的结果是1+1×2+1×22+1×23+1×24,那么判断框内的条件必须是i ≤4?.]5.D [从6个数字中不放回的任取两数有6×5=30(种)取法,均为偶数的取法有3×2=6(种)取法,∴所求概率为630=15.]6.B [当x <0时,输出y 恒为0, 当x =0时,输出y =0.当x =0.5时,输出y =x =0.5.当1≤x ≤2时输出y 恒为1,而h =0.5,故x 的取值为1、1.5、2.故输出的各个数之和为0.5+3=3.5.]7.B [根据几何概型的概率公式,P =3-13-(-2)=25.]8.B [通过茎叶图可知这10位同学的身高是155 cm ,155 cm ,157 cm,158 cm,161 cm,163 cm,163 cm,165 cm,171 cm,172 cm.这10个数据的中位数是将这些数据从小到大(或从大到小)排列后中间两个数据的平均数,即为161 cm 和163 cm 这两个数据的平均数,所以应选B.]9.B [根据频率分布直方图特点可知,众数是最高矩形的中点,由图可知为12.5,中位数是10+0.5-0.20.1=13.]10.C [由题意可知,x 甲=15×(72+77+78+86+92)=81,x 乙=15×(78+88+88+91+90)=87.又由方差公式可得s 2甲=15×[(81-72)2+(81-77)2+(81-78)2+(81-86)2+(81-92)2]=50.4,s 2乙=15×[(87-78)2+(87-88)2+(87-88)2+(87-91)2+(87-90)2]=21.6,因为s 2乙<s 2甲,故乙的成绩波动较小,乙的成绩比甲稳定.] 11.C [由框图知当n =5时, 将3n +1=16赋给n ,此时i =1; 进入下一步有n =8,i =2;再进入下一步有n =4,i =3;以此类推有n =1,i =5,此时输出i =5.]12.B [由x =2+202=11.y =110(4+7+12+15+21+25+27+31+37+41)=22.得a ^=y -b ^x =22-11b ^.]13.6解析 设抽取的青鱼与鲤鱼共有x 条,根据分层抽样的比例特点有20+4080+20+40+40+20=x20,∴x =6.14.6.5 8 327 396 y ^=1.14x +0.59 15.12 3解析 要结束程序的运算,就必须通过n 整除a 的条件运算,而同时m 也整除a ,那么a 的最小值应为m 和n 的最小公倍数12,此时有i =3. 16.50%解析 甲不输为两个事件的和事件,其一为甲获胜(事件A ),其二为甲获平局(事件B ),并且两事件是互斥事件. ∵P (A +B )=P (A )+P (B )∴P (B )=P (A +B )-P (A )=90%-40%=50%.17.解 (1)总体平均数为17(21+23+13+15+9+12+14)≈15.3.(2)设A 表示事件“样本平均数与总体平均数之差的绝对值不超过2万”. 从非指定参观日中抽取2天可能的基本事件有:(15,9),(15,12),(15,14),(9,12),(9,14),(12,14),共6个,事件A 包含的基本事件有:(15,12),(15,14),共2个.所以P (A )=26=13. 18.解 由|p |≤3,|q |≤3可知(p ,q )的点集为边长是6的正方形,其面积为36.由x 2+2px -q 2+1=0的两根都是实数得Δ=(2p )2+4(q 2-1)≥0⇒p 2+q 2≥1.∴当点(p ,q )落在如图所示的阴影部分时,方程两根都是实数.∴P =1-π36.故方程x 2+2px -q 2+1=0的两根都是实数的概率为1-π36.19.解 (1)有两处错误: ①语句i =1应为i =2.②语句LOOP UNTIL i >=99应为LOOP UNTIL i >99 (2)改为WHILE 型循环语句 i =2S =0WHILE i<=99 S =S +ii =i +1WEND PRINT S END20.解 (1)数据的散点图如图所示:(2)x =15∑5i =1x i=109,∑5i =1(x i -x )2=1 570, y =23.2,∑5i =1(x i -x )(y i -y )=308,∴b ^=3081 570≈0.196 2,a ^=y -b ^x =23.2-109×0.196 2=1.814 2,所以回归直线方程为:y ^=0.196 2x +1.814 2.(3)若x =90,则y ^=1.814 2+0.196 2×90≈19.5(万元). 故房屋的大小为90 m 2时的销售价格约为19.5万元.21.解 为了方便作图,记6∶30为0时,设送报人将报纸送到小明家的时刻为x ,小明的爸爸离开家的时刻为y ,则0≤x ≤60,30≤y ≤90(单位:分钟).小明的爸爸离家前能得到报纸只要y ≥x .在平面直角坐标系中作上述区域(如图所示),由图知区域D =S 矩形ABCD =602.区域d =S 五边形AEFCD =602-12×302.∴所求概率P =d D =1-12×(12)2=78,答 小明的爸爸离家前能得到报纸的概率是78.22.解 设事件A 为“方程x 2+2ax +b 2=0有实根”.当a ≥0,b ≥0时,方程x 2+2ax +b 2=0有实根当且仅当a ≥b . (1)基本事件共有12个:(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2).其中第一个数表示a 的取值,第二个数表示b 的取值.事件A 包含9个基本事件,故事件A 发生的概率为P (A )=912=34.(2)试验的全部结果所构成的区域为{(a ,b )|0≤a ≤3,0≤b ≤2}. 构成事件A 的区域为{(a ,b )|0≤a ≤3,0≤b ≤2,a ≥b }.所以所求的概率为P (A )=3×2-12×223×2=23.。