咸阳市名校2020年中考数学教学质量调研试卷
咸阳市名校2019-2020学年中考数学调研试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.为迎接中考体育加试,小刚和小亮分别统计了自己最近10次跳绳比赛,下列统计量中能用来比较两人成绩稳定程度的是 ( )A .平均数B .中位数C .众数D .方差2.如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .3π+B .3π-C .23π-D .223π-3.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x 元,则下列所列方程正确的是( ) A .2003503x x =- B .2003503x x =+ C .2003503x x=+ D .2003503x x=- 4.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°5.如图,△A′B′C′是△ABC 以点O 为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC 的面积比是4:9,则OB′:OB 为( )A .2:3B .3:2C .4:5D .4:96.完全相同的6个小矩形如图所示放置,形成了一个长、宽分别为n 、m 的大矩形,则图中阴影部分的周长是( )A.6(m﹣n)B.3(m+n)C.4n D.4m7.如图1,在△ABC中,AB=BC,AC=m,D,E分别是AB,BC边的中点,点P为AC边上的一个动点,连接PD,PB,PE.设AP=x,图1中某条线段长为y,若表示y与x的函数关系的图象大致如图2所示,则这条线段可能是()A.PD B.PB C.PE D.PC8.若关于x的一元二次方程2210-++=有两个不相等的实数根,则一次函数x x kb=+的图象可能是:y kx bA.B.C.D.9.已知数a、b、c在数轴上的位置如图所示,化简|a+b|﹣|c﹣b|的结果是()A.a+b B.﹣a﹣c C.a+c D.a+2b﹣c10.下列计算正确的是()A.x2+x2=x4 B.x8÷x2=x4 C.x2•x3=x6 D.(-x)2-x2=0二、填空题(本题包括8个小题)11.如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面12.在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为______. 13.计算:cos 245°-tan30°sin60°=______.14.如果点P 1(2,y 1)、P 2(3,y 2) 在抛物线22y x x =-+上,那么 y 1 ______ y 2.(填“>”,“<”或“=”).15.如果正比例函数3)y k x =-(的图像经过第一、三象限,那么k 的取值范围是 __. 16.观察以下一列数:3,54,79,916,1125,…则第20个数是_____. 17.已知点P (2,3)在一次函数y =2x -m 的图象上,则m =_______. 18.若一个棱柱有7个面,则它是______棱柱. 三、解答题(本题包括8个小题)19.(6分)如图,已知四边形ABCD 是矩形,把矩形沿直线AC 折叠,点B 落在点E 处,连接DE .若DE :AC=3:5,求ADAB的值.20.(6分)如图,AB 为⊙O 的直径,C 是⊙O 上一点,过点C 的直线交AB 的延长线于点D ,AE ⊥DC ,垂足为E ,F 是AE 与⊙O 的交点,AC 平分∠BAE .求证:DE 是⊙O 的切线;若AE=6,∠D=30°,求图中阴影部分的面积.21.(6分)如图,是一座古拱桥的截面图,拱桥桥洞的上沿是抛物线形状,当水面的宽度为10m 时,桥洞与水面的最大距离是5m .经过讨论,同学们得出三种建立平面直角坐标系的方案(如图),你选择的方案是 (填方案一,方案二,或方案三),则B 点坐标是 ,求出你所选方案中的抛物线的表达式;因为上游水库泄洪,水面宽度变为6m ,求水面上涨的高度.22.(8分)先化简,再求值:2221()4244a aa a a a -÷--++,其中a 是方程a 2+a ﹣6=0的解. 23.(8分)华联超市准备代销一款运动鞋,每双的成本是170元,为了合理定价,投放市场进行试销.据市场调查,销售单价是200元时,每天的销售量是40双,而销售单价每降低1元,每天就可多售出5双,设每双降低x 元(x 为正整数),每天的销售利润为y 元.求y 与x 的函数关系式;每双运动鞋的售价定为多少元时,每天可获得最大利润?最大利润是多少?24.(10分)已知关于x 的方程x 1+(1k ﹣1)x+k 1﹣1=0有两个实数根x 1,x 1.求实数k 的取值范围; 若x 1,x 1满足x 11+x 11=16+x 1x 1,求实数k 的值.25.(10分)某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下: 17 18 16 13 24 15 28 26 18 19 22 17 16 19 32 30 16 14 15 26 15322317151528281619对这30个数据按组距3进行分组,并整理、描述和分析如下. 频数分布表 组别 一二三四五六七销售额 1619x < 1922x < 2225x < 2528x < 2831x < 3134x <频数7 932b 2数据分析表 平均数 众数 中位数 20.318请根据以上信息解答下列问题:填空:a= ,b= ,c= ;若将月销售额不低于25万元确定为销售目标,则有 位营业员获得奖励;若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.26.(12分)先化简,再求值:222x x 11-⎛⎫-÷ ⎪,其中x 的值从不等式组1x -⎧⎨的整数解中选取.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】【分析】根据方差反映数据的波动情况即可解答.【详解】由于方差反映数据的波动情况,所以比较两人成绩稳定程度的数据是方差.故选D.【点睛】本题主要考查了统计的有关知识,主要包括平均数、中位数、众数、方差.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.2.D【解析】【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A作AD⊥BC于D,∵△ABC是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD⊥BC,∴BD=CD=1,33,∴△ABC的面积为12BC•AD=1232⨯32∴莱洛三角形的面积S=3×23π﹣﹣ 故选D .【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.3.B 【解析】试题分析:设每个笔记本的价格为x 元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可. 考点:由实际问题抽象出分式方程 4.B 【解析】根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°, 5.A 【解析】 【分析】根据位似的性质得△ABC ∽△A′B′C′,再根据相似三角形的性质进行求解即可得. 【详解】由位似变换的性质可知,A′B′∥AB ,A′C′∥AC , ∴△A′B′C′∽△ABC ,∵△A'B'C'与△ABC 的面积的比4:9, ∴△A'B'C'与△ABC 的相似比为2:3, ∴23OB OB '= , 故选A . 【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心. 6.D 【解析】 【详解】解:设小长方形的宽为a ,长为b ,则有b=n-3a , 阴影部分的周长:故选D . 7.C 【解析】观察可得,点P 在线段AC 上由A 到C 的运动中,线段PE 逐渐变短,当EP ⊥AC 时,PE 最短,过垂直这个点后,PE 又逐渐变长,当AP=m 时,点P 停止运动,符合图像的只有线段PE ,故选C.点睛:本题考查了动点问题的函数图象,对于此类问题来说是典型的数形结合,图象应用信息广泛,通过看图获取信息,不仅可以解决生活中的实际问题,还可以提高分析问题、解决问题的能力.用图象解决问题时,要理清图象的含义即会识图. 8.B 【解析】 【详解】由方程2210x x kb ++=-有两个不相等的实数根, 可得()4410kb =-+>, 解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B. 9.C 【解析】 【分析】首先根据数轴可以得到a 、b 、c 的取值范围,然后利用绝对值的定义去掉绝对值符号后化简即可. 【详解】解:通过数轴得到a <0,c <0,b >0,|a|<|b|<|c|, ∴a+b >0,c ﹣b <0∴|a+b|﹣|c ﹣b|=a+b ﹣b+c=a+c , 故答案为a+c . 故选A . 10.D 【解析】试题解析:A 原式=2x 2,故A 不正确; B 原式=x 6,故B 不正确; C 原式=x 5,故C 不正确; D 原式=x 2-x 2=0,故D 正确;考点:1.同底数幂的除法;2.合并同类项;3.同底数幂的乘法;4.幂的乘方与积的乘方.二、填空题(本题包括8个小题)11.40cm【解析】【分析】首先根据圆锥的底面直径求得圆锥的底面周长,然后根据底面周长等于展开扇形的弧长求得铁皮的半径即可.【详解】∵圆锥的底面直径为60cm,∴圆锥的底面周长为60πcm,∴扇形的弧长为60πcm,设扇形的半径为r,则270180rπ=60π,解得:r=40cm,故答案为:40cm.【点睛】本题考查了圆锥的计算,解题的关键是首先求得圆锥的底面周长,利用圆锥的底面周长等于扇形的弧长求解.12.1【解析】首先设黄球的个数为x个,然后根据概率公式列方程即可求得答案.解:设黄球的个数为x个,根据题意得:88x+=2/3解得:x=1.∴黄球的个数为1.13.0【解析】【分析】直接利用特殊角的三角函数值代入进而得出答案.【详解】2cos45tan30sin60︒-︒︒=21122=-=.故答案为0.此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键. 14.> 【解析】分析:首先求得抛物线y=﹣x 2+2x 的对称轴是x=1,利用二次函数的性质,点M 、N 在对称轴的右侧,y 随着x 的增大而减小,得出答案即可.详解:抛物线y=﹣x 2+2x 的对称轴是x=﹣22-=1.∵a=﹣1<0,抛物线开口向下,1<2<3,∴y 1>y 2.故答案为>.点睛:本题考查了二次函数图象上点的坐标特征,二次函数的性质,求得对称轴,掌握二次函数图象的性质解决问题. 15.k>1 【解析】 【分析】根据正比例函数y=(k-1)x 的图象经过第一、三象限得出k 的取值范围即可. 【详解】因为正比例函数y=(k-1)x 的图象经过第一、三象限, 所以k-1>0, 解得:k >1, 故答案为:k >1. 【点睛】此题考查一次函数问题,关键是根据正比例函数y=(k-1)x 的图象经过第一、三象限解答. 16.41400【解析】 【分析】观察已知数列得到一般性规律,写出第20个数即可. 【详解】解:观察数列得:第n 个数为221n n +,则第20个数是41400. 故答案为41400. 【点睛】本题考查了规律型:数字的变化类,弄清题中的规律是解答本题的关键. 17.1【分析】根据待定系数法求得一次函数的解析式,解答即可. 【详解】解:∵一次函数y=2x-m 的图象经过点P (2,3), ∴3=4-m , 解得m=1, 故答案为:1. 【点睛】此题主要考查了一次函数图象上点的坐标特征,关键是根据待定系数法求得一次函数的解析式. 18.5 【解析】分析:根据n 棱柱的特点,由n 个侧面和两个底面构成,可判断. 详解:由题意可知:7-2=5. 故答案为5.点睛:此题主要考查了棱柱的概念,根据棱柱的底面和侧面的关系求解是解题关键. 三、解答题(本题包括8个小题) 19.12【解析】 【分析】根据翻折的性质可得∠BAC=∠EAC ,再根据矩形的对边平行可得AB ∥CD ,根据两直线平行,内错角相等可得∠DCA=∠BAC ,从而得到∠EAC=∠DCA ,设AE 与CD 相交于F ,根据等角对等边的性质可得AF=CF ,再求出DF=EF ,从而得到△ACF 和△EDF 相似,根据相似三角形得出对应边成比,设DF=3x ,FC=5x ,在Rt △ADF 中,利用勾股定理列式求出AD ,再根据矩形的对边相等求出AB ,然后代入进行计算即可得解. 【详解】解:∵矩形沿直线AC 折叠,点B 落在点E 处, ∴CE =BC ,∠BAC =∠CAE , ∵矩形对边AD =BC , ∴AD =CE ,设AE 、CD 相交于点F , 在△ADF 和△CEF 中,90ADF CEF AFD CFEAD CE ∠∠︒⎧⎪∠∠⎨⎪⎩====,∴EF =DF ,∵AB ∥CD ,∴∠BAC =∠ACF ,又∵∠BAC =∠CAE , ∴∠ACF =∠CAE ,∴AF =CF ,∴AC ∥DE ,∴△ACF ∽△DEF ,∴35EF DE CF AC ==, 设EF =3k ,CF =5k ,由勾股定理得CE =()()22534k k k -=,∴AD =BC =CE =4k ,又∵CD =DF +CF =3k +5k =8k ,∴AB =CD =8k ,∴AD :AB =(4k ):(8k )=12.【点睛】本题考查了翻折变换的性质,全等三角形的判定与性质,相似三角形的判定与性质,勾股定理,综合题难度较大,求出△ACF 和△DEF 相似是解题的关键,也是本题的难点.20.(1)证明见解析;(2)阴影部分的面积为8833π. 【解析】【分析】(1)连接OC ,先证明∠OAC=∠OCA ,进而得到OC ∥AE ,于是得到OC ⊥CD ,进而证明DE 是⊙O 的切线;(2)分别求出△OCD 的面积和扇形OBC 的面积,利用S 阴影=S △COD ﹣S 扇形OBC 即可得到答案.【详解】解:(1)连接OC , ∵OA=OC , ∴∠OAC=∠OCA ,∵AC 平分∠BAE , ∴∠OAC=∠CAE ,∴∠OCA=∠CAE , ∴OC ∥AE , ∴∠OCD=∠E ,∵AE ⊥DE , ∴∠E=90°, ∴∠OCD=90°, ∴OC ⊥CD ,∵点C 在圆O 上,OC 为圆O 的半径, ∴CD 是圆O 的切线;(2)在Rt △AED 中, ∵∠D=30°,AE=6, ∴AD=2AE=12,在Rt △OCD 中,∵∠D=30°,∴DO=2OC=DB+OB=DB+OC ,∴DB=OB=OC=AD=4,DO=8,∴CD=22228443-=-=DO OC ∴S △OCD =43422⋅⨯=CD OC =83, ∵∠D=30°,∠OCD=90°,∴∠DOC=60°, ∴S 扇形OBC =16×π×OC 2=83π, ∵S 阴影=S △COD ﹣S 扇形OBC ∴S 阴影=83﹣83π, ∴阴影部分的面积为83﹣83π.21. (1) 方案1; B (5,0); 1(5)(5)5y x x =-+-;(2) 3.2m.【解析】试题分析:(1)根据抛物线在坐标系的位置,可用待定系数法求抛物线的解析式.(2)把x=3代入抛物线的解析式,即可得到结论.试题解析:解:方案1:(1)点B 的坐标为(5,0),设抛物线的解析式为:(5)(5)y a x x =+-.由题意可以得到抛物线的顶点为(0,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(5)(5)5y x x =-+-; (2)由题意:把3x =代入1(5)(5)5y x x =-+-,解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案2:(1)点B 的坐标为(10,0).设抛物线的解析式为:(10)y ax x =-.由题意可以得到抛物线的顶点为(5,5),代入解析式可得:15a =-,∴抛物线的解析式为:1(10)5y x x =--; (2)由题意:把2x =代入1(10)5y x x =--解得:165y ==3.2,∴水面上涨的高度为3.2m . 方案3:(1)点B 的坐标为(5, 5-),由题意可以得到抛物线的顶点为(0,0).设抛物线的解析式为:2y ax =,把点B 的坐标(5, 5-),代入解析式可得:15a =-,∴抛物线的解析式为:21y x 5=-; (2)由题意:把3x =代入21y x 5=-解得:95y =-= 1.8-,∴水面上涨的高度为5 1.8-=3.2m . 22.13. 【解析】【分析】先计算括号里面的,再利用除法化简原式,【详解】22214244a a a a a a ⎛⎫-÷ ⎪--++⎝⎭ , =()()()()222222a a a a a a -++⋅+- , =2222a a a a a--+⋅- , =222a a a a-+⋅-, =2a a +, 由a 2+a ﹣6=0,得a=﹣3或a=2,∵a ﹣2≠0,∴a≠2,∴a=﹣3,当a=﹣3时,原式=32133-+=-. 【点睛】本题考查了分式的化简求值及一元二次方程的解,解题的关键是熟练掌握分式的混合运算.23.(1)y=﹣5x 2+110x+1200;(2) 售价定为189元,利润最大1805元【解析】【分析】利润等于(售价﹣成本)×销售量,根据题意列出表达式,借助二次函数的性质求最大值即可;【详解】(1)y =(200﹣x ﹣170)(40+5x )=﹣5x 2+110x+1200;(2)y =﹣5x 2+110x+1200=﹣5(x ﹣11)2+1805,∵抛物线开口向下,∴当x =11时,y 有最大值1805,答:售价定为189元,利润最大1805元;【点睛】 本题考查实际应用中利润的求法,二次函数的应用;能够根据题意列出合理的表达式是解题的关键. 24. (2) k≤54;(2)-2. 【解析】试题分析:(2)根据方程的系数结合根的判别式,即可得出△=﹣4k+5≥0,解之即可得出实数k 的取值范围;(2)由根与系数的关系可得x 2+x 2=2﹣2k 、x 2x 2=k 2﹣2,将其代入x 22+x 22=(x 2+x 2)2﹣2x 2x 2=26+x 2x 2中,解之即可得出k 的值.试题解析:(2)∵关于x 的方程x 2+(2k ﹣2)x+k 2﹣2=0有两个实数根x 2,x 2,∴△=(2k ﹣2)2﹣4(k 2﹣2)=﹣4k+5≥0,解得:k≤, ∴实数k 的取值范围为k≤. (2)∵关于x 的方程x 2+(2k ﹣2)x+k 2﹣2=0有两个实数根x 2,x 2,∴x 2+x 2=2﹣2k ,x 2x 2=k 2﹣2.∵x 22+x 22=(x 2+x 2)2﹣2x 2x 2=26+x 2x 2,∴(2﹣2k )2﹣2×(k 2﹣2)=26+(k 2﹣2),即k 2﹣4k ﹣22=0,解得:k=﹣2或k=6(不符合题意,舍去).∴实数k 的值为﹣2.考点:一元二次方程根与系数的关系,根的判别式.25. (1) 众数为15;(2) 3,4,15;8;(3) 月销售额定为18万,有一半左右的营业员能达到销售目标.【解析】【分析】根据数据可得到落在第四组、第六组的个数分别为3个、4个,所以a =3,b =4,再根据数据可得15出现了5次,出现次数最多,所以众数c =15;从频数分布表中可以看出月销售额不低于25万元的营业员有8个,所以本小题答案为:8;本题是考查中位数的知识,根据中位数可以让一半左右的营业员达到销售目标.【详解】解:(1)在2225x <范围内的数据有3个,在2831x <范围内的数据有4个,15出现的次数最大,则众数为15;(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;故答案为3,4,15;8;(3)想让一半左右的营业员都能达到销售目标,我认为月销售额定为18万合适.因为中位数为18,即大于18与小于18的人数一样多,所以月销售额定为18万,有一半左右的营业员能达到销售目标.【点睛】本题考査了对样本数据进行分析的相关知识,考查了频数分布表、平均数、众数和中位数的知识,解题关键是根据数据整理成频数分布表,会求数据的平均数、众数、中位数.并利用中位数的意义解决实际问题.26.-2.【解析】试题分析:先算括号里面的,再算除法,解不等式组,求出x 的取值范围,选出合适的x 的值代入求值即可.试题解析:原式=()()()()22x+1x-1x x x+1x+1-÷ =x x+1x+1x-1-⨯=x x-1- 解1{214x x -≤-<得-1≤x<52, ∴不等式组的整数解为-1,0,1,2若分式有意义,只能取x=2,∴原式=-221-=-2 【点睛】本题考查的是分式的化简求值,分式中的一些特殊求值题并非是一味的化简,代入,求值.许多问题还需运用到常见的数学思想,如化归思想(即转化)、整体思想等,了解这些数学解题思想对于解题技巧的丰富与提高有一定帮助.2019-2020学年中考数学模拟试卷 一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.如图,在矩形AOBC 中,O 为坐标原点,OA 、OB 分别在x 轴、y 轴上,点B 的坐标为(0,33),∠ABO =30°,将△ABC 沿AB 所在直线对折后,点C 落在点D 处,则点D 的坐标为( )A .(32,332)B .(2,332)C .(332,32)D .(32,3﹣332) 2.如图,从边长为a 的正方形中去掉一个边长为b 的小正方形,然后将剩余部分剪后拼成一个长方形,上述操作能验证的等式是( )A .22()()a b a b a b +-=-B .222()2a b a ab b -=-+C .222()2a b a ab b +=++D .2()a ab a a b +=+3.如图,已知△ABC 的三个顶点均在格点上,则cosA 的值为( )A .3B .5C .23D .25 4.如图,把一块直角三角板的直角顶点放在直尺的一边上,若∠1=50°,则∠2的度数为( ).A .50°B .40°C .30°D .25°5.抛物线y=ax 2﹣4ax+4a ﹣1与x 轴交于A ,B 两点,C (x 1,m )和D (x 2,n )也是抛物线上的点,且x 1<2<x2,x1+x2<4,则下列判断正确的是()A.m<n B.m≤n C.m>n D.m≥n6.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形BEF的半径为2,圆心角为60°,则图中阴影部分的面积是()A.2332π-B.233π-C.32π-D.3π-7.如图,点A为∠α边上任意一点,作AC⊥BC于点C,CD⊥AB于点D,下列用线段比表示sinα的值,错误的是()A.CDBCB.ACABC.ADACD.CDAC8.运用图形变化的方法研究下列问题:如图,AB是⊙O的直径,CD,EF是⊙O的弦,且AB∥CD∥EF,AB=10,CD=6,EF=8.则图中阴影部分的面积是()A.252πB.10πC.24+4πD.24+5π9.不透明的袋子中装有形状、大小、质地完全相同的6个球,其中4个黑球、2个白球,从袋子中一次摸出3个球,下列事件是不可能事件的是()A.摸出的是3个白球B.摸出的是3个黑球C.摸出的是2个白球、1个黑球D.摸出的是2个黑球、1个白球10.如图,AB⊥BD,CD⊥BD,垂足分别为B、D,AC和BD相交于点E,EF⊥BD垂足为F.则下列结论错误的是()A.B.C.D.二、填空题(本题包括8个小题)11.如图,已知点C为反比例函数6yx=-上的一点,过点C向坐标轴引垂线,垂足分别为A、B,那么四边形AOBC的面积为___________.12.如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为.13.如图,直径为1000mm的圆柱形水管有积水(阴影部分),水面的宽度AB为800mm,则水的最大深度CD是______mm.14.已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为_____.15.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数是_______.16.如图,点A(3,n)在双曲线y=3x上,过点A作AC⊥x轴,垂足为C.线段OA的垂直平分线交OC于点B,则△ABC周长的值是.17.如图,△ABC 中,AB =BD ,点D ,E 分别是AC ,BD 上的点,且∠ABD =∠DCE ,若∠BEC =105°,则∠A 的度数是_____.18.如图,在△ABC 中,∠C=120°,AB=4cm ,两等圆⊙A 与⊙B 外切,则图中两个扇形的面积之和(即阴影部分)为 cm 2(结果保留π).三、解答题(本题包括8个小题)19.(6分)某市政府大力支持大学生创业.李明在政府的扶持下投资销售一种进价为20元的护眼台灯.销售过程中发现,每月销售量Y (件)与销售单价x (元)之间的关系可近似的看作一次函数:y =﹣10x+1.设李明每月获得利润为W (元),当销售单价定为多少元时,每月获得利润最大?根据物价部门规定,这种护眼台灯不得高于32元,如果李明想要每月获得的利润2000元,那么销售单价应定为多少元? 20.(6分)2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的A 点和东人工岛上的B 点间的距离约为5.6千米,点C 是与西人工岛相连的大桥上的一点,A ,B ,C 在一条直线上.如图,一艘观光船沿与大桥AC 段垂直的方向航行,到达P 点时观测两个人工岛,分别测得PA ,PB 与观光船航向PD 的夹角18DPA ∠=︒,53DPB ∠=︒,求此时观光船到大桥AC 段的距离PD 的长(参考数据:180.31sin ︒≈,180.95cos ︒≈,180.33tan ︒≈,530.80sin ︒≈,530.60cos ︒≈,53 1.33tan ︒≈).21.(6分)解不等式组:3(1)723 23 x xxxx--<⎧⎪-⎨-≤⎪⎩,并把解集在数轴上表示出来.22.(8分)目前“微信”、“支付宝”、“共享单车”和“网购”给我们的生活带来了很多便利,初二数学小组在校内对“你最认可的四大新生事物”进行调查,随机调查了m人(每名学生必选一种且只能从这四种中选择一种)并将调查结果绘制成如下不完整的统计图.根据图中信息求出m=,n=;请你帮助他们将这两个统计图补全;根据抽样调查的结果,请估算全校2000名学生中,大约有多少人最认可“微信”这一新生事物?23.(8分)小明和小亮玩一个游戏:取三张大小、质地都相同的卡片,上面分别标有数字2、3、4(背面完全相同),现将标有数字的一面朝下.小明从中任意抽取一张,记下数字后放回洗匀,然后小亮从中任意抽取一张,计算小明和小亮抽得的两个数字之和.请你用画树状图或列表的方法,求出这两数和为6的概率.如果和为奇数,则小明胜;若和为偶数,则小亮胜.你认为这个游戏规则对双方公平吗?做出判断,并说明理由.24.(10分)如图,一只蚂蚁从点A沿数轴向右直爬2个单位到达点B,点A表示﹣,设点B所表示的数为m.求m的值;求|m﹣1|+(m+6)0的值.25.(10分)某市A,B两个蔬菜基地得知四川C,D两个灾民安置点分别急需蔬菜240t和260t的消息后,决定调运蔬菜支援灾区,已知A蔬菜基地有蔬菜200t,B蔬菜基地有蔬菜300t,现将这些蔬菜全部调运C,D两个灾区安置点.从A地运往C,D两处的费用分别为每吨20元和25元,从B地运往C,D两处的费用分别为每吨15元和18元.设从B地运往C处的蔬菜为x吨.请填写下表,并求两个蔬菜基地调运蔬菜的运费相等时x的值;C D 总计/tA 200B x 300总计/t 240 260 500(2)设A,B两个蔬菜基地的总运费为w元,求出w与x之间的函数关系式,并求总运费最小的调运方案;经过抢修,从B地到C处的路况得到进一步改善,缩短了运输时间,运费每吨减少m元(m>0),其余线路的运费不变,试讨论总运费最小的调动方案.26.(12分)已知:如图,∠ABC=∠DCB,BD、CA分别是∠ABC、∠DCB 的平分线.求证:AB=DC.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.A【解析】解:∵四边形AOBC是矩形,∠ABO=10°,点B的坐标为(0,33),∴AC=OB=33,∠CAB=10°,∴BC=AC•tan10°=3333=1.∵将△ABC沿AB所在直线对折后,点C落在点D处,∴∠BAD=10°,AD=33.过点D作DM⊥x轴于点M,∵∠CAB=∠BAD=10°,∴∠DAM=10°,∴DM=12AD=332,∴AM=33=92,∴MO=92﹣1=32,∴点D的坐标为(3233).故选A.2.A 【解析】 【分析】由图形可以知道,由大正方形的面积-小正方形的面积=矩形的面积,进而可以证明平方差公式. 【详解】解:大正方形的面积-小正方形的面积=22a b -, 矩形的面积=()()a b a b +-, 故22()()a b a b a b +-=-, 故选:A . 【点睛】本题主要考查平方差公式的几何意义,用两种方法表示阴影部分的面积是解题的关键. 3.D 【解析】 【详解】过B 点作BD ⊥AC ,如图,由勾股定理得,AB=221310+=,AD=222222+=, cosA=AD AB =2210=25,故选D .4.B 【解析】 【详解】解:如图,由两直线平行,同位角相等,可求得∠3=∠1=50°,根据平角为180°可得,∠2=90°﹣50°=40°. 故选B .【点睛】本题考查平行线的性质,掌握两直线平行,同位角相等是解题关键. 5.C 【解析】分析:将一般式配方成顶点式,得出对称轴方程2x =,根据抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,得出()()244410a a a =--⨯->,求得0a >,距离对称轴越远,函数的值越大,根据121224x x x x <<+<,,判断出它们与对称轴之间的关系即可判定.详解:∵()2244121y ax ax a a x =-+-=--, ∴此抛物线对称轴为2x =,∵抛物线2441y ax ax a =-+-与x 轴交于,A B 两点,∴当24410ax ax a -+-=时,()()244410a a a =--⨯->,得0a >, ∵121224x x x x <<+<,, ∴1222x x ,->- ∴m n >, 故选C .点睛:考查二次函数的图象以及性质,开口向上,距离对称轴越远的点,对应的函数值越大, 6.B 【解析】 【分析】根据菱形的性质得出△DAB 是等边三角形,进而利用全等三角形的判定得出△ABG ≌△DBH ,得出四边形GBHD 的面积等于△ABD 的面积,进而求出即可. 【详解】 连接BD ,∵四边形ABCD 是菱形,∠A=60°, ∴∠ADC=120°, ∴∠1=∠2=60°, ∴△DAB 是等边三角形, ∵AB=2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H , 在△ABG 和△DBH 中,2{34A AB BD ∠=∠=∠=∠, ∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF -S △ABD =26021233602π⨯-⨯=233π- 故选B . 7.D 【解析】【分析】根据在直角三角形中,锐角的正弦为对边比斜边,可得答案. 【详解】∵∠BDC=90°,∴∠B+∠BCD=90°,∵∠ACB=90°,即∠BCD+∠ACD=90°, ∴∠ACD=∠B=α,A 、在Rt △BCD 中,sinα=CDBC ,故A 正确,不符合题意; B 、在Rt △ABC 中,sinα=ACAB,故B 正确,不符合题意;C、在Rt△ACD中,sinα=ADAC,故C正确,不符合题意;D、在Rt△ACD中,cosα=CDAC,故D错误,符合题意,故选D.【点睛】本题考查锐角三角函数的定义及运用:在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.8.A【解析】【分析】作直径CG,连接OD、OE、OF、DG,则根据圆周角定理求得DG的长,证明DG=EF,则S扇形ODG=S 扇形OEF,然后根据三角形的面积公式证明S△OCD=S△ACD,S△OEF=S△AEF,则S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆,即可求解.【详解】作直径CG,连接OD、OE、OF、DG.∵CG是圆的直径,∴∠CDG=90°,则DG=2222106CG CD-=-=8,又∵EF=8,∴DG=EF,∴DG EF=,∴S扇形ODG=S扇形OEF,∵AB∥CD∥EF,∴S△OCD=S△ACD,S△OEF=S△AEF,∴S阴影=S扇形OCD+S扇形OEF=S扇形OCD+S扇形ODG=S半圆=12π×52=252π,故选A.【点睛】本题考查扇形面积的计算,圆周角定理.本题中找出两个阴影部分面积之间的联系是解题的关键.9.A【解析】由题意可知,不透明的袋子中总共有2个白球,从袋子中一次摸出3个球都是白球是不可能事件,故选B.。
咸阳市名校2020中考数学调研试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,直线AB 与直线CD 相交于点O ,E 是∠COB 内一点,且OE ⊥AB ,∠AOC=35°,则∠EOD 的度数是( )A .155°B .145°C .135°D .125°2.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E 的正方体平移至如图2所示的位置,下列说法中正确的是( )A .左、右两个几何体的主视图相同B .左、右两个几何体的左视图相同C .左、右两个几何体的俯视图不相同D .左、右两个几何体的三视图不相同3.把三角形按如图所示的规律拼图案,其中第①个图案中有1个三角形,第②个图案中有4个三角形,第③个图案中有8个三角形,…,按此规律排列下去,则第⑦个图案中三角形的个数为( )A .15B .17C .19D .244.如图,AB 为⊙O 的直径,C ,D 为⊙O 上的两点,若AB =14,BC =1.则∠BDC 的度数是( )A .15°B .30°C .45°D .60°5.将抛物线23y x =向上平移3个单位,再向左平移2个单位,那么得到的抛物线的解析式为( ) A .23(2)3y x =++ B .23(2)3y x =-+ C .23(2)3y x =+- D .23(2)3y x =--6.菱形ABCD 中,对角线AC 、BD 相交于点O ,H 为AD 边中点,菱形ABCD 的周长为28,则OH 的长等于( ) A .3.5B .4C .7D .147.如图,E ,B ,F ,C 四点在一条直线上,EB =CF ,∠A =∠D ,再添一个条件仍不能证明△ABC ≌△DEF 的是( )A .AB =DE B .DF ∥AC C .∠E =∠ABCD .AB ∥DE8.如图,AD 是半圆O 的直径,AD =12,B ,C 是半圆O 上两点.若AB BC CD ==,则图中阴影部分的面积是( )A .6πB .12πC .18πD .24π9.已知:如图,在△ABC 中,边AB 的垂直平分线分别交BC 、AB 于点G 、D ,若△AGC 的周长为31cm ,AB=20cm ,则△ABC 的周长为( )A .31cmB .41cmC .51cmD .61cm10.下列计算正确的是( ) A 235=B .a a a +=222C .(1)x y x xy +=+D .236()mn mn =二、填空题(本题包括8个小题)11.如图,CB=CA ,∠ACB=90°,点D 在边BC 上(与B 、C 不重合),四边形ADEF 为正方形,过点F 作FG ⊥CA ,交CA 的延长线于点G ,连接FB ,交DE 于点Q ,给出以下结论:①AC=FG ;②S △FAB :S 四边形CBFG =1:2;③∠ABC=∠ABF ;④AD 2=FQ•AC ,其中正确的结论的个数是______.12.如图,从一个直径为1m 的圆形铁片中剪出一个圆心角为90°的扇形,再将剪下的扇形围成一个圆锥,则圆锥的底面半径为_____m .13.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列结论:abc 0<①,2a b 0+=②,a b c 0-+=③;24ac b 0->④,4a 2b c 0++>⑤,其中正确的结论序号是______14.已知反比例函数y=2m x-,当x >0时,y 随x 增大而减小,则m 的取值范围是_____. 15.如图,已知圆柱底面周长为6cm ,圆柱高为2cm ,在圆柱的侧面上,过点A 和点C 嵌有一圈金属丝,则这圈金属丝的周长最小为_____cm .16.如图,点A ,B ,C 在⊙O 上,∠OBC=18°,则∠A=_______________________.17.已知某二次函数图像的最高点是坐标原点,请写出一个符合要求的函数解析式:_______. 18.如图,每个小正方形边长为1,则△ABC 边AC 上的高BD 的长为_____.三、解答题(本题包括8个小题)19.(6分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x天后每千克苹果的价格为p元,写出p与x的函数关系式;若存放x天后将苹果一次性售出,设销售总金额为y元,求出y与x的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?20.(6分)铁岭市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y(千克)与每千克降价x(元)(0<x<20)之间满足一次函数关系,其图象如图所示:求y与x之间的函数关系式;商贸公司要想获利2090元,则这种干果每千克应降价多少元?该干果每千克降价多少元时,商贸公司获利最大?最大利润是多少元?21.(6分)某乡镇实施产业扶贫,帮助贫困户承包了荒山种植某品种蜜柚.到了收获季节,已知该蜜柚的成本价为8元/千克,投入市场销售时,调查市场行情,发现该蜜柚销售不会亏本,且每天销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.(1)求y与x的函数关系式,并写出x的取值范围;(2)当该品种蜜柚定价为多少时,每天销售获得的利润最大?最大利润是多少?(3)某农户今年共采摘蜜柚4800千克,该品种蜜柚的保质期为40天,根据(2)中获得最大利润的方式进行销售,能否销售完这批蜜柚?请说明理由.22.(8分)我市计划将某村的居民自来水管道进行改造.该工程若由甲队单独施工恰好在规定时间内完成;若由乙队单独施工,则完成工程所需天数是规定天数的1.5倍.如果由甲、乙两队先合做10天,那么余下的工程由乙队单独完成还需5天.这项工程的规定时间是多少天?已知甲队每天的施工费用为6500元,乙队每天的施工费用为3500元.为了缩短工期以减少对居民用水的影响,工程指挥部最终决定该工程由甲、乙两队合做来完成.则该工程施工费用是多少?23.(8分)如图:求作一点P ,使PM PN =,并且使点P 到AOB ∠的两边的距离相等.24.(10分)国家发改委公布的《商品房销售明码标价规定》,从2011年5月1日起商品房销售实行一套一标价.商品房销售价格明码标价后,可以自行降价、打折销售,但涨价必须重新申报.某市某楼盘准备以每平方米5000元的均价对外销售,由于新政策的出台,购房都持币观望.为了加快资金周转,房地产开发商对价格经过两次下调后,决定以每平方米4050元的均价开盘销售.求平均每次下调的百分率;某人准备以开盘均价购买一套100平方米的房子,开发商还给予以下两种优惠方案发供选择:①打9.8折销售;②不打折,送两年物业管理费,物业管理费是每平方米每月1.5元,请问哪种方案更优惠?25.(10分)解方程:252112x x x+--=1. 26.(12分)如下表所示,有A 、B 两组数: 第1个数 第2个数 第3个数 第4个数 …… 第9个数 …… 第n 个数 A 组 ﹣6 ﹣5 ﹣2 …… 58 …… n 2﹣2n ﹣5 B 组14710……25……(1)A 组第4个数是 ;用含n 的代数式表示B 组第n 个数是 ,并简述理由;在这两组数中,是否存在同一列上的两个数相等,请说明.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意) 1.D 【解析】 【详解】解:∵35AOC ∠=,∴35∠=,BOD∵EO⊥AB,∴90∠=,EOB∴9035125EOD EOB BOD∠=∠+∠=+=,故选D.2.B【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.3.D【解析】【分析】由图可知:第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,第④个图案有三角形1+3+4+4=12,…第n个图案有三角形4(n﹣1)个(n>1时),由此得出规律解决问题.【详解】解:解:∵第①个图案有三角形1个,第②图案有三角形1+3=4个,第③个图案有三角形1+3+4=8个,…∴第n个图案有三角形4(n﹣1)个(n>1时),则第⑦个图中三角形的个数是4×(7﹣1)=24个,故选D.【点睛】本题考查了规律型:图形的变化类,根据给定图形中三角形的个数,找出a n=4(n﹣1)是解题的关键.4.B【解析】【分析】只要证明△OCB是等边三角形,可得∠CDB=12∠COB即可解决问题.【详解】如图,连接OC,∵AB=14,BC=1,∴OB=OC=BC=1,∴△OCB是等边三角形,∴∠COB=60°,∴∠CDB=12∠COB=30°,故选B.【点睛】本题考查圆周角定理,等边三角形的判定等知识,解题的关键是学会利用数形结合的首先解决问题,属于中考常考题型.5.A【解析】【分析】直接根据“上加下减,左加右减”的原则进行解答即可. 【详解】将抛物线23y x =向上平移3个单位,再向左平移2个单位,根据抛物线的平移规律可得新抛物线的解析式为23(2)3y x =++,故答案选A . 6.A 【解析】 【分析】根据菱形的四条边都相等求出AB ,菱形的对角线互相平分可得OB=OD ,然后判断出OH 是△ABD 的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH 12=AB . 【详解】∵菱形ABCD 的周长为28,∴AB=28÷4=7,OB=OD . ∵H 为AD 边中点,∴OH 是△ABD 的中位线,∴OH 12=AB 12=⨯7=3.1.故选A . 【点睛】本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键. 7.A 【解析】 【分析】由EB=CF ,可得出EF=BC ,又有∠A=∠D ,本题具备了一组边、一组角对应相等,为了再添一个条件仍不能证明△ABC ≌△DEF ,那么添加的条件与原来的条件可形成SSA ,就不能证明△ABC ≌△DEF 了. 【详解】 ∵EB=CF ,∴EB+BF=CF+BF ,即EF=BC , 又∵∠A=∠D ,A 、添加DE=AB 与原条件满足SSA ,不能证明△ABC ≌△DEF ,故A 选项正确.B 、添加DF ∥AC ,可得∠DFE=∠ACB ,根据AAS 能证明△ABC ≌△DEF ,故B 选项错误. C 、添加∠E=∠ABC ,根据AAS 能证明△ABC ≌△DEF ,故C 选项错误.D 、添加AB ∥DE ,可得∠E=∠ABC ,根据AAS 能证明△ABC ≌△DEF ,故D 选项错误, 故选A. 【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角. 8.A 【解析】 【分析】根据圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°,根据扇形面积公式计算即可. 【详解】∵AB BC CD ==, ∴∠AOB=∠BOC=∠COD=60°. ∴阴影部分面积=2606=6360⨯ππ.故答案为:A. 【点睛】本题考查的知识点是扇形面积的计算,解题关键是利用圆心角与弧的关系得到∠AOB=∠BOC=∠COD=60°. 9.C 【解析】∵DG 是AB 边的垂直平分线, ∴GA=GB ,△AGC 的周长=AG+AC+CG=AC+BC=31cm ,又AB=20cm , ∴△ABC 的周长=AC+BC+AB=51cm , 故选C. 10.C 【解析】解:A 、不是同类二次根式,不能合并,故A 错误; B .23a a a += ,故B 错误;C .1x y x xy +=+() ,正确; D .2326mn m n =(),故D 错误.故选C .二、填空题(本题包括8个小题)11.①②③④ . 【解析】 【分析】由正方形的性质得出∠FAD =90°,AD =AF =EF ,证出∠CAD =∠AFG ,由AAS 证明△FGA ≌△ACD ,得出AC =FG ,①正确;证明四边形CBFG 是矩形,得出S △FAB =12FB•FG =12S 四边形CBFG ,②正确; 由等腰直角三角形的性质和矩形的性质得出∠ABC =∠ABF =45°,③正确; 证出△ACD ∽△FEQ ,得出对应边成比例,得出④正确. 【详解】解:∵四边形ADEF 为正方形, ∴∠FAD =90°,AD =AF =EF , ∴∠CAD +∠FAG =90°, ∵FG ⊥CA ,∴∠GAF +∠AFG =90°, ∴∠CAD =∠AFG , 在△FGA 和△ACD 中,G CAFG CAD AF AD ===∠∠⎧⎪∠∠⎨⎪⎩, ∴△FGA ≌△ACD (AAS ), ∴AC =FG ,①正确; ∵BC =AC , ∴FG =BC ,∵∠ACB =90°,FG ⊥CA , ∴FG ∥BC ,∴四边形CBFG 是矩形, ∴∠CBF =90°,S △FAB =12FB•FG =12S 四边形CBFG ,②正确; ∵CA =CB ,∠C =∠CBF =90°, ∴∠ABC =∠ABF =45°,③正确;∵∠FQE =∠DQB =∠ADC ,∠E =∠C =90°, ∴△ACD ∽△FEQ , ∴AC :AD =FE :FQ ,∴AD•FE =AD 2=FQ•AC ,④正确;故答案为①②③④.【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质、正方形的性质、矩形的判定与性质、等腰直角三角形的性质;熟练掌握正方形的性质,证明三角形全等和三角形相似是解决问题的关键. 12m . 【解析】【分析】利用勾股定理易得扇形的半径,那么就能求得扇形的弧长,除以2π即为圆锥的底面半径.【详解】解:易得扇形的圆心角所对的弦是直径,∴扇形的半径为:2m , ∴扇形的弧长为:902180π⨯πm , ∴m . 【点睛】 本题考查:90度的圆周角所对的弦是直径;圆锥的侧面展开图的弧长等于圆锥的底面周长,解题关键是弧长公式.13.①②③⑤【解析】【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①由图象可知:抛物线开口方向向下,则a 0<,对称轴直线位于y 轴右侧,则a 、b 异号,即b 0>,抛物线与y 轴交于正半轴,则c 0>,abc 0<,故①正确;②对称轴为b x 12a=-=,b 2a =-,故②正确; ③由抛物线的对称性知,抛物线与x 轴的另一个交点坐标为()1,0-,所以当x 1=-时,y a b c 0=-+=,即a b c 0-+=,故③正确;④抛物线与x 轴有两个不同的交点,则2b 4ac 0->,所以24ac b 0-<,故④错误;⑤当x 2=时,y 4a 2b c 0=++>,故⑤正确.故答案为①②③⑤.【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.14.m >1.【解析】分析:根据反比例函数y=2m x -,当x >0时,y 随x 增大而减小,可得出m ﹣1>0,解之即可得出m 的取值范围.详解:∵反比例函数y=2m x-,当x >0时,y 随x 增大而减小,∴m ﹣1>0,解得:m >1. 故答案为m >1.点睛:本题考查了反比例函数的性质,根据反比例函数的性质找出m ﹣1>0是解题的关键.15.【解析】【分析】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【详解】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC 的长度.∵圆柱底面的周长为6cm ,圆柱高为2cm ,∴AB =2cm ,BC =BC′=3cm ,∴AC 2=22+32=13,∴AC,∴这圈金属丝的周长最小为2AC =.故答案为【点睛】本题考查了平面展开−最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.16.72°.【解析】【详解】解:∵OB=OC ,∠OBC=18°,∴∠BCO=∠OBC=18°,∴∠BOC=180°﹣2∠OBC=180°﹣2×18°=144°,∴∠A=12∠BOC=12×144°=72°. 故答案为 72°.【点睛】本题考查圆周角定理,掌握同弧所对的圆周角是圆心角的一半是本题的解题关键.17.2y x =-等【解析】【分析】根据二次函数的图象最高点是坐标原点,可以得到a <0,b=0,c=0,所以解析式满足a <0,b=0,c=0即可.【详解】解:根据二次函数的图象最高点是坐标原点,可以得到a <0,b=0,c=0,例如:2y x =-.【点睛】此题是开放性试题,考查函数图象及性质的综合运用,对考查学生所学函数的深入理解、掌握程度具有积极的意义. 18.85【解析】试题分析:根据网格,利用勾股定理求出AC 的长,AB 的长,以及AB 边上的高,利用三角形面积公式求出三角形ABC 面积,而三角形ABC 面积可以由AC 与BD 乘积的一半来求,利用面积法即可求出BD 的长:根据勾股定理得:5AC ==,由网格得:S △ABC =12×2×4=4,且S △ABC =12AC•BD=12×5BD , ∴12×5BD=4,解得:BD=85. 考点:1.网格型问题;2.勾股定理;3.三角形的面积.三、解答题(本题包括8个小题)19.()1?0.14p x =+;()22580040000y x x =-++;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【解析】【分析】(1)根据按每千克4元的市场价收购了这种苹果10000千克,此后每天每千克苹果价格会上涨0.1元,进而得出x 天后每千克苹果的价格为p 元与x 的函数关系;(2)根据每千克售价乘以销量等于销售总金额,求出即可;(3)利用总售价-成本-费用=利润,进而求出即可.【详解】()1根据题意知,0.14p x =+;()()()220.141000050580040000y x x x x =+-=-++.()3300410000w y x =--⨯25500x x =-+25(50)12500x =--+∴当50x =时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元.【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出w 与x 的函数关系是解题关键.20. (1)y =10x+100;(2)这种干果每千克应降价9元;(3)该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【解析】【分析】(1)由待定系数法即可得到函数的解析式;(2)根据销售量×每千克利润=总利润列出方程求解即可;(3)根据销售量×每千克利润=总利润列出函数解析式求解即可.【详解】(1)设y 与x 之间的函数关系式为:y =kx+b ,把(2,120)和(4,140)代入得,21204140k b k b +=⎧⎨+=⎩, 解得:10100k b =⎧⎨=⎩, ∴y 与x 之间的函数关系式为:y =10x+100;(2)根据题意得,(60﹣40﹣x)(10x+100)=2090,解得:x =1或x =9,∵为了让顾客得到更大的实惠,∴x =9,答:这种干果每千克应降价9元;(3)该干果每千克降价x 元,商贸公司获得利润是w 元,根据题意得,w =(60﹣40﹣x)(10x+100)=﹣10x 2+100x+2000,∴w =﹣10(x ﹣5)2+2250,∵a=-100<,∴当x =5时,w 2250=最大故该干果每千克降价5元时,商贸公司获利最大,最大利润是2250元.【点睛】本题考查的是二次函数的应用,此类题目主要考查学生分析、解决实际问题能力,又能较好地考查学生“用数学”的意识.21.(1)10300y x =-+(830x ≤<);(2)定价为19元时,利润最大,最大利润是1210元.(3)不能销售完这批蜜柚.【解析】【分析】(1)根据图象利用待定系数法可求得函数解析式,再根据蜜柚销售不会亏本以及销售量大于0求得自变量x 的取值范围;(2)根据利润=每千克的利润×销售量,可得关于x 的二次函数,利用二次函数的性质即可求得;(3)先计算出每天的销量,然后计算出40天销售总量,进行对比即可得.【详解】(1)设 y kx b =+,将点(10,200)、(15,150)分别代入,则1020015150k b k b +=⎧⎨+=⎩,解得10300k b =-⎧⎨=⎩, ∴10300y x =-+,∵蜜柚销售不会亏本,∴x 8≥,又0y >,∴103000x -+≥ ,∴30x ≤,∴ 830x ≤≤ ;(2) 设利润为w 元,则 ()()810300w x x =--+=2103802400x x -+-=2210(19)1210x x --+,∴ 当19x = 时, w 最大为1210,∴ 定价为19元时,利润最大,最大利润是1210元;(3) 当19x = 时,110y =,110×40=4400<4800,∴不能销售完这批蜜柚.【点睛】 本题考查了一次函数的应用、二次函数的应用,弄清题意,找出数量间的关系列出函数解析式是解题的关键.22.(1)这项工程规定的时间是20天;(2)该工程施工费用是120000元【解析】【分析】(1)设这项工程的规定时间是x 天,根据甲、乙队先合做10天,余下的工程由甲队单独需要5天完成,可得出方程,解出即可.(2)先计算甲、乙合作需要的时间,然后计算费用即可.【详解】解:(1)设这项工程规定的时间是x 天 根据题意,得1010511.5x x ++= 解得x =20经检验,x =20是原方程的根答:这项工程规定的时间是20天(2)合作完成所需时间111()1220 1.520÷+=⨯(天) (6500+3500)×12=120000(元)答:该工程施工费用是120000元【点睛】本题考查了分式方程的应用,解答此类工程问题,经常设工作量为“单位1”,注意仔细审题,运用方程思想解答.23.见解析【分析】利用角平分线的作法以及线段垂直平分线的作法分别得出进而求出其交点即可.【详解】如图所示:P点即为所求.【点睛】本题主要考查了复杂作图,熟练掌握角平分线以及线段垂直平分线的作法是解题的关键.24.(1) 每次下调10% (2) 第一种方案更优惠.【解析】【分析】(1)设出平均每次下调的百分率为x,利用预订每平方米销售价格×(1-每次下调的百分率)2=开盘每平方米销售价格列方程解答即可.(2)求出打折后的售价,再求出不打折减去送物业管理费的钱,再进行比较,据此解答.【详解】解:(1)设平均每次下调的百分率为x,根据题意得5000×(1-x)2=4050解得x=10%或x=1.9(舍去)答:平均每次下调10%.(2)9.8折=98%,100×4050×98%=396900(元)100×4050-100×1.5×12×2=401400(元),396900<401400,所以第一种方案更优惠.答:第一种方案更优惠.【点睛】本题考查一元二次方程的应用,能找到等量关系式,并根据等量关系式正确列出方程是解决本题的关键.25.12 x=-【解析】先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解. 【详解】原方程变形为253 2121xx x-=--,方程两边同乘以(2x﹣1),得2x﹣5=1(2x﹣1),解得12x=-.检验:把12x=-代入(2x﹣1),(2x﹣1)≠0,∴12x=-是原方程的解,∴原方程的12x=-.【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根. 26.(1)3;(2)32n-,理由见解析;理由见解析(3)不存在,理由见解析【解析】【分析】(1)将n=4代入n2-2n-5中即可求解;(2)当n=1,2,3,…,9,…,时对应的数分别为3×1-2,3×2-2,3×3-2,…,3×9-2…,由此可归纳出第n 个数是3n-2;(3)“在这两组数中,是否存在同一列上的两个数相等”,将问题转换为n2-2n-5=3n-2有无正整数解的问题.【详解】解:(1))∵A组第n个数为n2-2n-5,∴A组第4个数是42-2×4-5=3,故答案为3;(2)第n个数是32n-.理由如下:∵第1个数为1,可写成3×1-2;第2个数为4,可写成3×2-2;第3个数为7,可写成3×3-2;第4个数为10,可写成3×4-2;……第9个数为25,可写成3×9-2;∴第n个数为3n-2;故答案为3n-2;(3)不存在同一位置上存在两个数据相等;由题意得,22532n n n --=-,解之得,52n ±= 由于n 是正整数,所以不存在列上两个数相等.【点睛】本题考查了数字的变化类,正确的找出规律是解题的关键.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.将二次函数2yx 的图象先向左平移1个单位,再向下平移2个单位,所得图象对应的函数表达式是( )A .2(1)2y x =++B .2(1)2y x =+-C .2(1)2y x =--D .2(1)2y x =-+ 2.如图1,将三角板的直角顶点放在直角尺的一边上,Ð1=30°,Ð2=50°,则Ð3的度数为A .80°B .50°C .30°D .20°3.如图,将一张三角形纸片ABC 的一角折叠,使点A 落在ABC ∆处的'A 处,折痕为DE .如果A α∠=,'CEA β∠=,'BDA γ∠=,那么下列式子中正确的是( )A .2γαβ=+B .2γαβ=+C .γαβ=+D .180γαβ=--4.如图,抛物线y=-x 2+mx 的对称轴为直线x=2,若关于x 的-元二次方程-x 2+mx-t=0 (t 为实数)在l<x<3的范围内有解,则t 的取值范围是( )A .-5<t≤4B .3<t≤4C .-5<t<3D .t>-5 59153 )A.2到3之间B.3到4之间C.4到5之间D.5到6之间6.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是()A.22x=16(27﹣x)B.16x=22(27﹣x)C.2×16x=22(27﹣x) D.2×22x=16(27﹣x)7.下列图案是轴对称图形的是()A.B.C.D.8.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A.19B.14C.16D.139.在函数y=x中,自变量x的取值范围是( )A.x≥1B.x≤1且x≠0C.x≥0且x≠1D.x≠0且x≠110.下列事件中必然发生的事件是()A.一个图形平移后所得的图形与原来的图形不全等B.不等式的两边同时乘以一个数,结果仍是不等式C.200件产品中有5件次品,从中任意抽取6件,至少有一件是正品D.随意翻到一本书的某页,这页的页码一定是偶数二、填空题(本题包括8个小题)11.如图,正方形ABCD中,M为BC上一点,ME⊥AM,ME交AD的延长线于点E. 若AB=12,BM=5,则DE的长为_________.12.如图,四边形ABCD是菱形,∠A=60°,AB=2,扇形EBF的半径为2,圆心角为60°,则图中阴影部分的面积是_____.13.计算:2(a-b)+3b=___________.14.如图,每个小正方形的边长为1,A 、B 、C 是小正方形的顶点,则∠ABC 的正弦值为__.15.如图,在中国象棋的残局上建立平面直角坐标系,如果“相”和“兵”的坐标分别是(3,-1)和(-3,1),那么“卒”的坐标为_____.16.月球的半径约为1738000米,1738000这个数用科学记数法表示为___________.17.如图,点O (0,0),B(0,1)是正方形OBB 1C 的两个顶点,以对角线OB 1为一边作正方形OB 1B 2C 1,再以正方形OB 1B 2C 1的对角线OB 2为一边作正方形OB 2B 3C 2,……,依次下去.则点B 6的坐标____________.18.如图,Rt ABC ∆中,01590,15,tan 8C BC A ∠===,则AB = __________.三、解答题(本题包括8个小题)19.(6分)如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形()ABCD AB BC >的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M .()1求证:ED FC =.()2若20ADE ∠=,求DMC ∠的度数.20.(6分)如图,AB 是⊙O 的直径,BC 交⊙O 于点D ,E 是弧BD 的中点,AE 与BC 交于点F ,∠C=2∠EAB . 求证:AC 是⊙O 的切线;已知CD=4,CA=6,求AF 的长.21.(6分)为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,某市积极落实节能减排政策,推行绿色建筑,据统计,该市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:求这两年该市推行绿色建筑面积的年平均增长率;2017年该市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年该市能否完成计划目标.22.(8分)如图,小明同学用自制的直角三角形纸板DEF 测量树的高度AB ,他调整自己的位置,设法使斜边DF 保持水平,并且边DE 与点B 在同一直线上,已知纸板的两条直角边DE=0.4m ,EF=0.2m ,测得边DF 离地面的高度AC=1.5m ,CD=8m ,求树高.23.(8分)如图,某校准备给长12米,宽8米的矩形ABCD 室内场地进行地面装饰,现将其划分为区域Ⅰ(菱形PQFG ),区域Ⅱ(4个全等的直角三角形),剩余空白部分记为区域Ⅲ;点O 为矩形和菱形的对称中心,OP AB ,2OQ OP =,12AE PM =,为了美观,要求区域Ⅱ的面积不超过矩形ABCD 面积的18,若设OP x =米.甲 乙 丙单价(元/米2)2m 5n 2m (1)当3x =时,求区域Ⅱ的面积.计划在区域Ⅰ,Ⅱ分别铺设甲,乙两款不同的深色瓷砖,区域Ⅲ铺设丙款白色瓷砖,①在相同光照条件下,当场地内白色区域的面积越大,室内光线亮度越好.当x 为多少时,室内光线亮度最好,并求此时白色区域的面积.②三种瓷砖的单价列表如下,,m n 均为正整数,若当2x =米时,购买三款瓷砖的总费用最少,且最少费用为7200元,此时m =__________,n =__________.24.(10分)某景区商店销售一种纪念品,每件的进货价为40元.经市场调研,当该纪念品每件的销售价为50元时,每天可销售200件;当每件的销售价每增加1元,每天的销售数量将减少10件.当每件的销售价为52元时,该纪念品每天的销售数量为 件;当每件的销售价x 为多少时,销售该纪念品每天获得的利润y 最大?并求出最大利润.25.(10分)如图,已知AB 是⊙O 上的点,C 是⊙O 上的点,点D 在AB 的延长线上,∠BCD=∠BAC .求证:CD 是⊙O 的切线;若∠D=30°,BD=2,求图中阴影部分的面积.26.(12分)某同学报名参加校运动会,有以下5个项目可供选择:径赛项目:100m ,200m ,400m(分别用1A 、2A 、3A 表示);田赛项目:跳远,跳高(分别用1B 、2B 表示).()1该同学从5个项目中任选一个,恰好是田赛项目的概率为______;()2该同学从5个项目中任选两个,利用树状图或表格列举出所有可能出现的结果,并求恰好是一个田赛项目和一个径赛项目的概率.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】【分析】。
咸阳市名校2020年中考数学调研试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.已知线段AB=8cm,点C是直线AB上一点,BC=2cm,若M是AB的中点,N是BC的中点,则线段MN的长度为()A.5cm B.5cm或3cm C.7cm或3cm D.7cm2.已知抛物线y=ax2+bx+c(a<0)与x轴交于点A(﹣1,0),与y轴的交点在(0,2),(0,3)之间(包含端点),顶点坐标为(1,n),则下列结论:①4a+2b<0;②﹣1≤a≤23;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中结论正确的个数为()A.1个B.2个C.3个D.4个3.如图,线段AB两个端点的坐标分别为A(2,2)、B(3,1),以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,则端点C的坐标分别为()A.(4,4)B.(3,3)C.(3,1)D.(4,1)4.世界上最小的鸟是生活在古巴的吸蜜蜂鸟,它的质量约为0.056盎司.将0.056用科学记数法表示为()A.5.6×10﹣1B.5.6×10﹣2C.5.6×10﹣3D.0.56×10﹣15.﹣3的绝对值是()A.﹣3 B.3 C.-13D.136.下列现象,能说明“线动成面”的是()A.天空划过一道流星B.汽车雨刷在挡风玻璃上刷出的痕迹C.抛出一块小石子,石子在空中飞行的路线D.旋转一扇门,门在空中运动的痕迹7.在娱乐节目“墙来了!”中,参赛选手背靠水池,迎面冲来一堵泡沫墙,墙上有人物造型的空洞.选手需要按墙上的造型摆出相同的姿势,才能穿墙而过,否则会被墙推入水池.类似地,有一块几何体恰好能以右图中两个不同形状的“姿势”分别穿过这两个空洞,则该几何体为()A.B.C.D.8.下列计算正确的是( ) A .2a 2﹣a 2=1B .(ab )2=ab 2C .a 2+a 3=a 5D .(a 2)3=a 69.已知点M (-2,3 )在双曲线上,则下列一定在该双曲线上的是( )A .(3,-2 )B .(-2,-3 )C .(2,3 )D .(3,2)10.如图,AB ∥CD ,点E 在线段BC 上,CD=CE,若∠ABC=30°,则∠D 为( )A .85°B .75°C .60°D .30°二、填空题(本题包括8个小题)11.如图,△ABC 中,AD 是中线,BC=8,∠B=∠DAC ,则线段 AC 的长为________.12.甲、乙两个搬运工搬运某种货物.已知乙比甲每小时多搬运600kg ,甲搬运5000kg 所用的时间与乙搬运8000kg 所用的时间相等.设甲每小时搬运xkg 货物,则可列方程为_____.13.如图1是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成.若较短的直角边BC =5,将四个直角三角形中较长的直角边分别向外延长一倍,得到图2所示的“数学风车”,若△BCD 的周长是30,则这个风车的外围周长是_____.14.如图,在平面直角坐标系中,矩形ABCD 的边AB :BC=3:2,点A (-3,0),B (0,6)分别在x 轴,y 轴上,反比例函数y=kx(x >0)的图象经过点D ,且与边BC 交于点E ,则点E 的坐标为__.15.一元二次方程()21210k x x ---=有两个不相等的实数根,则k 的取值范围是________.16.在平面直角坐标系的第一象限内,边长为1的正方形ABCD 的边均平行于坐标轴,A 点的坐标为(a ,a).如图,若曲线3(0)y xx=>与此正方形的边有交点,则a的取值范围是________.17.计算:21﹣1=1,22﹣1=3,23﹣1=7,24﹣1=15,25﹣1=31,归纳各计算结果中的个位数字规律,猜测22019﹣1的个位数字是_____.18.如图,正方形ABCD边长为3,以直线AB为轴,将正方形旋转一周.所得圆柱的主视图(正视图)的周长是_____.三、解答题(本题包括8个小题)19.(6分)工人师傅用一块长为10dm,宽为6dm的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)求长方体底面面积为12dm2时,裁掉的正方形边长多大?20.(6分)如图,在一笔直的海岸线l上有A、B两个码头,A在B的正东方向,一艘小船从A码头沿它的北偏西60°的方向行驶了20海里到达点P处,此时从B码头测得小船在它的北偏东45°的方向.求此时小船到B码头的距离(即BP的长)和A、B两个码头间的距离(结果都保留根号).21.(6分)我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.22.(8分)如图,在Rt△ABC中,∠C=90°,以BC为直径的⊙O交AB于点D,DE交AC于点E,且∠A =∠ADE.求证:DE是⊙O的切线;若AD=16,DE=10,求BC的长.23.(8分)如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB,DF⊥AC,垂足分别为E、F,求证:DE=DF.24.(10分)已知关于x的一元二次方程x2﹣mx﹣2=0…①若x=﹣1是方程①的一个根,求m的值和方程①的另一根;对于任意实数m,判断方程①的根的情况,并说明理由.25.(10分)由我国完全自主设计、自主建造的首艘国产航母于2018年5月成功完成第一次海上试验任务.如图,航母由西向东航行,到达A处时,测得小岛C位于它的北偏东70 方向,且与航母相距80海里,再航行一段时间后到达B处,测得小岛C位于它的北偏东37 方向.如果航母继续航行至小岛C的正南方向的D处,求还需航行的距离BD的长.26.(12分)如图,AB是⊙O的直径,BC交⊙O于点D,E是弧BD的中点,AE与BC交于点F,∠C=2∠EAB.求证:AC是⊙O的切线;已知CD=4,CA=6,求AF的长.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.B【解析】(1)如图1,当点C在点A和点B之间时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB-BN=3cm;(2)如图2,当点C在点B的右侧时,∵点M是AB的中点,点N是BC的中点,AB=8cm,BC=2cm,∴MB=12AB=4cm,BN=12BC=1cm,∴MN=MB+BN=5cm.综上所述,线段MN的长度为5cm或3cm. 故选B.点睛:解本题时,由于题目中告诉的是点C 在直线AB 上,因此根据题目中所告诉的AB 和BC 的大小关系要分点C 在线段AB 上和点C 在线段AB 的延长线上两种情况分析解答,不要忽略了其中任何一种. 2.C 【解析】 【分析】①由抛物线的顶点横坐标可得出b=-2a ,进而可得出4a+2b=0,结论①错误; ②利用一次函数图象上点的坐标特征结合b=-2a 可得出a=-3c,再结合抛物线与y 轴交点的位置即可得出-1≤a≤-23,结论②正确; ③由抛物线的顶点坐标及a <0,可得出n=a+b+c ,且n≥ax 2+bx+c ,进而可得出对于任意实数m ,a+b≥am 2+bm 总成立,结论③正确;④由抛物线的顶点坐标可得出抛物线y=ax 2+bx+c 与直线y=n 只有一个交点,将直线下移可得出抛物线y=ax 2+bx+c 与直线y=n-1有两个交点,进而可得出关于x 的方程ax 2+bx+c=n-1有两个不相等的实数根,结合④正确. 【详解】:①∵抛物线y=ax 2+bx+c 的顶点坐标为(1,n ), ∴-2ba=1, ∴b=-2a ,∴4a+2b=0,结论①错误;②∵抛物线y=ax 2+bx+c 与x 轴交于点A (-1,0), ∴a-b+c=3a+c=0, ∴a=-3c. 又∵抛物线y=ax 2+bx+c 与y 轴的交点在(0,2),(0,3)之间(包含端点), ∴2≤c≤3, ∴-1≤a≤-23,结论②正确;③∵a<0,顶点坐标为(1,n),∴n=a+b+c,且n≥ax2+bx+c,∴对于任意实数m,a+b≥am2+bm总成立,结论③正确;④∵抛物线y=ax2+bx+c的顶点坐标为(1,n),∴抛物线y=ax2+bx+c与直线y=n只有一个交点,又∵a<0,∴抛物线开口向下,∴抛物线y=ax2+bx+c与直线y=n-1有两个交点,∴关于x的方程ax2+bx+c=n-1有两个不相等的实数根,结合④正确.故选C.【点睛】本题考查了二次函数图象与系数的关系、抛物线与x轴的交点以及二次函数的性质,观察函数图象,逐一分析四个结论的正误是解题的关键.3.A【解析】【分析】利用位似图形的性质结合对应点坐标与位似比的关系得出C点坐标.【详解】∵以原点O为位似中心,在第一象限内将线段AB扩大为原来的2倍后得到线段CD,∴A点与C点是对应点,∵C点的对应点A的坐标为(2,2),位似比为1:2,∴点C的坐标为:(4,4)故选A.【点睛】本题考查了位似变换,正确把握位似比与对应点坐标的关系是解题关键.4.B【解析】【详解】0.056用科学记数法表示为:0.056=-2,故选B.5.6105.B【解析】【分析】根据负数的绝对值是它的相反数,可得出答案.【详解】根据绝对值的性质得:|-1|=1.故选B.【点睛】本题考查绝对值的性质,需要掌握非负数的绝对值是它本身,负数的绝对值是它的相反数.6.B【解析】【分析】本题是一道关于点、线、面、体的题目,回忆点、线、面、体的知识;【详解】解:∵A、天空划过一道流星说明“点动成线”,∴故本选项错误.∵B、汽车雨刷在挡风玻璃上刷出的痕迹说明“线动成面”,∴故本选项正确.∵C、抛出一块小石子,石子在空中飞行的路线说明“点动成线”,∴故本选项错误.∵D、旋转一扇门,门在空中运动的痕迹说明“面动成体”,∴故本选项错误.故选B.【点睛】本题考查了点、线、面、体,准确认识生活实际中的现象是解题的关键.点动成线、线动成面、面动成体. 7.C【解析】试题分析:通过图示可知,要想通过圆,则可以是圆柱、圆锥、球,而能通过三角形的只能是圆锥,综合可知只有圆锥符合条件.故选C8.D【解析】【分析】根据合并同类项法则判断A、C;根据积的乘方法则判断B;根据幂的乘方法判断D,由此即可得答案. 【详解】A、2a2﹣a2=a2,故A错误;B、(ab)2=a2b2,故B错误;C、a2与a3不是同类项,不能合并,故C错误;D、(a2)3=a6,故D正确,故选D.【点睛】本题考查幂的乘方与积的乘方,合并同类项,熟练掌握各运算的运算性质和运算法则是解题的关键.9.A【解析】因为点M(-2,3)在双曲线上,所以xy=(-2)×3=-6,四个答案中只有A符合条件.故选A 10.B【解析】分析:先由AB∥CD,得∠C=∠ABC=30°,CD=CE,得∠D=∠CED,再根据三角形内角和定理得,∠C+∠D+∠CED=180°,即30°+2∠D=180°,从而求出∠D.详解:∵AB∥CD,∴∠C=∠ABC=30°,又∵CD=CE,∴∠D=∠CED,∵∠C+∠D+∠CED=180°,即30°+2∠D=180°,∴∠D=75°.故选B.点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∠C,再由CD=CE得出∠D=∠CED,由三角形内角和定理求出∠D.二、填空题(本题包括8个小题)11.2【解析】已知BC=8,AD是中线,可得CD=4,在△CBA和△CAD中,由∠B=∠DAC,∠C=∠C,可判定△CBA∽△CAD,根据相似三角形的性质可得AC CDBC AC=,即可得AC2=CD•BC=4×8=32,解得2.12.5000x=8000600+x【解析】【分析】设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,根据甲搬运5000kg所用时间与乙搬运8000kg所用时间相等建立方程求出其解就可以得出结论.【详解】解:设甲每小时搬运x千克,则乙每小时搬运(x+600)千克,由题意得:5000x=8000600+x.故答案是:5000x=8000600+x.【点睛】本题考查了由实际问题抽象出分式方程,根据题意找到等量关系是关键.13.71【解析】分析:由题意∠ACB为直角,利用勾股定理求得外围中一条边,又由AC延伸一倍,从而求得风车的一个轮子,进一步求得四个.详解:依题意,设“数学风车”中的四个直角三角形的斜边长为x,AC=y,则x2=4y2+52,∵△BCD的周长是30,∴x+2y+5=30则x=13,y=1.∴这个风车的外围周长是:4(x+y)=4×19=71.故答案是:71.点睛:本题考查了勾股定理在实际情况中的应用,注意隐含的已知条件来解答此类题.14.(-2,7).【解析】【详解】解:过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,∵AB:BC=3:2,点A(﹣3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF =7,∴点D 的坐标为:(﹣7,2), ∴反比例函数的解析式为:y =﹣14x①,点C 的坐标为:(﹣4,8). 设直线BC 的解析式为:y =kx+b ,则b=6-4k+b=8⎧⎨⎩解得: 1k=-2b=6⎧⎪⎨⎪⎩ ∴直线BC 的解析式为:y =﹣12x+6②, 联立①②得: x=-2y=7⎧⎨⎩或x=14y=-1⎧⎨⎩(舍去), ∴点E 的坐标为:(﹣2,7). 故答案为(﹣2,7).15.2k <且1k ≠ 【解析】 【分析】根据一元二次方程的根与判别式△的关系,结合一元二次方程的定义解答即可. 【详解】由题意可得,1−k≠0,△=4+4(1−k)>0, ∴k <2且k≠1. 故答案为k <2且k≠1. 【点睛】本题主要考查了一元二次方程的根的判别式的应用,解题中要注意不要漏掉对二次项系数1-k≠0的考虑. 1633 【解析】 【分析】根据题意得出C 点的坐标(a-1,a-1),然后分别把A 、C 的坐标代入求得a 的值,即可求得a 的取值范围. 【详解】解:反比例函数经过点A 和点C . 当反比例函数经过点A 时,即2a =3,解得:;当反比例函数经过点C 时,即2(1)a =3,解得:,故答案为:【点睛】本题考查的是反比例函数图象上点的坐标特点,关键是掌握反比例函数y=kx(k 为常数,k≠0)的图象上的点(x ,y )的横纵坐标的积是定值k ,即xy=k . 17.1 【解析】 【分析】观察给出的数,发现个位数是循环的,然后再看2019÷4的余数,即可求解. 【详解】由给出的这组数21﹣1=1,22﹣1=3,23﹣1=1,24﹣1=15,25﹣1=31,…, 个位数字1,3,1,5循环出现,四个一组, 2019÷4=504…3, ∴22019﹣1的个位数是1. 故答案为1. 【点睛】本题考查数的循环规律,确定循环规律,找准余数是解题的关键. 18.1. 【解析】分析:所得圆柱的主视图是一个矩形,矩形的宽是3,长是2. 详解:矩形的周长=3+3+2+2=1.点睛:本题比较容易,考查三视图和学生的空间想象能力以及计算矩形的周长. 三、解答题(本题包括8个小题)19.裁掉的正方形的边长为2dm ,底面积为12dm 2. 【解析】试题分析:设裁掉的正方形的边长为xdm ,则制作无盖的长方体容器的长为(10-2x )dm ,宽为(6-2x )dm ,根据长方体底面面积为12dm 2列出方程,解方程即可求得裁掉的正方形边长. 试题解析:设裁掉的正方形的边长为xdm , 由题意可得(10-2x)(6-2x)=12,即x 2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm ,底面积为12dm 2.20.小船到B 码头的距离是102海里,A 、B 两个码头间的距离是(10+103)海里 【解析】试题分析:过P 作PM ⊥AB 于M ,求出∠PBM=45°,∠PAM=30°,求出PM ,即可求出BM 、AM 、BP . 试题解析:如图:过P 作PM ⊥AB 于M ,则∠PMB=∠PMA=90°,∵∠PBM=90°﹣45°=45°,∠PAM=90°﹣60°=30°,AP=20,∴PM=12AP=10,AM=3PM=103,∴∠BPM=∠PBM=45°,∴PM=BM=10,AB=AM+MB=10103+,∴BP=sin 45PM=102,即小船到B 码头的距离是102海里,A 、B 两个码头间的距离是(10103+)海里.考点:解直角三角形的应用-方向角问题. 21.(1) 平均数(分) 中位数(分) 众数(分) 初中部 85 85 85 高中部8580100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定 【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 100(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些.(3)∵,222222S7085100851008575858085160 =-+-+-+-+-=高中队()()()()(),∴2 S初中队<2S高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.(2)根据平均数和中位数的统计意义分析得出即可.(3)分别求出初中、高中部的方差比较即可.22.(1)证明见解析;(2)15.【解析】【分析】(1)先连接OD,根据圆周角定理求出∠ADB=90°,根据直角三角形斜边上中线性质求出DE=BE,推出∠EDB=∠EBD,∠ODB=∠OBD,即可求出∠ODE=90°,根据切线的判定推出即可.(2)首先证明AC=2DE=20,在Rt△ADC中,DC=12,设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC 中,BC2=(x+16)2-202,可得x2+122=(x+16)2-202,解方程即可解决问题.【详解】(1)证明:连结OD,∵∠ACB=90°,∴∠A+∠B=90°,又∵OD=OB,∴∠B=∠BDO,∵∠ADE=∠A,∴∠ADE+∠BDO=90°,∴∠ODE=90°.∴DE是⊙O的切线;(2)连结CD,∵∠ADE=∠A,∴AE=DE.∵BC是⊙O的直径,∠ACB=90°.∴EC是⊙O的切线.∴DE=EC.∴AE=EC,又∵DE=10,∴AC=2DE=20,在Rt△ADC中,DC=22-=201612设BD=x,在Rt△BDC中,BC2=x2+122,在Rt△ABC中,BC2=(x+16)2﹣202,∴x2+122=(x+16)2﹣202,解得x=9,∴BC=22+=.12915【点睛】考查切线的性质、勾股定理、等腰三角形的判定和性质等知识,解题的关键是灵活综合运用所学知识解决问题.23.答案见解析【解析】由于AB=AC,那么∠B=∠C,而DE⊥AC,DF⊥AB可知∠BFD=∠CED=90°,又D是BC中点,可知BD=CD,利用AAS可证△BFD≌△CED,从而有DE=DF.24.(1)方程的另一根为x=2;(2)方程总有两个不等的实数根,理由见解析.【解析】试题分析:(1)直接把x=-1代入方程即可求得m的值,然后解方程即可求得方程的另一个根;(2)利用一元二次方程根的情况可以转化为判别式△与1的关系进行判断.(1)把x=-1代入得1+m-2=1,解得m=1∴2--2=1.∴∴另一根是2; (2)∵,∴方程①有两个不相等的实数根.考点:本题考查的是根的判别式,一元二次方程的解的定义,解一元二次方程点评:解答本题的关键是熟练掌握一元二次方程根的情况与判别式△的关系:当△>1,方程有两个不相等的实数根;当△=1,方程有两个相等的实数根;当△<1,方程没有实数根 25.还需要航行的距离BD 的长为20.4海里. 【解析】分析:根据题意得:∠ACD=70°,∠BCD=37°,AC=80海里,在直角三角形ACD 中,由三角函数得出CD=27.2海里,在直角三角形BCD 中,得出BD ,即可得出答案. 详解:由题知:70ACD ∠=︒,37BCD ∠=︒,80AC =.在Rt ACD ∆中,cos CD ACD AC ∠=,0.3480CD∴=,27.2CD ∴=(海里). 在Rt BCD ∆中,tan BD BCD CD ∠=,0.7527.2BD∴=,20.4BD ∴=(海里).答:还需要航行的距离BD 的长为20.4海里.点睛:此题考查了解直角三角形的应用-方向角问题,三角函数的应用;求出CD 的长度是解决问题的关键. 26.(1)证明见解析(2)6 【解析】 【分析】(1)连结AD ,如图,根据圆周角定理,由E 是BD 的中点得到2DAB EAB ∠=∠,由于2ACB EAB ∠=∠,则ACB DAB ∠=∠,,再利用圆周角定理得到90ADB ,∠=︒则90DAC ACB ∠+∠=︒,所以90DAC DAB ∠+∠=︒,于是根据切线的判定定理得到AC 是⊙O 的切线; ()2先求出DF 的长,用勾股定理即可求出.【详解】解:(1)证明:连结AD ,如图, ∵E 是BD 的中点,∴2DAB EAB ∠=∠, ∵2ACB EAB ∠=∠, ∴ACB DAB ∠=∠,∵AB 是⊙O 的直径,∴90ADB ,∠=︒ ∴90DAC ACB ∠+∠=︒,∴90DAC DAB ∠+∠=︒, 即90BAC ∠=︒, ∴AC 是⊙O 的切线;(2)∵9090EAC EAB DAE AFD EAD EAB ∠+∠=︒∠+∠=︒∠=∠,,, ∴62EAC AFD CF AC DF ,,.∠=∠∴==∴= ∵222226420AD AC CD =-=-=, ∴22220226AF AD DF =+=+=【点睛】本题考查切线的判定与性质,圆周角定理,属于圆的综合题,注意切线的证明方法,是高频考点.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A.众数B.方差C.平均数D.中位数2.如图所示的图形,是下面哪个正方体的展开图()A.B.C.D.3.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:3B.2:3:4 C.1:3:2 D.1:2:34.如图所示的几何体的俯视图是()A.B.C.D.5.把边长相等的正六边形ABCDEF和正五边形GHCDL的CD边重合,按照如图所示的方式叠放在一起,延长LG交AF于点P,则∠APG=()A.141°B.144°C.147°D.150°6.五个新篮球的质量(单位:克)分别是+5、﹣3.5、+0.7、﹣2.5、﹣0.6,正数表示超过标准质量的克数,负数表示不足标准质量的克数.仅从轻重的角度看,最接近标准的篮球的质量是()A.﹣2.5 B.﹣0.6 C.+0.7 D.+57.某商店有两个进价不同的计算器都卖了80元,其中一个赢利60%,另一个亏本20%,在这次买卖中,这家商店()A.赚了10元B.赔了10元C.赚了50元D.不赔不赚8.等腰三角形底角与顶角之间的函数关系是( ) A .正比例函数 B .一次函数C .反比例函数D .二次函数9.在函数y =1xx -中,自变量x 的取值范围是( ) A .x≥1B .x≤1且x≠0C .x≥0且x≠1D .x≠0且x≠110.小华在做解方程作业时,不小心将方程中的一个常数弄脏了而看不清楚,被弄脏的方程是11()1323x x x ▲---+=-, 这该怎么办呢?他想了一想,然后看了一下书后面的答案,知道此方程的解是x =5,于是,他很快便补好了这个常数,并迅速地做完了作业。
(4份试卷汇总)2019-2020学年咸阳市名校中考数学教学质量调研试卷

2019-2020学年数学中考模拟试卷一、选择题1.在一幅长80cm ,宽50cm 的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整幅挂图的面积是25400cm ,设金色纸边的宽为xcm ,那么x 满足的方程是( )A.213014000x x +-=B.2653500x x +-=C.213014000x x --=D.2653500x x --=2.若关于x ,y 的二元一次方程组59x y k x y k +=⎧⎨-=⎩的解也是二元一次方程2x+3y =6的解,则k 的值为( ) A.34 B.43 C.﹣34 D.﹣433.“山西八分钟,惊艳全世界”.2019年2月25日下午,在外交部蓝厅隆重举行山西全球推介活动.山西经济结构从“一煤独大”向多元支撑转变,三年累计退出煤炭过剩产能8800余万吨,煤层气产量突破56亿立方米.数据56亿用科学记数法可表示为( )A .56×108B .5.6×108C .5.6×109D .0.56×10104.在百度搜索引擎中,输人“魅力漳州”四个字,百度为您找到相关结果约1 600 000个,数 据1 600 000用科学记数法表示,正确的是( ).A .16×105B .1.6×106C .1.6×107D .0.6×108 5.如图,在菱形ABCD 中,120BAD ∠=︒ ,已知△ABC 的周长为15,则菱形ABCD 的对角线BD 的长为( ).A .53B .532C .103D .5346.如图所示的几何体是一个圆锥,下面有关它的三视图的结论中,正确的是( )A .主视图是中心对称图形B .左视图是中心对称图形C .俯视图既是中心对称图形又是轴对称图形D .主视图既是中心对称图形又是轴对称图形7.在2015-2016CBA 常规赛季中,易建联罚球投篮的命中率大约是82.3%,下列说法错误的是( )A .易建联罚球投篮2次,一定全部命中B .易建联罚球投篮2次,不一定全部命中C .易建联罚球投篮1次,命中的可能性较大D .易建联罚球投篮1次,不命中的可能性较小8.如图,将一副三角板如图放置,BAC ADE 90∠∠==o ,E 45∠=o ,B 60o ∠=,若AE //BC ,则AFD (∠= )A .75oB .85oC .90oD .65o9.如图,已知菱形ABCD 的面积为83,对角线AC 长为43,M 为BC 的中点,若P 为对角线AC 上一动点,则PB 与PM 之和的最小值为( )A .3B .23C .2D .410.如图,在正方形ABCD 中,E 为AD 的中点,P 为AB 上的一个动点,若AB 2=,则PE PC +的最小值为( )A .122+B .23C .25+D .13 11.如图,已知⊙O 的半径为6cm ,两弦AB 与CD 垂直相交于点E ,若CE =3cm ,DE =9cm ,则AB =( )333cm 312.现有一组数据:165、160、166、170、164、165,若去掉最后一个数165,下列说法正确的是( )A .平均数不变,方差变大B .平均数不变,方差不变C .平均数不变,方差变小D .平均数变小,方差不变二、填空题13.把多项式34x x 分解因式的结果是______.14.如图,在Rt △BAC 和Rt △BDC 中,∠BAC =∠BDC =90°,O 是BC 的中点,连接AO 、DO .若AO =3,则DO 的长为_____.15.在平面直角坐标系中,△ABC 的三个顶点的坐标分别为A (﹣3,5),B (﹣4,3),C (﹣1,1).写出各点关于原点的对称点的坐标_____,_____,_____.16.分解因式:3x 2-3y 2=___________17.如图,在⊙O 的内接四边形ABCD 中,AB=3,AD=5,∠BAD=60°,点C 为弧BD 的中点,则AC 的长是__.18.如图,已知∠ACB =90°,直线MN ∥AB ,若∠1=33°,则∠2=_____°.三、解答题19.如图,AB 是半圆O 的直径,点P 是半圆上不与点A ,B 重合的动点,PC ∥AB ,点M 是OP 中点.(1)求证:四边形OBCP 是平行四边形;(2)填空:①当∠BOP= 时,四边形AOCP是菱形;②连接BP ,当∠ABP = 时,PC 是⊙O 的切线.20.在△ABC 中,CA =CB ,点D 、E 分别是边AC 、AB 的中点,连接DE ,(1)如图①,当∠CAB =60°时,△DAE 绕点A 逆时针旋转得到△D 1AE 1,连接CD 1、BE 1,△DAE 在旋转过程中请猜想:11CD BE (直接写出答案); (2)如图②,当∠CAB =45°时,△DAE 绕点A 逆时针旋转得到△D 2AE 2,连接CD 2、BE 2,△DAE 在旋转过程中请猜想:22CD BE 的比值,并证明你的猜想; (3)如图③,当∠CAB =α(0<α<90°)时,△DAE 绕点A 逆时针旋转得到△D 3AE 3,连接CD 3、BE 3,请直接写出△DAE 在旋转过程中33CD BE (用含α的代数式表示) 21.从甲市到乙市乘坐高铁列车的路程为180千米,乘坐普通列车的路程为240千米,高铁列车的平均速度是普通列车的平均速度的3倍,高铁列车的乘车时间比普通列车的乘车时间缩短了2小时.(1)求高铁列车的平均速度是每小时多少千米;(2)某日王老师要去距离甲市大约405m 的某地参加14:00召开的会议,如果他买到当日10:40从甲市至该地的高铁票,而且从该地高铁站到会议地点最多需要1.5h ,试问在高铁列车准点到达的情况下他能在开会之前到达吗?22.已知:∠1=∠2,EG 平分∠AEC .(1)如图①,∠MAE =45°,∠FEG =15°,∠NCE =75°.求证:AB ∥CD ;(2)如图②,∠MAE =140°,∠FEG =30°,当∠NCE = °时,AB ∥CD ;(3)如图②,请你直接写出∠MAE 、∠FEG 、∠NCE 之间满足什么关系时,AB ∥CD ;(4)如图③,请你直接写出∠MAE 、∠FEG 、∠NCE 之间满足什么关系时,AB ∥CD .23.李老师为了解某校学生完成数学课前预习的具体情况,对部分学生进行了跟踪调查,并将调查结果分为四类,A :很好;B :较好;C :一般;D :较差.绘制成如下统计图.(1)李老师一共调查了多少名同学?并将下面条形统计图补充完整.(2)若该校有1000名学生,则数学课前预习“很好”和“较好”总共约多少人?(3)为了共同进步,李老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,求出所选两位同学恰好是一位男同学和一位女同学的概率.(要求列表或树状图)24.(2014湖南怀化)两个城镇A、B与两条公路ME、MF位置如图所示,其中ME是东西方向的公路.现电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A、B的距离相等,到两条公路ME、MF的距离也必须相等,且在∠FME的内部.(1)那么点C应选在何处?请在图中,用尺规作图找出符合条件的点C(不写已知、求作、作法,只保留作图痕迹);MN=+km,在M处测得点C位于点M的北偏东60°(2)设AB的垂直平分线交ME于点N,且2(31)方向,在N处测得点C位于点N的北偏西45°方向,求点C到公路ME的距离.25.如图,AB是⊙O的直径,点D在AB的延长线上,点C在⊙O上,CA=CD,∠CDA=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径为4,①用尺规作出点A到CD所在直线的距离;②求出该距离.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 B A C B A C A A B D D A13.(2)(2)x x x +-14.315.(3,﹣5) (4,﹣3) (1,﹣1).16.3(x+y )(x ﹣y )17.18.57三、解答题19.(1)见解析;(2)①120°;②45°【解析】【分析】(1)由AAS 证明△CPM ≌△AOM ,得出PC=OA ,得出PC=OB ,即可得出结论;(2)①证出OA=OP=PA ,得出△AOP 是等边三角形,∠A=∠AOP=60°,得出∠BOP=120°即可;②由切线的性质和平行线的性质得出∠BOP=90°,由等腰三角形的性质得出∠ABP=∠OPB=45°即可.【详解】(1)∵PC ∥AB ,∴∠PCM =∠OAM ,∠CPM =∠AOM .∵点M 是OP 的中点,∴OM =PM ,在△CPM 和△AOM 中,PCM OAM CPM AOM PM OM ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△CPM ≌△AOM (AAS ),∴PC =OA .∵AB 是半圆O 的直径,∴OA =OB ,∴PC =OB .又PC ∥AB ,∴四边形OBCP 是平行四边形.(2)①∵四边形AOCP 是菱形,∴OA =PA ,∵OA =OP ,∴OA =OP =PA ,∴△AOP 是等边三角形,∴∠A =∠AOP =60°,∴∠BOP =120°;故答案为:120°;②∵PC 是⊙O 的切线,∴OP ⊥PC ,∠OPC =90°,∵PC ∥AB ,∴∠BOP =90°,∵OP =OB ,∴△OBP 是等腰直角三角形,∴∠ABP =∠OPB =45°,故答案为:45°.【点睛】本题是圆的综合题目,考查了全等三角形的判定与性质、平行四边形的判定、切线的性质、菱形的判定与性质、等边三角形的判定与性质等知识;本题综合性强,熟练掌握切线的性质和平行四边形的判定是解题的关键.20.(1)1;(2)2222CDBE=,见解析;(3)33CDBE的比值是定值,3312cosCDBEα=. 【解析】【分析】(1)如图①中,利用等边三角形的性质证明△D1AC≌△E1AB(SAS)即可.(2)结论:2222CDBE=,证明△AD2C∽△AE2B即可解决问题.(3)结论:33CDBE的比值是定值,3312cosCDBEα=.证明方法类似(2).【详解】(1)如图①中,∵CA=CB,∠CAB=60°,∴△ACB是等边三角形,∵AD=DC,AE=EB,∴△AED,△AD1E1都是等边三角形,∴AD1=AE1,∠D1AE1=∠CAB=60°,AC=AB,∴∠D1AC=∠E1AB,∴△D1AC≌△E1AB(SAS),∴CD1=BE1,∴11CDBE=1,故答案为1.(2)结论:22CDBE=2理由:如图②中,连接CE.∵CA=CB,点D,E是边AB,AC的中点,∴CE⊥AB,AB=2AE=2AE2,AC=2AD=2AD2,∴∠AEC=90°,在Rt △AEC 中,∵∠AEC =90°,∠CAB =45°,∴AE =AC•cos∠CAB =AC•cos45°=2AC , ∴AB =2AE=2×2AC =2 AC , ∴2AC AB AC ==2, ∵∠D 2A E 2=∠CAB ,∠D 2AC =∠D 2A E 2﹣∠CAE 2,∠E 2AB =∠CAB ﹣∠CAE 2,∴∠D 2AC =∠E 2AB ,又∵222222AD AD AC AB AE AE ==, ∴△AD 2C ∽△AE 2B , ∴222CD AC BE AB ==. (3)结论:33CD BE 的比值是定值,33CD BE =12cos α. 理由:如图③中,连接EC .∵CA =CB ,AE =EB ,∴CE ⊥AB ,∴1122cos 2cos CA AC AB AE CAE α===∠ , 同法可证:△AD 3C ∽△AE 3B ,∴3312cos CD AC BE AB α== , 【点睛】本题属于几何变换综合题,考查了等腰三角形的判定和性质,相似三角形的判定和性质全等三角形的判定和性质,锐角三角函数等知识,解题的关键是正确寻找全等三角形或相似三角形解决问题,属于中考压轴题.21.(1)270(2)他能在开会之前到达【解析】【分析】(1)设普通列车平均速度每小时x 千米,则高速列车平均速度每小时3x 千米,根据题意可得,坐高铁走180千米比坐普通车240千米少用2小时,据此列方程求解;(2)求出王老师所用的时间,然后进行判断.【详解】(1)设普通列车平均速度每小时x 千米,则高速列车平均速度每小时3x 千米,根据题意得,2401803x x-=2, 解得:x =90,经检验,x=90是所列方程的根,则3x=3×90=270.答:高速列车平均速度为每小时270千米;(2)405÷270=1.5,则坐车共需要1.5+1.5=3(小时),王老师到达会议地点的时间为13点40.故他能在开会之前到达.【点睛】本题考查了分式方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解,注意检验.22.(1)见解析;(2)当∠NCE=80°时,AB∥CD;(3)当2∠FEG+∠NCE=∠MAE时AB∥CD;(4)当∠MAE+2∠FEG+∠NCE=360°时,AB∥CD.【解析】【分析】(1)由题意可得AB∥EF,根据平行线的性质,角平分线的性质可得角的数量关系,可求∠FEC=75°,即可求结论.(2)由题意可得AB∥EF,根据平行线的性质,角平分线的性质可得角的数量关系,可求∠FEC=100°,再根据AB∥CD,可求∠NCE的度数(3)由题意可得AB∥EF,根据平行线的性质,角平分线的性质可得角的数量关系,可求∠FEC=180°-∠MAE+2∠FEG,再根据AB∥CD,可求其关系.(4)由题意可得AB∥EF,根据平行线的性质,角平分线的性质可得角的数量关系,可求∠FEC=∠MAE+2∠FEG-180°,再根据AB∥CD,可求其关系.【详解】证明(1)∵∠1=∠2∴AB∥EF∴∠MAE=∠AEF=45°,且∠FEG=15°∴∠AEG=60°∵EG平分∠AEC∴∠AEG=∠CEG=60°∴∠CEF=75°∵∠ECN=75°∴∠FEC=∠ECN∴EF∥CD且AB∥EF∴AB∥CD(2)∵∠1=∠2∴AB∥EF∴∠MAE+∠FEA=180°且∠MAE=140°∴∠AEF=40°∵∠FEG=30°∴∠AEG=70°∵EG平分∠AEC∴∠GEC=∠AEG=70°∴∠FEC=100°∵AB∥CD,AB∥EF∴EF∥CD∴∠NCE+∠FEC=180°∴∠NCE=80°∴当∠NCE=80°时,AB∥CD(3)∵∠1=∠2∴AB∥EF∴∠MAE+∠FEA=180°∴∠FEA=180°﹣∠MAE,∴∠AEG=∠FEA+∠FEG=180°﹣∠MAE+∠FEG∵EG平分∠AEC∴∠GEC=∠AEG∴∠FEC=∠GEC+∠FEG=180°﹣∠MAE+∠FEG+∠FEG=180°﹣∠MAE+2∠FEG∵AB∥CD,AB∥EF∴EF∥CD∴∠FEC+∠NCE=180°∴180°﹣∠MAE+2∠FEG+∠NCE=180°∴2∠FEG+∠NCE=∠MAE∴当2∠FEG+∠NCE=∠MAE时AB∥CD(4)∠1=∠2∴AB∥EF∴∠MAE+∠FEA=180°∴∠FEA=180°﹣∠MAE,∴∠AEG=∠FEG﹣∠FEA=∠FEG﹣180°+∠MAE∵EG平分∠AEC∴∠GEC=∠AEG∴∠FEC=∠FEA+2∠AEG=180°﹣∠MAE+2∠FEG﹣360°+2∠MAE=∠MAE+2∠FEG﹣180°∵AB∥CD,AB∥EF∴EF∥CD∴∠FEC+∠NCE=180°∴∠MAE+2∠FEG﹣180°+∠NCE=180°∴∠MAE+2∠FEG+∠NCE=360°∴当∠MAE+2∠FEG+∠NCE=360°时,AB∥CD【点睛】本题考查了平行线的性质和判定,角平分线的性质,关键是由平行线的性质得到角的数量关系.23.(1)20,图详见解析;(2)650;(3)1 2【解析】【分析】(1)利用A类学生总数除以A类学生所占百分比可得调查学生总数,用调查的学生总数乘以C类所占的百分比,再减去C类的男生数,从而求出C类的女生数;用调查的学生总数减去A、B、C类的学生数和D类的女生数,从而求出D类的男生数,即可补全统计图;(2)利用样本估计总体思想求解可得.(3)根据题意先画出树状图,再根据概率公式即可得出答案.【详解】(1)抽查的总人数为3÷15%=20,C类中女生有:20×25%﹣2=3(名),D类中男生有20﹣3﹣10﹣5﹣1=1(人),条形统计图补充完整如图所示:(2)1000×65%=650人,答:数学课前预习“很好”和“较好”总共约650人;(3)根据题意画图如下:,由树状图可得共有6种可能的结果,其中恰好一名男同学和一名女同学的结果有3中,所以恰好是一名男同学和一名女同学的概率是12.【点睛】此题主要考查了条形统计图,以及概率,关键是掌握概率=所求情况数与总情况数之比.24.(1)答图如图见解析;(2)点C到公路ME的距离为2km.【解析】【分析】(1)到城镇A、B距离相等的点在线段AB的垂直平分线上,到两条公路距离相等的点在两条公路所夹角的角平分线上,分别作出垂直平分线与角平分线,它们的交点即为所求作的点C.(2)作CD⊥MN于点D,由题意得:∠CMN=30°,∠CND=45°,分别在Rt△CMD中和Rt△CND中,用CD表示出MD和ND的长,从而求得CD的长即可.【详解】(1)答图如图:(2)作CD⊥MN于点D,由题意得:∠CMN=30°,∠CND=45°,∵在Rt△CMD中,CDMD=tan∠CMN,∴MD=3=3CD;∵在Rt△CND中,CDDN=tan∠CNM,∴ND=1CD=CD;∵MN=2(3+1)km,∴MN=MD+DN=CD+3CD=2(3+1)km,解得:CD=2km.故点C到公路ME的距离为2km.【点睛】本题考查了解直角三角形的应用及尺规作图,正确的作出图形是解答本题的关键,难度不大.25.(1)CD与⊙O相切.理由见解析;(2)①如图,AH为所作;见解析;②点A到CD所在直线的距离为6.【解析】【分析】(1)连接OC,如图,利用等腰三角形的性质得到∠CAD=∠CDA=30°,∠OCA=∠OAC=30°,则利用三角形内角和计算出∠OCD=90°,然后根据切线的判定定理可判断CD为⊙O的切线;(2)①如图,利用基本作图,过点A作AH⊥CD于H即可;②在Rt△OCD中利用含30度的直角三角形三边的关系得到OD=8,则AD=12,从而可求出AH的长.【详解】(1)CD与⊙O相切.理由如下:连接OC,如图,∵CA=CD,∴∠CAD=∠CDA=30°,∵OA=OC,∴∠OCA=∠OAC=30°,∴∠OCD=180°﹣3×30°=90°,∴OC⊥CD,∴CD为⊙O的切线;(2)①如图,AH为所作;②在Rt△OCD中,∵∠D=30°,∴OD=2OC=8,∴AD=8+4=12,在Rt△ADH中,AH=12AD=6,即点A到CD所在直线的距离为6.【点睛】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了切线的判定.2019-2020学年数学中考模拟试卷一、选择题1.下列说法正确的是()A.“打开电视机,正在播放《达州新闻》”是必然事件B.天气预报“明天降水概率50%,是指明天有一半的时间会下雨”C.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是S2=0.3,S2=0.4,则甲的成绩更稳定D.数据6,6,7,7,8的中位数与众数均为72.以下所给的数值中,为不等式﹣2x+3<0的解集的是()A.x<﹣2B.x>﹣1C.x<﹣32D.x>323.不等式组1212xx-≥⎧⎨+>⎩的最小正整数解是()A.1 B.2 C.3 D.44.下列函数中,自变量x的取值范围是x>3的是()A.y=B.y=C.y=D.y=5.如图,正六边形的中心为原点O,点A的坐标为(0,4),顶点E(-1,),顶点B(1,),设直线AE 与y轴的夹角∠EAO为α,现将这个六边形绕中心O旋转,则当α取最大角时,它的正切值为( )A. B.1 C. D.6.如图,在平面直角坐标系中,菱形OABC的顶点A的坐标为(4,3),点D是边OC上的一点,点E在直线OB上,连接DE、CE,则DE+CE的最小值为()A.5 B7+1 C.5D.24 57.已知:点A(2016,0)、B(0,2018),以AB为斜边在直线AB下方作等腰直角△ABC,则点C的坐标为()A.(2,2 )B.(2,﹣2 )C.(﹣1,1 )D.(﹣1,﹣1 )8.如图,在△ABC中,BC>AB>AC.甲、乙两人想在BC上取一点P,使得∠APC=2∠ABC,其作法如下:(甲)作AB 的中垂线,交BC 于P 点,则P 即为所求;(乙)以B 为圆心,AB 长为半径画弧,交BC 于P 点,则P 即为所求.对于两人的作法,下列判断何者正确?( )A .两人皆正确B .两人皆错误C .甲正确,乙错误D .甲错误,乙正确9.下列四个函数中,自变量的取值范围为x ≥1的是( )A .1y x =-B .11y x =- C .1y x =- D .11y x =- 10.已知抛物线2(0)y ax bx c b a =++>>与x 轴只有一个交点,以下四个结论:①抛物线的对称轴在y 轴左侧;②关于x 的方程220ax bx c +++=有实数根;③0a b c ++>;④b a c-的最大值为1.其中结论正确的为( )A.①②③B.③④C.①③D.①③④11.在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的( )A .平均数B .众数C .中位数D .方差12.如图,AB ∥CD ,点EF 平分∠BED ,若∠1=30°,∠2=40°,则∠BEF 的度数是( )A.70°B.60°C.50°D.35° 二、填空题13.分式方程3512x x =++的解为_____. 14.如图,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,AB =4,点M 是直角边AC 上一动点,连接BM ,并将线段BM 绕点B 逆时针旋转60°得到线段BN ,连接CN .则在点M 运动过程中,线段CN 长度的最大值是_____,最小值是_____.15.如图,PA ,PB 分别与⊙O 相切于A ,B 两点,C 是优弧AB 上的一个动点,若∠P =40°,则∠ACB =_____°.16.小鲁在一个不透明的盒子里装了5个除颜色外其他都相同的小球,其中有3个是红球,2个是绿球,每次拿一个球然后放回去,拿2次,则至少有一次取到绿球的概率是__________.17.如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=,则BD的长为_______.18.因式分解:2a2﹣8= .三、解答题19.如图,在四边形ABCD中,AB∥CD,AE⊥BD,CF⊥BD,垂足分别是E、F,DE=BF,求证:四边形ABCD是平行四边形.20.(1)计算:(﹣1)8+24×(﹣2)﹣3﹣48 23(2)化简:2) 1xx x 1÷(1--+121.点A(-1,0)是函数y=x2-2x+m2-4m的图像与x轴的一个公共点.(1)求该函数的图像与x轴的另一个公共点的坐标以及m的值;(2)将该函数图像沿y轴向上平移个单位后,该函数的图像与x轴只有一个公共点.22.实施新课程改革后,学生的自主学习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调查,并将调查结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中C类女生有名,D类男生有名;将上面的条形统计图补充完整;(2)计算扇形统计图中D所占的圆心角是;(3)为了共同进步,张老师想从被调查的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.23.甲、乙两个工程队计划修建一条长18千米的乡村公路,已知甲工程队比乙工程队每天多修路0.6千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求甲、乙两个工程队每天各修路多少千米?(2)若甲工程队每天的修路费用为0.6万元,乙工程队每天的修路费用为0.5万元,要使两个工程队修路总费用不超过6.3万元,甲工程队至少修路多少天?24.192728xx--=25.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为 30,测得C点的俯角β为60° ,求建筑物CD的高度(结果保留根号).【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C D C B C D C C A D C D13.1 214.2, 1 15.7016.16 2517.18.2(a+2)(a-2).三、解答题19.见解析【解析】【分析】根据DE=CF,求出DF=BE,再由AB∥CD,求出∠CDF=∠ABE,从而得到△CDF≌△ABE,CD=AB结合AB∥CD,最终得到结论.【详解】证明:∵DE=CF,∴DE+EF=BF+EF,DF=BE,∵AB∥CD,∴∠CDF=∠ABE,∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,在△CDF 和△ABE 中,CDF ABE DF BECFD AEB ∠=∠⎧⎪=⎨⎪∠=⎩,∴△CDF ≌△ABE (ASA ),∴CD=AB ,又∵AB ∥CD四边形ABCD 是平行四边形.【点睛】 考查了证明全等三角形的方法,并根据一组对边平行且相等,来证明四边形为平行四边形.20.(1)-4;(2)11x -. 【解析】【分析】(1)根据幂的运算性质以及二次根式的性质化简即可;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.【详解】解:(1)原式=1124()8+⨯-=1﹣3﹣2=﹣4; (2)原式=(1)(1)x x x +-÷1x x +=(1)(1)x x x +-•1x x +=11x -. 【点睛】 此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21.(1)另一个公共点的坐标是(3,0).m 1=1,m 2=3.(2)4.【解析】【分析】(1)求出二次函数对称轴,根据二次函数图像的对称性可得与x 轴的另一个交点坐标,将x =-1,y =0代入函数解析式可求出m ;(2)求出函数图像顶点坐标,根据函数图像平移规律即可得到平移方式.【详解】解:(1)在函数y =x 2-2x +m 2-4m 中,∵a =1,b =-2,∴该二次函数图像的对称轴是过点(1,0)且平行于y 轴的直线.∵点A (-1,0)是函数y =x 2-2x +m 2-4m 的图像与x 轴的一个公共点,根据二次函数图像的对称性,∴该函数与x 轴的另一个公共点的坐标是(3,0).将x =-1,y =0代入函数y =x 2-2x +m 2-4m 中,得0=3+m 2-4m .解这个方程,得m 1=1,m 2=3.(2)函数解析式为:y =x 2-2x -3,当x=1时,y=-4,∴将该函数图像沿y 轴向上平移4个单位后,该函数的图像与x 轴只有一个公共点.【点睛】本题考查了二次函数的图像和性质,熟练掌握二次函数的对称性以及对称轴的求法是解题关键.22.(1)2;1;(2)36°;(3)P(一男一女)=12.【解析】【分析】(1)由扇形统计图可知,特别好的占总数的15%,人数有条形图可知3人,所以调查的样本容量是:3÷15%,即可得出C类女生和D类男生人数(2)用D的人数除以总人数再乘360°即可得到D的圆心角;(3)根据被调査的A类和D类学生男女生人数列表即可得出答案【详解】(1)3÷15%=20,20×25%=5.女生:5-3=21-25%-50%-15%=10%20×10%=2,男生:2-1=1故答案为:,2,1(2)从图中得到D的人数为2人,总人数为20,236020⨯°=36°(3)画出树状图(或列表)∴共有6种等可能结果,其中一男一女的有3种,故P(一男一女)=31 62 =【点睛】此题考查条形统计图,扇形统计图,列表法,解题关键在于看懂图中数据23.(1)甲每天修路1.8千米,则乙每天修路1.2千米;(2)甲工程队至少修路8天【解析】【分析】(1)可设甲每天修路x千米,则乙每天修路(x﹣0.6)千米,则可表示出修路所用的时间,可列分式方程,求解即可;(2)设甲修路a天,则可表示出乙修路的天数,从而可表示出两个工程队修路的总费用,由题意可列不等式,求解即可.【详解】(1)设甲每天修路x千米,则乙每天修路(x﹣0.6)千米,根据题意,可列方程:18181.50.6x x⨯=-,解得x=1.8,经检验x=1.8是原方程的解,且x﹣0.6=1.2,答:甲每天修路1.8千米,则乙每天修路1.2千米;(2)设甲修路a天,则乙需要修(18﹣1.8a)千米,∴乙需要修路18 1.81.2a-=15﹣1.5a(天),由题意可得0.6a+0.5(15﹣1.5a )≤6.3,解得a≥8,答:甲工程队至少修路8天.【点睛】本题主要考查分式方程及一元一次不等式的应用,找出题目中的等量(或不等)关系是解题的关键,注意分式方程需要检验.24.545x =- 【解析】【分析】根据解一元一次方程的一般步骤:去分母、去括号、移项、合并同类项、系数化为1即可解答.【详解】 192728x x --= 去分母得:45692x x -=-移项、合并同类项得:554x -=系数化为1得:545x =-【点睛】本题考查的是解一元一次方程,掌握一元一次方程的解题步骤是关键.注意:单个的数字或字母去分母时不要漏乘.25.建筑物CD 的高度为 123m. 【解析】【分析】过点D 作DE ⊥AB 于点E ,依题可得:∠ACB=β=60°,∠ADE=α=30°,BC=18m ,根据矩形性质得DE=BC=18m ,CD=BE ,在Rt △ABC 中,根据正切函数的定义求得AB 长 ;在Rt △ADE 中,根据正切函数的定义求得AE 长 ;由CD=BE=AB −AE 即可求得答案.【详解】解:过点D 作DE ⊥AB 于点E,则四边形BCDE 是矩形,由题意得,∠ACB=β=60∘,∠ADE=α=30∘,BC=18m ,∴DE=BC=18m ,CD=BE ,在Rt △ABC 中,AB=BC ⋅tan ∠ACB=18×tan60∘=3(m)在Rt △ADE 中,AE=DE ⋅tan ∠ADE=18×tan30∘= 3(m)∴CD=BE=AB −AE= 1833= 3答:建筑物CD 的高度为 3【点睛】本题考查了解直角三角形的应用,要求学生借助俯角关系构造直角三角形,并结合图形利用三角函数解直角三角形.2019-2020学年数学中考模拟试卷一、选择题1.已知直线y =kx ﹣2经过点(3,1),则这条直线还经过下面哪个点( )A .(2,0)B .(0,2)C .(1,3)D .(3,﹣1)2.A 、B 两地相距900km ,一列快车以200km/h 的速度从A 地匀速驶往B 地,到达B 地后立刻原路返回A 地,一列慢车以75km/h 的速度从B 地匀速驶往A 地.两车同时出发,截止到它们都到达终点时,两车恰好相距200km 的次数是( )A.5B.4C.3D.2 3.如图,不等式组的解集在数轴上表示正确的是( ) A.B. C. D.4.如图,点O 是ABC ∆的内心,M 、N 是AC 上的点,且CM CB =,AN AB =,若100B ∠=︒,则MON ∠=( )A .60︒B .70︒C .80︒D .100︒ 5.如图,在△ABC 中,BA=BC ,BP ,CQ 是△ABC 的两条中线,M 是BP 上的一个动点,则下列线段的长等于AM+QM 最小值的是( )A .ACB .CQC .BPD .BC6.若方程4x 2+(a 2﹣3a ﹣10)x+4a =0的两根互为相反数,则a 的值是( )A .5或﹣2B .5C .﹣2D .非以上答案7.下列四个数中,最大的数是( )A .-5B 7C .0D .π8.如图,正方形ABCD 边长为4,以BC 为直径的半圆O 交对角线BD 于点E ,则阴影部分面积为( )A.πB.32π C.6﹣π D.23﹣π9.如图,已知在△ABC中,∠BAC>90°,点D为BC的中点,点E在AC上,将△CDE沿DE折叠,使得点C恰好落在BA的延长线上的点F处,连结AD,则下列结论不一定正确的是()A.AE=EFB.AB=2DEC.△ADF和△ADE的面积相等D.△ADE和△FDE的面积相等10.sin30︒的值等于( )A.12B.1 C.22D.3211.如图,AB是半圆O的直径,且AB=12,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是()A.4πB.5πC.6πD.8π12.如图,在△ABC中,∠BAC=90°,点A在x轴正半轴,点C在y轴正半轴,点D是边BC的中点,反比例函数kyx=(k>0,x>0)的图象经过B,D.若点C的纵坐标为6,点D的横坐标为3.5,则k的值是()A.6 B.8 C.12 D.14二、填空题13.如图,正方形ABCD中,点E、F分别在线BC、CD上运动,且满足∠EAF=45°,AE、AF分别与BD 相交于点M、N.下列说法中:①BE+DF=EF;②点A到线段EF的距离一定等于正方形的边长;③若tan∠BAE=12,则tan∠DAF=13;④若BE=2,DF=3,则S△AEF=18.其中结论正确的是__(将正确的序号写在横线上)14.如果样本x1,x2,x3,…,x n的平均数为5,那么样本x1+2,x2+2,x3+2,…x n+2的平均数是_____15.计算:(﹣12)2=_____.16.如果将一副三角板按如图方式叠放,那么∠1=_____.17.如图,在△ABC中,D、E为边AB、AC的中点,已知△ADE的面积为4,那么△ABC的面积是_____.18.一个不透明的盒子里装有120个红、黄两种颜色的小球,这些球除颜色外其他完全相同,每次摸球前先将盒子里的球摇匀任意摸出一个球记下颜包后再放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在0.4,那么估计盒子中红球的个数为_____.三、解答题19.如图所示,△ABC中,AB=AC,AD平分∠BAC,点G是BA延长线上一点,点F是AC上一点,AG=AF,连接GF并延长交BC于E.(1)若AB=8,BC=6,求AD的长;(2)求证:GE⊥BC.20.某校为了解本校九年级学生的数学作业完成情况,将完成情况分为四个等级:等级 A B C D情况分类好较好一般不好解答下列问题:(1)补全条形统计图;(2)该年级共有700人,估计该年级数学作业完成等级为D等的人数;(3)在此次调查中,有甲、乙、丙、丁四个班的学生数学作业完成表现出色,现决定从这四个班中随机选取两个班在全校举行一次数学作业展览,请用画树状图或列表的方法,求恰好选到甲、乙两个班的概率.21.某市的连锁超市总部为了解各超市的销售情况,统计了各超市在某月的销售额(单位:万元),并根据统计的这组销售额数据,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(I)该市的连锁超市总数为,图①中m的值为;(II)求统计的这组销售额数据的平均数、众数和中位数.22.甲、乙两人在笔直的道路AB上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,假设他们分别以不同的速度匀速行驶,甲先出发6分钟后,乙才出发,乙的速度为32千米/分,在整个过程中,甲、乙两人之间的距离y(千米)与甲出发的时间x(分)之间的部分函数图象如图.(1)A、B两地相距____千米,甲的速度为____千米/分;(2)求线段EF所表示的y与x之间的函数表达式;(3)当乙到达终点A时,甲还需多少分钟到达终点B?23.如图,反比例函数y=kx(x>0)的图象上一点A(m,4),过点A作AB⊥x轴于B,CD∥AB,交x轴于C,交反比例函数图象于D,BC=2,CD=43.(1)求反比例函数的表达式;(2)若点P是y轴上一动点,求PA+PB的最小值.。
★试卷4套汇总★2020年咸阳市名校中考数学教学质量调研试卷

2019-2020学年数学中考模拟试卷一、选择题1.使两个直角三角形全等的条件是A.一锐角对应相等B.两锐角对应相等C.一条边对应相等D.两条边对应相等 2.马大哈做题很快,但经常不仔细,所以往往错误率非常高,有一次做了四个题,但只做对了一个,他做对的是( )A .a 8÷a 4=a 2B .a 3•a 4=a 12C .a 5+a 5=a 10D .2x 3•x 2=2x 53.在某次数学测验中,随机抽取了10份试卷,其成绩如下:73,78,79,81,81,81,83,83,85,91,则这组数据的众数、中位数分别为( )A.81,82B.83,81C.81,81D.83,82 4.下列运算正确的是( ). A.B. C.D. 5.若x=2是关于x 的一元一次方程ax -2=b 的解,则3b -6a+2的值是( ).A .-8B .-4C .8D .4 6.如图,点A 是双曲线y=k x 上一点,过A 作AB ∥x 轴,交直线y=-x 于点B ,点D 是x 轴上一点,连接BD 交双曲线于点C ,连接AD ,若BC :CD=3:2,△ABD 的面积为114,tan ∠ABD=95,则k 的值为( )A .-34B .-3C .-2D .347.在平面直角坐标系xOy 中,已知点M ,N 的坐标分别为(-1,2),(2,1),若抛物线y=ax 2-x+2(a <0)与线段MN 有一个交点,则a 的取值范围是( )A .1a ≤-B .10a -<<C .1a <-D .10a -≤<8.如图,I 是△ABC 的内心,AI 的延长线和△ABC 的外接圆相交于点D ,连接BI 、BD 、DC .下列说法中错误的一项是( )A.线段DB 绕点D 顺时针旋转一定能与线段DC 重合B.线段DB 绕点D 顺时针旋转一定能与线段DI 重合C.∠CAD绕点A顺时针旋转一定能与∠DAB重合D.线段ID绕点I顺时针旋转一定能与线段IB重合9.如图,已知菱形ABCD的对角线AC、BD的长分别是6cm、8cm,AE⊥BC,垂足为点E,则AE的长是()A.532cm B.25cm C.485cm D.245cm10.如图,抛物线y=ax2+bx+c的对称轴是x=13,小亮通过观察得出了下面四个结论:①c<0,②a﹣b+c>0,③2a﹣3b=0,④5b﹣2c<0.其中正确的有()A.1个B.2个C.3个D.4个11.关于x,y的方程组322x yx y k-=⎧⎨+=+⎩的解满足x=y,则k的值是()A.﹣1 B.0 C.1 D.212.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°二、填空题13.如图,两同心圆的圆心为O,大圆的弦AB切小圆于P,两圆的半径分别为2和1,若用阴影部分围成一个圆锥,则该圆锥的底面半径为_____.14.若a+b=3,a﹣b=7,则ab=_____.15.为参加2018年“宜宾市初中毕业生升学体育考试”,小聪同学每天进行立定跳远练习,并记录下其中7天的最好成绩(单位:m)分别为:2.21,2.12,2.43,2.39,2.43,2.40,2.43.这组数据的中位数和众数分别是_____.16.如图,在一次测绘活动中,某同学站在点A的位置观测停放于B、C两处的小船,测得船B在点A北偏东75°方向900米处,船C在点A南偏东15°方向1200米处,则船B与船C之间的距离为______米.17.如图,已知AB∥CD,CE、BE的交点为E,现作如下操作:第一次操作,分别作∠ABE和∠DCE的平分线,交点为E1,第二次操作,分别作∠ABE1和∠DCE1的平分线,交点为E2,第三次操作,分别作∠ABE2和∠DCE2的平分线,交点为E3,…,第n次操作,分别作∠ABE n﹣1和∠DCE n﹣1的平分线,交点为E n.若∠E n=1度,那∠BEC等于________度18.如图,已知A1,A2,A3,…,A n是x轴上的点,且OA1=A1A2=A2A3=…=A n A n+1=1,分别过点A1,A2,A3,…,A n+1作x轴的垂线交一次函数12y x=的图象于点B1,B2,B3,…,B n+1,连接A1B2,B1A2,A2B3,B2A3,…,A n B n+1,B n A n+1依次产生交点P1,P2,P3,…,P n,则P n的坐标是______.三、解答题19.甲、乙两同学设计了这样一个游戏:把三个完全一样的小球分别标上数字1,2,3后,放在一个不透明的口袋里,甲同学先随意摸出一个球,记住球上标注的数字,然后让乙同学抛掷一个质地均匀的、各面分别标有数字1,2,3,4,5,6的正方体骰子,又得到另一个数字,再把两个数字相加.若两人的数字之和小于7,则甲获胜;否则,乙获胜.①请你用画树状图或列表法把两人所得的数字之和的所有结果都列举出来;②这个游戏公平吗?如果公平,请说明理由;如果不公平,请你加以改进,使游戏变得公平.20.解不等式组:523(1)37122x xx x->+⎧⎪⎨-≥-⎪⎩,并把它的解在数轴上表示出来.21.(118(﹣1)2﹣20190(2)化简:(a+2)2﹣a(a﹣3)22.先化简,再求值:2211121x xx x x----÷++,其中x=sin60°﹣123.如图,在等边三角形ABC中,点D为BC边上的一点,点D关于直线AB的对称点为点E,连接AD、DE,在AD上取点F,使得∠EFD=60°,射线EF与AC交于点G.(1)设∠BAD=α,求∠AGE的度数(用含α的代数式表示);(2)用等式表示线段CG与BD之间的数量关系,并证明.24.已知,如图,在△ABC和△A'B'C'中,AD,A'D'分别是△ABC和△A'B'C'的中线,AB=A'B',BC=B'C',AD=A'D'.求证:△ABC≌△A'B'C'.25.△ABC中,AB=AC=10,BC=12,⊙O是△ABC的外接圆.(1)如图①,过A作MN∥BC,求证:MN与⊙O相切;(2)如图②,∠ABC的平分线交半径OA于点E,交⊙O于点D.求⊙O的半径和AE的长.【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D D C C B C B D D C B C13.4 314.﹣10.15.40,2.43.16.217.2n .18.(n+21nn+,242n nn++).三、解答题19.①见解析;②这个游戏不公平,见解析,要使游戏公平,改规则如下:若两人的数字之和小于6,则甲获胜;否则,乙获胜.【解析】【分析】游戏是否公平,关键要看是否游戏双方各有50%赢的机会,本题中即两人的数字之和小于7与大于等于7的概率是否相等,求出概率比较,即可得出结论.【详解】解:①两人所得的数字之和的所有结果如图:②这个游戏不公平.由图可知,所得结果小于7的情况有6种,即甲获胜的概率为23,乙获胜的概率为13,很明显不公平;要使游戏公平,改规则如下:若两人的数字之和小于6,则甲获胜;否则,乙获胜.【点睛】考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.20.52<x≤4.【解析】【分析】先求出每个不等式的解集,再求出不等式组的解集,最后在数轴上表示出来即可.【详解】523(1)37122x xx x->+⎧⎪⎨-≥-⎪⎩①②解不等式组:解①得:x>52解②得:x≤4,故不等式组的解是52<x≤4.故答案为:52<x≤4.【点睛】本题考查了解一元一次不等式组、在数轴上表示不等式组的解集等知识点,能根据不等式的解集求出不等式组的解集是此题的关键.21.(1)322)7a+4.【解析】【分析】(1)先算二次根式、平方、零指数幂,再算加减法即可求解;(2)先算完全平方公式、单项式乘多项式,再合并同类项即可求解.【详解】(120(1)2019--11=-=;(2)2(2)(3)a a a +-- 22443a a a a =++-+=7a+4.【点睛】考查了实数的运算,关键是熟练掌握二次根式、平方、零指数幂、完全平方公式、单项式乘多项式,合并同类项的计算法则.22.﹣11x +. 【解析】【分析】根据分式的除法和减法可以化简题目中的式子,然后将x 的值代入化简后的式子即可解答本题.【详解】2211121x x x x x----÷++, =﹣1﹣2(1)(1)(1)1x x x x x+-⋅+- =﹣1+1x x + =11x x x --++ =﹣11x +,当x =sin60°﹣1﹣1. 【点睛】本题考查分式的化简求值、特殊角的三角函数值,解答本题的关键是明确分式化简求值的方法.23.(1)60°+α;(2)CG=2BD ,证明见解析.【解析】【分析】(1)根据等边三角形的性质和三角形的内角和定理可得结论;(2)作辅助线,构建全等三角形,证明四边形EBPG 是平行四边形,得BE=PG ,再证明△ABD ≌△BCP (AAS ),可得结论.【详解】解:(1)∵△ABC 是等边三角形,∴∠BAC=60°,∵∠BAD=α,∴∠FAG=60°-α,∵∠AFG=∠EFD=60°,∴∠AGE=180°-60°-(60°-α)=60°+α;(2)CG=2BD,理由是:如图,连接BE,过B作BP∥EG,交AC于P,则∠BPC=∠EGP,∵点D关于直线AB的对称点为点E,∴∠ABE=∠ABD=60°,∵∠C=60°,∴∠EBD+∠C=180°,∴EB∥GP,∴四边形EBPG是平行四边形,∴BE=PG,∵∠DFG+∠C=120°+60°=180°,∴∠FGC+∠FDC=180°,∴∠ADB=∠BGP=∠BPC,∵AB=BC,∠ABD=∠C=60°,∴△ABD≌△BCP(AAS),∴BD=PC=BE=PG,∴CG=2BD.【点睛】本题考查了全等三角形的判定和性质,等边三角形的性质,平行四边形的判定和性质,对称的性质,添加恰当的辅助线构造全等三角形是本题的关键.24.见解析.【解析】【分析】依据BD=B'D',AB=A'B',AD=A'D',即可判定△ABD≌△A'B'D',再根据∠B=∠B',AB=A'B',BC=B'C',即可得判定△ABC≌△A'B'C'.【详解】∵AD,A'D'分别是△ABC和△A'B'C'的中线,BC=B'C',∴BD=B'D',又∵AB=A'B',AD=A'D',∴△ABD≌△A'B'D'(SSS),∴∠B=∠B',又∵AB=A'B',BC=B'C',∴△ABC≌△A'B'C'(SAS).【点睛】本题考查了全等三角形的性质和判定的应用,能求出△ABD≌△A′B′D′是解此题的关键.25.(1)详见解析;(2)5【解析】【分析】(1)作直径AD,连接DC,证明∠D=∠NAC,根据∠D+∠DAC=90°,可证∠OAN=90°;(2)作直径AF,EG⊥AB,连接OB、OC,由角平分线的性质可得EG=EH,BG=BH=6,求出AH,在Rt△OBH中由勾股定理列出方程求出半径,再根据△AGE∽△AHB可求出AE.【详解】解:(1)作直径AD,连接DC,∵AB=AC且MN∥BC,∴∠B=∠ACB=∠NAC,∵∠D=∠B,∴∠D=∠NAC,∵AD是直径,∴∠D+∠DAC=90° ,∴∠NAC+∠DAC=90°,∴∠OAN=90°,又∵点A 在⊙O上,∴MN与⊙O相切;(2)作直径AF,EG⊥AB,连接OB、OC,∵OB=OC,AB=AC∴O、A在BC的垂直平分线上,即AF垂直平分BC,∵BD平分∠ABC, EG⊥AB,FH⊥BC,∴EG=EH,BG=BH=6,在Rt△ABH中,∵AB=10,BH=6,∴由勾股定理得AH=8,设⊙O的半径为x,在Rt△OBH中,由勾股定理得: (8-x)2+62=x2,∴x=254,即⊙O的半径为254,∵AB=10,BG=6,∴AG=4 ,由△AGE∽△AHB得:AG AE AH AB,代入解得:AE=5.【点睛】本题考查了等腰三角形的性质、平行线的性质、圆周角定理、切线的判定和性质、垂径定理、勾股定理以及相似三角形的判定和性质等知识点,涉及知识点较多,有一定难度,根据题意作出常用辅助线是解题关键.2019-2020学年数学中考模拟试卷一、选择题1.某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初二(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.3,乙的成绩的方差是0.4,根据以上数据,下列说法正确的是( )A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定2.我市某楼盘准备以每平方6000元的均价对外销售,由于国务院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产开发商对价格经过连续两次下调后,决定以每平方4860元的均价开盘销售,则平均每次下调的百分率是().A.8% B.9% C.10% D.11%3.“数学是将科学现象升华到科学本质认识的重要工具”,比如在化学中,甲烷的化学式CH4,乙烷的化学式是C2H6,丙烷的化学式是C3H8,…,设碳原子的数目为n(n为正整数),则它们的化学式都可以用下列哪个式子来表示()A.C n H2n+2B.C n H2nC.C n H2n﹣2D.C n H n+34.一个几何体由一些大小相同的小正方体组成,如图是它的主视图和左视图,那么组成该几何体所需小正方体的个数最少为()A.5 B.6 C.7 D.85.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的直角三角形,得到一个恒等式.后人借助这种分割方法所得的图形证明了勾股定理,如图所示的矩形由两个这样的图形拼成,若a=4,b=5,则该矩形的面积为()A.50B.40C.30D.206.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.32米B.35米C.36米D.40米7.如图,将Rt △ABC 绕直角顶点C 顺时针旋转90°,得到△A′B′C,连接AA′,若∠1=25°,则∠BAA′的度数是( )A.55°B.60°C.65° D .70°8.下列各式计算正确的是( ) A .a 2×a 3=a 6B 3322=C .21111x x x -=-+ D .(x+y )2=x 2+y 29.小明的妈妈春节前去市场买了3公斤葡萄和2公斤苹果,花了8元钱,春节后,再去市场买这两种水果,由于葡萄每公斤提价5角钱,苹果每公斤降价3角钱,买7公斤葡萄和5公斤苹果共花了21元,则春节后购物时,(葡萄,苹果)每公斤的价格分别是多少元( ) A .(2.5,0.7)B .(2,1)C .(2,1.3)D .(2.5,1)10.下列各式变形中,是因式分解的是( ) A .a 2﹣2ab+b 2﹣1=(a ﹣b)2﹣1 B .2x 2+2x =2x 2(1+1x) C .(x+2)(x ﹣2)=x 2﹣4 D .x 4﹣1=(x 2+1)(x+1)(x ﹣1)11.甲、乙、丙三个人玩一种游戏,每玩一局都会将三人随机分成两组.积分方法举例说明:第一局甲、乙胜出,分别获得3分,丙获得﹣6分;第二局甲胜出获得12分,乙、丙分别获得﹣6分,两局之后的积分是:甲15分,乙﹣3分,丙﹣12.如表是三人的逐局积分统计表,计分错误开始于( ) 甲 乙 丙 第一局 3 3 ﹣6 第二局 15 ﹣3 ﹣12 第三局 21 3 ﹣24 第四局 15 ﹣3 ﹣12 第五局 12 ﹣6 ﹣6 第六局 0 18﹣1212.下列条件中,能判定四边形是平行四边形的条件是( ) A .一组对边平行,另一组对边相等 B .一组对边平行,一组对角相等 C .一组对边平行,一组邻角互补 D .一组对边相等,一组邻角相等 二、填空题13.如图,矩形纸片ABCD 中,AB =4,点E 在边CD 上移动连接AE ,将多边形ABCE 沿直线AE 翻折,得到多边形AB′CE,点B 、C 的对应点分别为点B′、C′(1)当点E 与点C 重合时,设B′C′与AD 的交点为F ,若AD =4DF ,则AD =______ (2)若AD =6,B′C′的中点记为P ,则DP 的取值范围是______14.今年“五一”节日期间,我市四个旅游景区共接待游客约303000多人次,这个数据用科学记数法可记为_____.15.已知:反比例函数y =kx的图象经过点A (2,﹣3),那么k =_____. 16.关于x 的不等式组430340a x a x +>⎧⎨-≥⎩恰好只有三个整数解,则a 的取值范围是_____________.17.甲、乙两车分别从A 、B 两地同时出发,相向行驶,已知甲车的速度大于乙车的速度,甲车到达B 地后马上以另一速度原路返回A 地(掉头的时间忽略不计),乙车到达A 地以后即停在地等待甲车.如图所示为甲乙两车间的距离y (千米)与甲车的行驶时间t (小时)之间的函数图象,则当乙车到达A 地的时候,甲车与A 地的距离为_____千米.18.如图,点,,A B C 都在圆O 上,OC OB ⊥,点A 在劣弧上,且OA AB =,则ABC ∠=________度.三、解答题19.(1)计算:82﹣π)0﹣4cos45°﹣|﹣3|; (2)解分式方程:4122x x =-+. 20.如图是某种品牌的篮球架实物图与示意图,已知底座BC =0.6米,底座BC 与支架AC 所成的角∠ACB =75°,支架AF 的长为2.5米,篮板顶端F 点到篮框D 的距离FD =1.4米,篮板底部支架HE 与支架AF 所成的角∠FHE =60°,求篮框D 到地面的距离.(精确到0.1米.参考数据:cos75°≈0.3,32≈1.4)21.计算:(13)﹣1+2tan45°﹣(π﹣2019)022.解不等式组()214111143x xx x⎧+-⎪⎨+--≤⎪⎩>23.点A(-1,0)是函数y=x2-2x+m2-4m的图像与x轴的一个公共点.(1)求该函数的图像与x轴的另一个公共点的坐标以及m的值;(2)将该函数图像沿y轴向上平移个单位后,该函数的图像与x轴只有一个公共点.24.小张前往某精密仪器厂应聘,公司承诺工资待遇如下.工资待遇:每月工资至少3000元,每天工作8小时,每月工作25天,加工1件A型零件计酬16元,加工1件B型零件计酬12元,月工资=底薪(800元)+计件工资 .进厂后小张发现:加工1件A型零件和3件B型零件需要5小时;加工2件A型零件和5件B型零件需9小时.(1)小张加工1件A型零件和1件B型零件各需要多少小时?(2)若公司规定:小张每月必须加工A B、两种型号的零件,且加工B型的数量不大于A型零件数量的2倍,设小张每月加工A零件a件,工资总额为W元,请你运用所学知识判断该公司颁布执行此规定后是否违背了工资待遇承诺?25.如图,AB为⊙O的直径,C为半圆上一动点,过点C作⊙O的切线l,过点B作BD⊥l,垂足为D,BD与⊙O交于点E,连接OC,CE,AE,AE交OC于点F.(1)求证:△CDE≌△EFC;(2)若AB=4,连接AC.①当AC=_____时,四边形OBEC为菱形;②当AC=_____时,四边形EDCF为正方形.【参考答案】***一、选择题131≤DP≤5. 14.03×10515.-6 16.4332a ≤≤ 17.630 18.15︒ 三、解答题 19.(1)-2;(2)x=-103.. 【解析】 【分析】(1)本题涉及零指数幂、二次根式化简、特殊角三角函数、绝对值化简等4个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果;(2)通过去分母,两边同乘以(x+2)(x-2),即可将原分式方程转化为一个整式方程,解整式方程后要注意检验,即可得到正确结果. 【详解】(1)原式=+1﹣4×2﹣3=1﹣3=﹣2; (2)方程两边同乘以(x+2)(x ﹣2),得4(x+2)=x ﹣2, 解得:x =﹣103, 检验:将 x =﹣103代入(x+2)(x ﹣2)中, (x+2)(x ﹣2)≠0 ∴x =﹣103是原分式方程的根. 故原分式方程的根为 x =﹣103. 【点睛】本题主要考查了实数的综合运算能力以及解分式方程.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂、二次根式、绝对值、特殊角三角函数等考点的运算. 20.篮框D 到地面的距离是2.9米. 【解析】 【分析】延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G ,解直角三角形即可得到结论. 【详解】解:延长FE 交CB 的延长线于M ,过A 作AG ⊥FM 于G , 在Rt △ABC 中,tan ∠ACB =,ABBC∴AB =BC•tan75°=0.60×3.732=2.22,∴GM=AB=2.22,在Rt△AGF中,∵∠FAG=∠FHE=60°,sin∠FAG=,FG AF∴sin60°=3, 2.5FG=∴FG=2.125,∴DM=FG+GM﹣DF≈2.9米.答:篮框D到地面的距离是2.9米.【点睛】考查解直角三角形的应用,构造直角三角形,选择合适的锐角三角函数是解题的关键. 21.4【解析】【分析】直接利用负指数幂的性质以及特殊角的三角函数值和零指数幂的性质分别化简得出答案.【详解】原式=3+2×1﹣1=4.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.22.-5≤x<5 2【解析】【分析】分别解出两不等式的解集,再求其公共解.【详解】解:() 214111143x xx x⎧+-⎪⎨+--≤⎪⎩>①②由①得x<52;由②得x≥-5;∴不等式组的解集为-5≤x<52.【点睛】本题考查了解一元一次不等式组,求不等式组的解集应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.23.(1)另一个公共点的坐标是(3,0).m1=1,m2=3.(2)4.【解析】【分析】(1)求出二次函数对称轴,根据二次函数图像的对称性可得与x轴的另一个交点坐标,将x=-1,y=0代入函数解析式可求出m;(2)求出函数图像顶点坐标,根据函数图像平移规律即可得到平移方式.【详解】解:(1)在函数y=x2-2x+m2-4m中,∵a=1,b=-2,∴该二次函数图像的对称轴是过点(1,0)且平行于y轴的直线.∵点A(-1,0)是函数y=x2-2x+m2-4m的图像与x轴的一个公共点,根据二次函数图像的对称性,∴该函数与x轴的另一个公共点的坐标是(3,0).将x=-1,y=0代入函数y=x2-2x+m2-4m中,得0=3+m2-4m.解这个方程,得m1=1,m2=3.(2)函数解析式为:y=x2-2x-3,当x=1时,y=-4,∴将该函数图像沿y轴向上平移4个单位后,该函数的图像与x轴只有一个公共点.【点睛】本题考查了二次函数的图像和性质,熟练掌握二次函数的对称性以及对称轴的求法是解题关键. 24.(1)小张加工1件A型零件需要2小时,加工1件B型零件需要1小时(2)该公司执行后违背了在工资待遇方面的承诺【解析】【分析】(1)设小张加工1件A型零件需要x小时,加工1件B型零件需要y小时,根据题意列出方程组,求出方程组的解即可得到结果;(2)表示出小张每月加工的零件件数,进而列出W与a的函数,利用一次函数性质确定出最大值,即可作出判断.【详解】(1)设小张加工1件A型零件需要x小时,加工1件B型零件需要y小时;根据题意得:35259x yx y+=⎧⎨+=⎩,解得:21xy=⎧⎨=⎩,则小张加工1件A型零件需要2小时,加工1件B型零件需要1小时;(2)由(1)可得小张每月加工A型零件a件时,还可以加工B型零件(8×25-2a)件,根据题意得:W=16a+12×(8×25-2a)+800=-8a+3200,∵-8<0,∴W随a的增大而减小,由题意:8×25-2a≤2a,∴a≥50,当a=50时,W最大值为2800,∵2800<3000,∴该公司执行后违背了在工资待遇方面的承诺.【点睛】此题考查了一次函数的应用,以及二元一次方程组的应用,弄清题中的数量关系是解本题的关键. 25.(1)详见解析;(2)①当AC =2时,四边形OCEB 是菱形时2;②当四边形DEFC 是正方形时,. 【解析】 【分析】(1)由AB 是直径可得∠AEB=90°,由切线性质可得∠FCD=90°,由BD ⊥CD 可得∠CDE=90°,即可证明四边形CFED 是矩形,可得CF =DE ,EF =CD ,利用SSS 即可证明△CDE ≌△EFC ;(2)①连接OE ,由菱形性质可得OB=BE ,即可证明△OBE 是等边三角形,可得∠B=60°,由OC//BD 可得∠AOC=∠B=60°,可证明△OAC 是等边三角形,即可求出AC=12AB=2;②由正方形的性质可得∠CEF =∠FCE =45°,由垂径定理可知»»AC CE =,即可得出AC=CE ,进而可得∠CAE =∠CEA =45°,即可证明∠ACE=90°,可得AE 是⊙O 的直径,即点E 与点B 重合,点F 与点O 重合,可得△ABC 是等腰直角三角形,即可求出AC 的长. 【详解】 (1)∵BD ⊥CD , ∴∠CDE =90°, ∵AB 是直径, ∴∠AEB =90°, ∵CD 是切线, ∴∠FCD =90°, ∴四边形CFED 矩形, ∴CF =DE ,EF =CD , 在△CDE 和△EFC 中,CD EF CE EC DE CF =⎧⎪=⎨⎪=⎩, ∴△CDE ≌△EFC .(2)解:①当AC =2时,四边形OBEC 是菱形. 理由:连接OE . ∵四边形OBEC 是菱形, ∴OB=BE , ∵OE=OB ,∴△OBE 是等边三角形, ∴∠B=60°, ∵OC//BD , ∴∠AOC=∠B=60°, ∵OA=OC ,∴△OAC 是等边三角形, ∴AC=OA=12AB=2. ∴AC =2时,四边形OBEC 是菱形.故答案为2.②当四边形EDCF是正方形时,∵CF=FE,∵∠CEF=∠FCE=45°,∵OC⊥AE,∴»»AC CE,∴AC=CE,∴∠CAE=∠CEA=45°,∴∠ACE=90°,∴AE是⊙O的直径,即点E与点B重合,点F与点O重合,∴△ABC是等腰直角三角形,∴AC=22AB=22.∴AC=22时,四边形EDCF是正方形.故答案为2.【点睛】本题考查切线的性质、垂径定理、菱形的性质、正方形的性质,圆的切线垂直于过切点的半径;垂直于弦的直径,平分弦并且平分这条弦所对的两条弧;在同圆或等圆中,①圆心角相等,②所对的弧相等,③所对的弦相等,三项“知一推二”,一项相等,其余二项皆相等.熟练掌握相关性质及定理是解题关键.2019-2020学年数学中考模拟试卷一、选择题1.若y=x+2–b 是正比例函数,则b 的值是( ) A .0B .–2C .2D .–0.52.﹣3的绝对值是( ) A .﹣3B .3C .-13D .133.如图,矩形ABCD 的对角线BD 经过坐标原点,矩形的边分别平行于坐标轴,点C 在反比例函数221k k y x-+=的图象上.若点A 的坐标为(﹣4,﹣4),则k 的值为( )A .16B .﹣3C .5D .5或﹣34.如图是由5个相同大小的正方体搭成的几何体,则它的俯视图是( )A. B.C. D.5.平方根和立方根都是本身的数是( ) A .0B .1C .±1D .0和±16.关于x 的一元二次方程2(23)210a x x ---=有实数根,则a 满足( ) A .a≥1B .a>1且a≠32C .a≥1且a≠32D .a≠327.已知ABC △,D 是AC 上一点,用尺规在AB 上确定一点E ,使ADE V ∽ABC △,则符合要求的作图痕迹是( )A. B. C.D.8.A 、B 、C 、D 四名同学随机分为两组,两个人一组去參加辩论赛,问A 、B 两人恰好分到一组的概率( ) A .14B .13C .16D .129.如图,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段BC 的延长线上,且BC=4CF ,DCFE 是平行四边形,则图中阴影部分的面积为( )A.3B.6C.7D.810.下列说法正确的是( )A.了解“贵港市初中生每天课外阅读书籍时间的情况“最适合的调查方式是全面调查B.甲乙两人跳绳各10次,其成绩的平均数相等,若22s s 甲乙则甲的成绩比乙的稳定C.平分弦的直径垂直于弦D.“任意画一个三角形,其内角和是360°”是不可能事件11.如图,菱形ABCD 的边AB=5,面积为20,∠BAD <90°,⊙O 与边AB 、AD 都相切,AO=2,则⊙O 的半径长等于( )A .23B .5 C .33D .2512.肇庆市某一周的PM2.5(大气中直径小于等于2.5微米的颗粒物,也称可入肺颗粒物)指数如下表: PM2.5指数 150 155 160 165 天 数3211A .150,150B .150,155C .155,150D .150,152.5二、填空题 13.二次函数y=+bx+c 的图象如图所示,其对称轴与x 轴交于点(-1,0),图象上有三个点分别为(2, ),(-3, ),(0, ),则 、 、 的大小关系是________(用“>”“<”或“=”连接).14.001A 型航空母舰是中国首艘自主建造的国产航母,满载排水量65000吨,数据65000用科学记数法表示为_____________.15.老师用公式()()()22221210133310S x x x ⎡⎤=-+-+⋅⋅⋅+-⎢⎥⎣⎦计算一组数据1210,,x x x ⋅⋅⋅的方差,由此可知这组数据的和是__________. 16.抛物线y =15x 2的开口方向_____,对称轴是_____,顶点是_____,当x <0时,y 随x 的增大而_____;当x >0时,y 随x 的增大而_____;当x =0时,y 有最_____值是_____. 17.用配方法求二次函数y =2x 2﹣4x ﹣1图象的顶点坐标是_____. 18.因式分解:x 2+6x =_____. 三、解答题19.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且点C 是»BD的中点.连接AC ,过点C 作⊙O 的切线EF 交射线AD 于点 E . (1)求证:AE ⊥EF ; (2)连接BC .若AE =165,AB =5,求BC 的长.20.定义:长宽比为n :1(n 为正整数)的矩形称为n 矩形. 下面,我们通过折叠的方式折出一个2矩形,如图a 所示.操作1:将正方形ABEF 沿过点A 的直线折叠,使折叠后的点B 落在对角线AE 上的点G 处,折痕为AH . 操作2:将FE 沿过点G 的直线折叠,使点F 、点E 分别落在边AF ,BE 上,折痕为CD .则四边形ABCD 为2矩形.(1)证明:四边形ABCD 2矩形; (2)点M 是边AB 上一动点.①如图b ,O 是对角线AC 的中点,若点N 在边BC 上,OM ⊥ON ,连接MN .求tan ∠OMN 的值; ②若AM=AD ,点N 在边BC 上,当△DMN 的周长最小时,求CNNB的值;③连接CM,作BR⊥CM,垂足为R.若AB=22,则DR的最小值= .21.某射击队教练为了了解队员训练情况,从队员中选取甲、乙两名队员进行射击测试,相同条件下各射靶5次,成绩统计如下:命中环数 6 7 8 9 10甲命中相应环数的次数0 1 3 1 0乙命中相应环数的次数 2 0 0 2 1 (1)根据上述信息可知:甲命中环数的中位数是_____环,乙命中环数的众数是______环;(2)试通过计算说明甲、乙两人的成绩谁比较稳定?(3)如果乙再射击1次,命中8环,那么乙射击成绩的方差会变小.(填“变大”、“变小”或“不变”)22.某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润w元,并把结果填写在表格中:(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元.(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少?23.如图,点C在以AB为直径的⊙O上,AD与过点C的切线垂直,垂足为点D,AD交⊙O于点E.(1)求证:AC平分∠DAB;(2)连接BC,若cos∠CAD=45,⊙O的半径为5,求CD、AE的值.24.如图,A、D、B、E四点在同一条直线上,AD=BE,BC∥EF,BC=EF.(1)求证:AC=DF;(2)若CD为∠ACB的平分线,∠A=25°,∠E=71°,求∠CDF的度数.25.某图书馆计划选购甲、乙两种图书.已知甲种图书每本价格是乙种图书每本价格的2.5倍,用800元单独购买甲种图书比用800元单独购买乙种图书要少24本.求:(1)乙种图书每本价格为多少元?(2)如果该图书馆计划购买乙种图书的本数比购买甲种图书本数的2倍多8本,且用于购买甲、乙两种图书的总经费不超过1060元,那么该图书馆最多可以购买多少本甲种图书?【参考答案】*** 一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 C B C B A C A C B D DB13.<<. 14.46.510 15.3016.上, y 轴, (0,0), 减小, 增大, 最小, 0. 17.(1,﹣3) 18.x (x+6) 三、解答题19.(1)证明见解析;(2)3. 【解析】 【分析】(1)连接OC ,根据等腰三角形的性质、平行线的判定得到OC ∥AE ,得到OC ⊥EF ,结论可得证; (2)证明△AEC ∽△ACB ,根据相似三角形的性质列出比例式,计算AC 后即可用勾股定理得BC 的长. 【详解】 (1)连接 OC .∵OA =OC , ∴∠1=∠2.∵点C 是»BD的中点. ∴∠1=∠3. ∴∠3=∠2. ∴AE ∥OC . ∵EF 是⊙O 的切线, ∴OC ⊥EF . ∴AE ⊥EF ;(2)∵AB 为⊙O 的直径, ∴∠ACB =90°. ∵AE ⊥EF ,∴∠AEC =90°. 又∵∠1=∠3, ∴△AEC ∽△ACB . ∴AC AEAB AC=, ∴AC 2=AE•AB=165×5=16. ∴AC =4. ∵AB =5, ∴BC =222254AB AC -=-=3.【点睛】本题考查的是切线的性质、圆周角定理以及相似三角形的判定和性质,掌握切线的性质定理、直径所对的圆周角是直角是解题的关键. 20.(1)见解析;(2) 2, 2. 【解析】 【分析】(1)先判断出∠DAG=45°,进而判断出四边形ABCD 是矩形,再求出AB :AD 的值,即可得出结论; (2)①如图b ,先判断出四边形BQOP 是矩形,进而得出,OP AO OQ COBC AC AB CA==,再判断出Rt △QON ∽Rt △POM ,进而判断出2ON OQ ABOM OP BC===,即可得出结论; ②作M 关于直线BC 对称的点P ,则△DMN 的周长最小,判断出CN DCNB BP=,得出AB=CD=2a .进而得出BP=BM=AB-AM=(2-1)a .即可得出结论;③先求出BC=AD=2,再判断出点R 是BC 为直径的圆上,即可得出结论. 【详解】证明:(1)设正方形ABEF 的边长为a , ∵AE 是正方形ABEF 的对角线, ∴∠DAG=45°,由折叠性质可知AG=AB=a ,∠FDC=∠ADC=90°, 则四边形ABCD 为矩形, ∴△ADG 是等腰直角三角形. ∴2AD DG ==, ∴::2:12AB AD a ==. ∴四边形ABCD 为2矩形;(2)①解:如图,作OP ⊥AB ,OQ ⊥BC ,垂足分别为P ,Q .∵四边形ABCD 是矩形,∠B=90°,。
2019-2020学年咸阳市名校中考数学调研试题

2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.计算(ab2)3的结果是()A.ab5B.ab6C.a3b5D.a3b62.在刚刚结束的中考英语听力、口语测试中,某班口语成绩情况如图所示,则下列说法正确的是()A.中位数是9 B.众数为16 C.平均分为7.78 D.方差为23.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.60050x-=450xB.60050x+=450xC.600x=45050x+D.600x=45050x-4.点A(m﹣4,1﹣2m)在第四象限,则m的取值范围是()A.m>12B.m>4C.m<4 D.12<m<45.如图,图1是由5个完全相同的正方体堆成的几何体,现将标有E的正方体平移至如图2所示的位置,下列说法中正确的是( )A.左、右两个几何体的主视图相同B.左、右两个几何体的左视图相同C.左、右两个几何体的俯视图不相同D.左、右两个几何体的三视图不相同6.《九章算术》是我国古代第一部自成体系的数学专著,代表了东方数学的最高成就.它的算法体系至今仍在推动着计算机的发展和应用.书中记载:“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”译为:“今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯这木材,锯口深1寸(ED=1寸),锯道长1尺(AB=1尺=10寸)”,问这块圆形木材的直径是多少?”如图所示,请根据所学知识计算:圆形木材的直径AC是()A.13寸B.20寸C.26寸D.28寸7.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为()A.99°B.109°C.119°D.129°8.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.259.“赶陀螺”是一项深受人们喜爱的运动.如图所示是一个陀螺的立体结构图.已知底面圆的直径AB=8 cm,圆柱的高BC=6 cm,圆锥的高CD=3 cm,则这个陀螺的表面积是()A.68π cm2B.74π cm2C.84π cm2D.100π cm210.某市初中学业水平实验操作考试,要求每名学生从物理,化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到物理学科的概率是( )A.19B.14C.16D.13二、填空题(本题包括8个小题)11.如图,是由一些小立方块所搭几何体的三种视图,若在所搭几何体的基础上(不改变原几何体中小立方块的位置),继续添加相同的小立方块,以搭成一个大正方体,至少还需要________个小立方块.12.如图,小强和小华共同站在路灯下,小强的身高EF =1.8m ,小华的身高MN =1.5m ,他们的影子恰巧等于自己的身高,即BF =1.8m ,CN =1.5m ,且两人相距4.7m ,则路灯AD 的高度是___.13.已知二次函数()2y ax bx c a 0=++≠的图象如图所示,有下列结论:abc 0<①,2a b 0+=②,a b c 0-+=③;24ac b 0->④,4a 2b c 0++>⑤,其中正确的结论序号是______14.如图,在边长为9的正三角形ABC 中,BD=3,∠ADE=60°,则AE 的长为 .15.如图,四边形ABCD 内接于⊙O ,AB 是⊙O 的直径,过点C 作⊙O 的切线交AB 的延长线于点P ,若∠P =40°,则∠ADC =____°.16.如图,已知,第一象限内的点A 在反比例函数y =2x的图象上,第四象限内的点B 在反比例函数y =k x的图象上.且OA ⊥OB ,∠OAB =60°,则k 的值为_________.17.如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加_____m.18.把一张长方形纸条按如图所示折叠后,若∠AOB′=70°,则∠B′OG=_____.三、解答题(本题包括8个小题)19.(6分)列方程解应用题:为宣传社会主义核心价值观,某社区居委会计划制作1200个大小相同的宣传栏.现有甲、乙两个广告公司都具备制作能力,居委会派出相关人员分别到这两个广告公司了解情况,获得如下信息:信息一:甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天;信息二:乙公司每天制作的数量是甲公司每天制作数量的1.2倍.根据以上信息,求甲、乙两个广告公司每天分别能制作多少个宣传栏?20.(6分)如图,一次函数y=kx+b与反比例函数y=6x(x>0)的图象交于A(m,6),B(3,n)两点.求一次函数关系式;根据图象直接写出kx+b﹣6x>0的x的取值范围;求△AOB的面积.21.(6分)如图,AB=16,O为AB中点,点C在线段OB上(不与点O,B重合),将OC绕点O逆时针旋转270°后得到扇形COD,AP,BQ分别切优弧CD于点P,Q,且点P,Q在AB异侧,连接OP.求证:AP=BQ;当BQ= 43时,求QD的长(结果保留 );若△APO的外心在扇形COD的内部,求OC的取值范围.22.(8分)如图,点A、B、C、D在同一条直线上,CE∥DF,EC=BD,AC=FD,求证:AE=FB.23.(8分)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.证明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的长,24.(10分)如图,△ABC三个定点坐标分别为A(﹣1,3),B(﹣1,1),C(﹣3,2).请画出△ABC关于y轴对称的△A1B1C1;以原点O为位似中心,将△A1B1C1放大为原来的2倍,得到△A2B2C2,请在第三象限内画出△A2B2C2,并求出S△A1B1C1:S△A2B2C2的值.25.(10分)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于点A(-3,m+8),B(n,-6)两点.求一次函数与反比例函数的解析式;求△AOB的面积.26.(12分)如图有A、B两个大小均匀的转盘,其中A转盘被分成3等份,B转盘被分成4等份,并在每一份内标上数字.小明和小红同时各转动其中一个转盘,转盘停止后(当指针指在边界线时视为无效,重转),若将A转盘指针指向的数字记作一次函数表达式中的k,将B转盘指针指向的数字记作一次函数表达式中的b.请用列表或画树状图的方法写出所有的可能;求一次函数y=kx+b的图象经过一、二、四象限的概率.参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.D【解析】试题分析:根据积的乘方的性质进行计算,然后直接选取答案即可.试题解析:(ab2)3=a3•(b2)3=a3b1.故选D.考点:幂的乘方与积的乘方.2.A【解析】【分析】根据中位数,众数,平均数,方差等知识即可判断;【详解】观察图象可知,共有50个学生,从低到高排列后,中位数是25位与26位的平均数,即为1.故选A.【点睛】本题考查中位数,众数,平均数,方差的定义,解题的关键是熟练掌握基本知识,属于中考常考题型.3.B【解析】【分析】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【详解】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:60045050x x=+.故选B.【点睛】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.4.B【解析】【分析】根据第四象限内点的横坐标是正数,纵坐标是负数列出不等式组,然后求解即可.【详解】解:∵点A(m-1,1-2m)在第四象限,∴40120mm-⎧⎨-⎩>①,<②解不等式①得,m>1,解不等式②得,m>1 2所以,不等式组的解集是m>1,即m的取值范围是m>1.故选B.【点睛】本题考查各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5.B【解析】【分析】直接利用已知几何体分别得出三视图进而分析得出答案.【详解】A、左、右两个几何体的主视图为:,故此选项错误;B、左、右两个几何体的左视图为:,故此选项正确;C、左、右两个几何体的俯视图为:,故此选项错误;D、由以上可得,此选项错误;故选B.【点睛】此题主要考查了简单几何体的三视图,正确把握观察的角度是解题关键.6.C【解析】分析:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可. 详解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,∴⊙O的直径为26寸,故选C.点睛:本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题7.B【解析】【分析】方向角是从正北或正南方向到目标方向所形成的小于90°的角,根据平行线的性质求得∠ACF与∠BCF的度数,∠ACF与∠BCF的和即为∠C的度数.【详解】解:由题意作图如下∠DAC=46°,∠CBE=63°,由平行线的性质可得∠ACF=∠DAC=46°,∠BCF=∠CBE=63°,∴∠ACB=∠ACF+∠BCF=46°+63°=109°,故选B.【点睛】本题考查了方位角和平行线的性质,熟练掌握方位角的概念和平行线的性质是解题的关键.8.C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm1..∴AD=a.∴12DE•AD=a.∴DE=1. 当点F 从D 到B 时,用5s.∴BD=5.Rt △DBE 中,BE=()2222=521BD DE --=,∵四边形ABCD 是菱形,∴EC=a-1,DC=a ,Rt △DEC 中,a 1=11+(a-1)1.解得a=52. 故选C .【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.9.C【解析】试题分析:∵底面圆的直径为8cm ,高为3cm ,∴母线长为5cm ,∴其表面积=π×4×5+42π+8π×6=84πcm 2,故选C .考点:圆锥的计算;几何体的表面积.10.A【解析】【分析】作出树状图即可解题.【详解】解:如下图所示一共有9中可能,符合题意的有1种,故小华和小强都抽到物理学科的概率是19, 故选A.【点睛】本题考查了用树状图求概率,属于简单题,会画树状图是解题关键.二、填空题(本题包括8个小题)11.54【解析】试题解析:由主视图可知,搭成的几何体有三层,且有4列;由左视图可知,搭成的几何体共有3行;第一层有7个正方体,第二层有2个正方体,第三层有1个正方体,共有10个正方体,∵搭在这个几何体的基础上添加相同大小的小正方体,以搭成一个大正方体,∴搭成的大正方体的共有4×4×4=64个小正方体,∴至少还需要64-10=54个小正方体.【点睛】先由主视图、左视图、俯视图求出原来的几何体共有10个正方体,再根据搭成的大正方体的共有4×4×4=64个小正方体,即可得出答案.本题考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查,关键是求出搭成的大正方体共有多少个小正方体.12.4m【解析】【分析】设路灯的高度为x(m),根据题意可得△BEF∽△BAD,再利用相似三角形的对应边正比例整理得DF=x﹣1.8,同理可得DN=x﹣1.5,因为两人相距4.7m,可得到关于x的一元一次方程,然后求解方程即可.【详解】设路灯的高度为x(m),∵EF∥AD,∴△BEF∽△BAD,∴,即,解得:DF=x﹣1.8,∵MN∥AD,∴△CMN∽△CAD,∴,即,解得:DN=x ﹣1.5,∵两人相距4.7m ,∴FD+ND=4.7,∴x ﹣1.8+x ﹣1.5=4.7,解得:x=4m ,答:路灯AD 的高度是4m .13.①②③⑤【解析】【分析】由抛物线的开口方向判断a 的符号,由抛物线与y 轴的交点判断c 的符号,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】①由图象可知:抛物线开口方向向下,则a 0<,对称轴直线位于y 轴右侧,则a 、b 异号,即b 0>,抛物线与y 轴交于正半轴,则c 0>,abc 0<,故①正确;②对称轴为b x 12a=-=,b 2a =-,故②正确; ③由抛物线的对称性知,抛物线与x 轴的另一个交点坐标为()1,0-,所以当x 1=-时,y a b c 0=-+=,即a b c 0-+=,故③正确;④抛物线与x 轴有两个不同的交点,则2b 4ac 0->,所以24ac b 0-<,故④错误;⑤当x 2=时,y 4a 2b c 0=++>,故⑤正确.故答案为①②③⑤.【点睛】本题考查了考查了图象与二次函数系数之间的关系,二次函数2y ax bx c =++系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.14.7【解析】试题分析:∵△ABC 是等边三角形,∴∠B=∠C=60°,AB=BC .∴CD=BC -BD=9-3=6,;∠BAD+∠ADB=120°.∵∠ADE=60°,∴∠ADB+∠EDC=120°.∴∠DAB=∠EDC .又∵∠B=∠C=60°,∴△ABD ∽△DCE .∴AB DC BD CE =,即96CE 23CE=⇒=. ∴AE AC CE 927=-=-=.15.115°【解析】【分析】根据过C 点的切线与AB 的延长线交于P 点,∠P=40°,可以求得∠OCP 和∠OBC 的度数,又根据圆内接四边形对角互补,可以求得∠D 的度数,本题得以解决.【详解】解:连接OC ,如右图所示,由题意可得,∠OCP=90°,∠P=40°,∴∠COB=50°,∵OC=OB ,∴∠OCB=∠OBC=65°,∵四边形ABCD 是圆内接四边形,∴∠D+∠ABC=180°, ∴∠D=115°,故答案为:115°.【点睛】本题考查切线的性质、圆内接四边形,解题的关键是明确题意,找出所求问题需要的条件.16.-6【解析】如图,作AC ⊥x 轴,BD ⊥x 轴,∵OA ⊥OB ,∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°,∴∠OAC=∠BOD ,∴△ACO ∽△ODB ,∴OA OC AC OB BD OD==, ∵∠OAB=60°,∴33OA OB , 设A (x ,2x), ∴BD=3OC=3x ,OD=3AC=23x , ∴B (3x ,-23), 把点B 代入y=k x 得,-23=3x ,解得k=-6, 故答案为-6.17.1.【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把y=-1.5代入抛物线解析式得出水面宽度,即可得出答案【详解】解:建立平面直角坐标系,设横轴x 通过AB ,纵轴y 通过AB 中点O 且通过C 点,则通过画图可得知O 为原点,抛物线以y 轴为对称轴,且经过A ,B 两点,OA 和OB 可求出为AB 的一半1米,抛物线顶点C 坐标为(0,1),设顶点式y=ax 1+1,把A 点坐标(-1,0)代入得a=-0.5,∴抛物线解析式为y=-0.5x 1+1,当水面下降1.5米,通过抛物线在图上的观察可转化为:当y=-1.5时,对应的抛物线上两点之间的距离,也就是直线y=-1与抛物线相交的两点之间的距离,可以通过把y=-1.5代入抛物线解析式得出:-1.5=-0.5x1+1,解得:x=±3,1×3-4=1,所以水面下降1.5m,水面宽度增加1米.故答案为1.【点睛】本题考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键,学会把实际问题转化为二次函数,利用二次函数的性质解决问题,属于中考常考题型.18.55°【解析】【分析】由翻折性质得,∠BOG=∠B′OG,根据邻补角定义可得.【详解】解:由翻折性质得,∠BOG=∠B′OG,∵∠AOB′+∠BOG+∠B′OG=180°,∴∠B′OG=12(180°﹣∠AOB′)=12(180°﹣70°)=55°.故答案为55°.【点睛】考核知识点:补角,折叠.三、解答题(本题包括8个小题)19.甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【解析】【分析】设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏,然后根据“甲公司单独制作完成这批宣传栏比乙公司单独制作完成这批宣传栏多用10天”列出方程求解即可.【详解】解:设甲广告公司每天能制作x个宣传栏,则乙广告公司每天能制作1.2x个宣传栏.根据题意得:解得:x=1.经检验:x=1是原方程的解且符合实际问题的意义.∴1.2x=1.2×1=2.答:甲广告公司每天能制作1个宣传栏,乙广告公司每天能制作2个宣传栏.【点睛】此题考查了分式方程的应用,找出等量关系为两广告公司的工作时间的差为10天是解题的关键.20.(1)y=-2x+1 ;(2)1<x<2 ;(2)△AOB的面积为1 .【解析】试题分析:(1)首先根据A(m,6),B(2,n)两点在反比例函数y=6x(x>0)的图象上,求出m,n的值各是多少;然后求出一次函数的解析式,再根据一元二次不等式的求法,求出x的取值范围即可.(2)由-2x+1-6x<0,求出x的取值范围即可.(2)首先分别求出C点、D点的坐标的坐标各是多少;然后根据三角形的面积的求法,求出△AOB的面积是多少即可.试题解析:(1)∵A(m,6),B(2,n)两点在反比例函数y=6x(x>0)的图象上,∴6=6m ,63n=,解得m=1,n=2,∴A(1,6),B(2,2),∵A(1,6),B(2,2)在一次函数y=kx+b的图象上,∴6{32 k bk b++==,解得2 {8kb-==,∴y=-2x+1.(2)由-2x+1-6x<0,解得0<x<1或x>2.(2)当x=0时,y=-2×0+1=1,∴C点的坐标是(0,1);当y=0时,0=-2x+1,解得x=4,∴D点的坐标是(4,0);∴S △AOB =12×4×1-12×1×1-12×4×2=16-4-4=1. 21.(1)详见解析;(2)143π;(3)4<OC<1. 【解析】【分析】(1) 连接OQ ,由切线性质得∠APO=∠BQO=90°,由直角三角形判定HL 得Rt △APO ≌Rt △BQO ,再由全等三角形性质即可得证.(2)由(1)中全等三角形性质得∠AOP=∠BOQ ,从而可得P 、O 、Q 三点共线,在Rt △BOQ 中,根据余弦定义可得cosB=QB OB, 由特殊角的三角函数值可得∠B=30°,∠BOQ=60° ,根据直角三角形的性质得 OQ=4, 结合题意可得 ∠QOD 度数,由弧长公式即可求得答案.(3)由直角三角形性质可得△APO 的外心是OA 的中点 ,结合题意可得OC 取值范围.【详解】(1)证明:连接OQ.∵AP 、BQ 是⊙O 的切线,∴OP ⊥AP ,OQ ⊥BQ ,∴∠APO=∠BQO=90∘,在Rt △APO 和Rt △BQO 中,OP OQ OA OB=⎧⎨=⎩, ∴Rt △APO ≌Rt △BQO ,∴AP=BQ.(2)∵Rt △APO ≌Rt △BQO ,∴∠AOP=∠BOQ ,∴P 、O 、Q 三点共线,∵在Rt △BOQ 中,cosB=433QB OB == ∴∠B=30∘,∠BOQ= 60° ,∴OQ=12OB=4,∵∠COD=90°,∴∠QOD= 90°+ 60° = 150°,∴优弧QD 的长=2104141803ππ⋅⋅=, (3)解:设点M 为Rt △APO 的外心,则M 为OA 的中点,∵OA=1,∴OM=4,∴当△APO 的外心在扇形COD 的内部时,OM <OC ,∴OC 的取值范围为4<OC <1.【点睛】本题考查了三角形的外接圆与外心、弧长的计算、扇形面积的计算、旋转的性质以及全等三角形的判定与性质,解题的关键是:(1)利用全等三角形的判定定理HL 证出Rt △APO ≌Rt △BQO ;(2)通过解直角三角形求出圆的半径;(3)牢记直角三角形外心为斜边的中点是解题的关键.22.见解析【解析】【分析】根据CE ∥DF ,可得∠ECA=∠FDB ,再利用SAS 证明△ACE ≌△FDB ,得出对应边相等即可.【详解】解:∵CE ∥DF∴∠ECA=∠FDB ,在△ECA 和△FDB 中EC BD ECA FAC FD ⎧⎪∠∠⎨⎪⎩===∴△ECA ≌△FDB ,∴AE=FB .【点睛】 本题主要考查全等三角形的判定与性质和平行线的性质;熟练掌握平行线的性质,证明三角形全等是解决问题的关键.23.(1)见解析;(2)EC =1.【解析】【分析】(1)由AB =AC ,可知∠B =∠C ,再由DE ⊥BC ,可知∠F+∠C =90°,∠BDE+∠B =90°,然后余角的性质可推出∠F =∠BDE ,再根据对顶角相等进行等量代换即可推出∠F =∠FDA ,于是得到结论;(2)根据解直角三角形和等边三角形的性质即可得到结论.【详解】(1)∵AB=AC,∴∠B=∠C,∵FE⊥BC,∴∠F+∠C=90°,∠BDE+∠B=90°,∴∠F=∠BDE,而∠BDE=∠FDA,∴∠F=∠FDA,∴AF=AD,∴△ADF是等腰三角形;(2)∵DE⊥BC,∴∠DEB=90°,∵∠B=60°,BD=1,∴BE=12BD=2,∵AB=AC,∴△ABC是等边三角形,∴BC=AB=AD+BD=6,∴EC=BC﹣BE=1.【点睛】本题主要考查等腰三角形的判定与性质、余角的性质、对顶角的性质等知识点,关键根据相关的性质定理,通过等量代换推出∠F=∠FDA,即可推出结论.24.(1)见解析;(2)图见解析;1 4 .【解析】【分析】(1)根据网格结构找出点A、B、C关于y轴的对称点A1、B1、C1的位置,然后顺次连接即可.(2)连接A1O并延长至A2,使A2O=2A1O,连接B1O并延长至B2,使B2O=2B1O,连接C1O并延长至C2,使C2O=2C1O,然后顺次连接即可,再根据相似三角形面积的比等于相似比的平方解答.【详解】解:(1)△A1B1C1如图所示.(2)△A2B2C2如图所示.∵△A1B1C1放大为原来的2倍得到△A2B2C2,∴△A1B1C1∽△A2B2C2,且相似比为12.∴S△A1B1C1:S△A2B2C2=(12)2=14.25.(1)y=-6x,y=-2x-1(2)1【解析】试题分析:(1)将点A坐标代入反比例函数求出m的值,从而得到点A的坐标以及反比例函数解析式,再将点B坐标代入反比例函数求出n的值,从而得到点B的坐标,然后利用待定系数法求一次函数解析式求解;(2)设AB与x轴相交于点C,根据一次函数解析式求出点C的坐标,从而得到点OC的长度,再根据S△AOB=S△AOC+S△BOC列式计算即可得解.试题解析:(1)将A(﹣3,m+8)代入反比例函数y=得,=m+8,解得m=﹣6,m+8=﹣6+8=2,所以,点A的坐标为(﹣3,2),反比例函数解析式为y=﹣,将点B(n,﹣6)代入y=﹣得,﹣=﹣6,解得n=1,所以,点B的坐标为(1,﹣6),将点A(﹣3,2),B(1,﹣6)代入y=kx+b得,,解得,所以,一次函数解析式为y=﹣2x﹣1;(2)设AB与x轴相交于点C,令﹣2x﹣1=0解得x=﹣2,所以,点C的坐标为(﹣2,0),所以,OC=2,S△AOB=S△AOC+S△BOC,=×2×3+×2×1,=3+1,=1.考点:反比例函数与一次函数的交点问题.26.(1)答案见解析;(2)13.【解析】【分析】(1)k可能的取值为-1、-2、-3,b可能的取值为-1、-2、3、4,所以将所有等可能出现的情况用列表方式表示出来即可.(2)判断出一次函数y=kx+b经过一、二、四象限时k、b的正负,在列表中找出满足条件的情况,利用概率的基本概念即可求出一次函数y=kx+b经过一、二、四象限的概率.【详解】解:(1)列表如下:所有等可能的情况有12种;(2)一次函数y=kx+b的图象经过一、二、四象限时,k<0,b>0,情况有4种,则P=412=13.2019-2020学年中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,△ABC的三个顶点分别为A(1,2)、B(4,2)、C(4,4).若反比例函数y=kx在第一象限内的图象与△ABC有交点,则k的取值范围是()A.1≤k≤4B.2≤k≤8C.2≤k≤16D.8≤k≤162.下列几何体中,主视图和左视图都是矩形的是()A.B.C.D.3.如图1,在矩形ABCD中,动点E从A出发,沿A→B→C方向运动,当点E到达点C时停止运动,过点E作EF⊥AE交CD于点F,设点E运动路程为x,CF=y,如图2所表示的是y与x的函数关系的大致图象,给出下列结论:①a=3;②当CF=14时,点E的运动路程为114或72或92,则下列判断正确的是( )A.①②都对B.①②都错C.①对②错D.①错②对4.甲、乙两人加工一批零件,甲完成240个零件与乙完成200个零件所用的时间相同,已知甲比乙每天多完成8个零件.设乙每天完成x个零件,依题意下面所列方程正确的是()A.2402008x x=-B.2402008x x=+C.2402008x x=+D.2402008x x=-5.关于x的一元二次方程x2﹣3有两个不相等的实数根,则实数m的取值范围是()A.m<3 B.m>3 C.m≤3D.m≥36.将抛物线y=x2先向左平移2个单位,再向下平移3个单位后所得抛物线的解析式为()A.y=(x﹣2)2+3 B.y=(x﹣2)2﹣3 C.y=(x+2)2+3 D.y=(x+2)2﹣37.为了解中学300名男生的身高情况,随机抽取若干名男生进行身高测量,将所得数据整理后,画出频数分布直方图(如图).估计该校男生的身高在169.5cm~174.5cm之间的人数有()A.12 B.48 C.72 D.968.计算:9115()515÷⨯-得()A.-95B.-1125C.-15D.11259.下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.10.如果解关于x的分式方程2122m xx x-=--时出现增根,那么m的值为A.-2 B.2 C.4 D.-4二、填空题(本题包括8个小题)11.如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的正弦值为__.12.一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,随机取出一个小球后不放回,再随机取出一个小球,则两次取出的小球标号的和等于4的概率是_____.13.如图,正方形ABCD边长为3,连接AC,AE平分∠CAD,交BC的延长线于点E,FA⊥AE,交CB延长线于点F,则EF的长为__________.14.如图,小强和小华共同站在路灯下,小强的身高EF=1.8m,小华的身高MN=1.5m,他们的影子恰巧等于自己的身高,即BF=1.8m,CN=1.5m,且两人相距4.7m,则路灯AD的高度是___.15.如果抛物线y=ax 2+5的顶点是它的最低点,那么a 的取值范围是_____.16.因式分解:2m 2﹣8n 2= .17.函数13x y x -=-自变量x 的取值范围是 _____. 18.如果分式42x x -+的值为0,那么x 的值为___________. 三、解答题(本题包括8个小题)19.(6分)小李在学习了定理“直角三角形斜边上的中线等于斜边的一半”之后做了如下思考,请你帮他完成如下问题:他认为该定理有逆定理:“如果一个三角形某条边上的中线等于该边长的一半,那么这个三角形是直角三角形”应该成立.即如图①,在ABC ∆中,AD 是BC 边上的中线,若AD BD CD ==,求证:90BAC ∠=︒.如图②,已知矩形ABCD ,如果在矩形外存在一点E ,使得AE CE ⊥,求证:BE DE ⊥.(可以直接用第(1)问的结论)在第(2)问的条件下,如果AED ∆恰好是等边三角形,请求出此时矩形的两条邻边AB 与BC 的数量关系.20.(6分)某通讯公司推出①,②两种通讯收费方式供用户选择,其中一种有月租费,另一种无月租费,且两种收费方式的通讯时间x(分)与费用y(元)之间的函数关系如图所示.有月租的收费方式是________(填“①”或“②”),月租费是________元;分别求出①,②两种收费方式中y 与自变量x 之间的函数表达式;请你根据用户通讯时间的多少,给出经济实惠的选择建议.21.(6分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.22.(8分)已知二次函数2y x bx c =-++的图象如图6所示,它与x 轴的一个交点坐标为(10)-,,与y 轴的交点坐标为(0,3).求出此二次函数的解析式;根据图象,写出函数值y 为正数时,自变量x 的取值范围.23.(8分)如图,PA PB 、分别与O 相切于点A B 、,点M 在PB 上,且//OM AP ,MN AP ⊥,垂足为N . 求证:=OM AN ;若O 的半径=3R ,=9PA ,求OM 的长24.(10分)如图,点C 在线段AB 上,AD ∥EB ,AC =BE ,AD =BC ,CF 平分∠DCE .求证:CF ⊥DE 于点F .25.(10分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了 个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是 度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?26.(12分)如图,△ABC是等腰三角形,AB=AC,点D是AB上一点,过点D作DE⊥BC交BC于点E,交CA延长线于点F.证明:△ADF是等腰三角形;若∠B=60°,BD=4,AD=2,求EC的长,参考答案一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.C【解析】试题解析:由于△ABC是直角三角形,所以当反比例函数kyx=经过点A时k最小,进过点C时k最大,据此可得出结论.∵△ABC是直角三角形,∴当反比例函数kyx=经过点A时k最小,经过点C时k最大,∴k最小=1×2=2,k最大=4×4=1,∴2≤k≤1.故选C.2.C【解析】【分析】主视图、左视图是分别从物体正面、左面和上面看,所得到的图形.依此即可求解.【详解】A. 主视图为圆形,左视图为圆,故选项错误;B. 主视图为三角形,左视图为三角形,故选项错误;C. 主视图为矩形,左视图为矩形,故选项正确;D. 主视图为矩形,左视图为圆形,故选项错误.故答案选:C.。
┃试卷合集4套┃2020咸阳市名校中考数学教学质量调研试卷

2019-2020学年数学中考模拟试卷一、选择题1.下列图案是用长度相同的火柴按一定规律拼搭而成,图案①需8根火柴,图案②需15根火柴,…,按此规律,图案⑩需几根火柴棒( )A .71B .72C .74D .782.如图,平面直角坐标系中,在边长为1的菱形ABCD 的边上有一动点P 从点A 出发沿A→B→C→D→A 匀速运动一周,则点P 的纵坐标y 与点P 走过的路程S 之间的函数关系用图象表示大致是( )A .B .C .D .3.平方根和立方根都是本身的数是( ) A .0B .1C .±1D .0和±14.如图圆O 直径AB 上一点P ,AB =2,∠BAC =20°,D 是弧BC 中点,则PD+PC 的最小值为( )A .3B .1C .5D .25.下列四个命题中:①若,则;②反比例函数,当时,y 随x 的增大而增大;③垂直于弦的直径平分这条弦; ④平行四边形的对角线互相平分,真命题的个数是( ) A.1个 B.2个C.3个D.4个6.据统计,截止2019年2月,长春市实际居住人口约4210000人,4210000这个数用科学记数法表示为( ) A.542.110⨯B.54.2110⨯C.64.2110⨯D.74.2110⨯7.下列运算正确的是( ) A .x 8÷x 2=x 4B .(x 2)3=x 5C .(﹣3xy)2=6x 2y 2D .2x 2y•3xy=6x 3y 28.如图,直线y =mx+n 与两坐标轴分别交于点B ,C ,且与反比例函致y =2x(x >0)图象交于点A ,过点A 作AD ⊥x 轴,垂足为D ,连接DC ,若△BOC 的面积是6,则△DOC 的面积是( )A .5﹣25B .5+25C .415﹣6D .﹣3+159.如图,正方形ABCD 的边长为8,M 在DC 上,且DM 2=,N 是AC 上一动点,则DN MN +的最小值为( )A .6B .8C .10D .1210.某校对部分参加研学旅行社会实践活动的中学生的年龄(单位:岁)进行统计,结果如表: 年龄 12 12 14 15 16 人数12231A .15,14B .15,13C .14,14D .13,1411.不等式12x-≥1的解集在数轴上表示正确的是( ) A .B .C .D .12.﹣π的绝对值是( ) A .﹣π B .3.14 C .π D .1π二、填空题13.如图,O 是等边△ABC 内一点,OA =6,OB =8,OC =10,将线段BO 以点B 为旋转中心逆时针旋转60°得到线段BO',下列结论:①△BO'A 可以由△BOC 绕点B 逆时针旋转60°得到;②点O 与O'的距离为8;③四边形AOBO'的面积为3; ④∠AOB =150°;⑤s △AOC+S △AOB =3,其中正确的结论是_____.14.如图,在△ABC 中,AC =BC =4,∠ACB =90°,若点D 是AB 的中点,分别以点A 、B 为圆心,12AB 长为半径画弧,交AC 于点E ,交BC 于点F ,则图中阴影部分的周长是_____.15.如图,AB 为⊙O 的直径,弦CD ⊥AB 于点E ,已知CD =6,EB =2,则⊙O 的半径为_____.16.分解因式a 3﹣a 的结果是_____. 17.将数1个1,2个12,3个13,…,n 个1n (n 为正整数)顺次排成一列:1、12、12、13、13、13、…、1n 、1n …,记123111,,,22a a a ===…,11S a =,212S a a =+,3123S a a a =++,…,12...n n S a a a =+++,则S 2019=______.18.如图,在□ABCD 中,AB=3,AD=4,∠ABC=60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .三、解答题19.某校学生会发现同学们就餐时剩余饭菜较多,浪费严重,于是准备在校内倡导“光盘行动”,让同学们珍惜粮食,为了让同学们理解这次活动的重要性,校学生会在某天午餐后,随机调查了部分同学这餐饭菜的剩余情况,并将结果统计后绘制成了如图所示的不完整的统计图.(1)这次被调查的同学共有人;(2)补全条形统计图,并在图上标明相应的数据;(3)校学生会通过数据分析,估计这次被调查的所有学生一餐浪费的食物可以供50人食用一餐.据此估算,该校18000名学生一餐浪费的食物可供多少人食用一餐.20.如图,大楼AC的一侧有一个斜坡,斜坡的坡角为30°.小明在大楼的B处测得坡面底部E处的俯角为33°,在楼顶A处测得坡面D处的俯角为30°.已知坡面DE=20m,CE=30m,点C,D,E在同一平面内,求A,B两点之间的距离.(结果精确到1m,参考数据:3≈1.73,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)21.(1)阅读理解利用旋转变换解决数学问题是一种常用的方法.如图1,点P是等边三角形ABC内一点,PA=1,PB=3,PC=2.求∠BPC的度数.为利用已知条件,不妨把△BPC绕点C顺时针旋转60°得△AP′C,连接PP′,则PP′的长为_____;在△PAP′中,易证∠PAP′=90°,且∠PP′A的度数为_____,综上可得∠BPC的度数为_____;(2)类比迁移如图2,点P是等腰Rt△ABC内的一点,∠ACB=90°,PA=2,PB=2,PC=1,求∠APC的度数;(3)拓展应用如图3,在四边形ABCD中,BC=3,CD=5,AB=AC=12AD.∠BAC=2∠ADC,请直接写出BD的长.22.如图,1为水平地面,测角仪高1米,将测角仪放置在点D处,且垂直于地面1,测得仰角∠ACG=45°,将测角仪平移至EF处,测得仰角∠AEG=60°,已知DF=3米,求树AB的高度.23.如图,BC是半⊙O的直径,A是⊙O上一点,过点的切线交CB的延长线于点P,过点B的切线交CA 的延长线于点E,AP与BE相交于点F.(1)求证:BF=EF;(2)若AF=32,半⊙O的半径为2,求PA的长度.24.一般轮船在A、B两个港口之间航行,顺流需要4个小时,逆流需要5个小时,已知水流通度是每小时2千米,求轮船在静水中的速度.25.某校为了预测本校九年级男生毕业体育测试达标情况,随机抽取该年级部分男生进行一次测试(满分50分,成绩均记为整数分),并按测试成绩m(单位:分)分类:A类(45<m≤50),B类(40<m≤45),C类(35<m≤40),D类(m≤35)绘制出如图所示的不完整条形统计图,请根据图中信息解答下列问题:(1)a=,b=,c=;成绩等级人数所占百分比A类(45 10 20%B类22 44%C类 a bD类 c(3)若该校九年级男生有600名,D类为测试成绩不达标,请估计该校九年级男生毕业体育测试成绩能达标的有多少名?【参考答案】***一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A A A B B C D D C A A C13.①②④⑤.14.8422π-+15.13 416.a(a+1)(a﹣1).17.403564(或36364)18.3三、解答题19.(1)1000,(2)答案见解析;(3)900.【解析】【分析】(1)结合不剩同学的个数和比例,计算总体个数,即可。
陕西省咸阳市2019-2020学年中考数学教学质量调研试卷含解析

陕西省咸阳市2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在1、﹣1、3、﹣2这四个数中,最大的数是()A.1 B.﹣1 C.3 D.﹣22.下列二次函数的图象,不能通过函数y=3x2的图象平移得到的是()A.y=3x2+2 B.y=3(x﹣1)2C.y=3(x﹣1)2+2 D.y=2x23.如图,将△ABC绕点C旋转60°得到△A′B′C′,已知AC=6,BC=4,则线段AB扫过的图形面积为()A.32πB.83πC.6πD.以上答案都不对4.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.15.已知一个多边形的内角和是外角和的3倍,则这个多边形是()A.五边形B.六边形C.七边形D.八边形6.不透明袋子中装有一个几何体模型,两位同学摸该模型并描述它的特征.甲同学:它有4个面是三角形;乙同学:它有8条棱.该模型的形状对应的立体图形可能是()A.三棱柱B.四棱柱C.三棱锥D.四棱锥7.剪纸是水族的非物质文化遗产之一,下列剪纸作品是中心对称图形的是()A.B.C .D .8.一元二次方程4x 2﹣2x+14=0的根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .没有实数根D .无法判断9.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( ) A .8或10B .8C .10D .6或1210.下列运算错误的是( )A .(m 2)3=m 6B .a 10÷a 9=a C .x 3•x 5=x 8 D .a 4+a 3=a 7 11.2017年5月5日国产大型客机C919首飞成功,圆了中国人的“大飞机梦”,它颜值高性能好,全长近39米,最大载客人数168人,最大航程约5550公里.数字5550用科学记数法表示为( ) A .0.555×104B .5.55×103C .5.55×104D .55.5×10312.如图,在矩形ABCD 中,AB=2,BC=1.若点E 是边CD 的中点,连接AE ,过点B 作BF ⊥AE 交AE 于点F ,则BF 的长为( )A .3102B .3105C .105D .355二、填空题:(本大题共6个小题,每小题4分,共24分.)13.正方形EFGH 的顶点在边长为3的正方形ABCD 边上,若AE=x ,正方形EFGH 的面积为y ,则y 与x 的函数关系式为______.14.在ABC V 中,若211sin (cos )022A B -+-=,则C ∠的度数是______. 15.如图,正比例函数y=kx (k >0)与反比例函数y=的图象相交于A 、C 两点,过点A 作x 轴的垂线交x 轴于点B ,连结BC ,则△ABC 的面积等于_____.16.在矩形ABCD 中,AB=4, BC=3, 点P 在AB 上.若将△DAP 沿DP 折叠,使点A 落在矩形对角线上的处,则AP 的长为__________.17.如图,在扇形AOB 中,∠AOB=90°,正方形CDEF 的顶点C 是弧AB 的中点,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为4时,阴影部分的面积为_____.18.分式方程2154x =-的解是_____. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(6分)如图,在平面直角坐标系中,A 为y 轴正半轴上一点,过点A 作x 轴的平行线,交函数2(0)y x x=<的图象于B 点,交函数6(0)y x x=>的图象于C ,过C 作y 轴和平行线交BO 的延长线于D . (1)如果点A 的坐标为(0,2),求线段AB 与线段CA 的长度之比; (2)如果点A 的坐标为(0,a ),求线段AB 与线段CA 的长度之比; (3)在(1)条件下,四边形AODC 的面积为多少?20.(6分)如图1,B (2m ,0),C (3m ,0)是平面直角坐标系中两点,其中m 为常数,且m >0,E (0,n )为y 轴上一动点,以BC 为边在x 轴上方作矩形ABCD ,使AB=2BC ,画射线OA ,把△ADC 绕点C 逆时针旋转90°得△A′D′C′,连接ED′,抛物线2y ax bx c =++(0a ≠)过E ,A′两点.(1)填空:∠AOB= °,用m表示点A′的坐标:A′(,);(2)当抛物线的顶点为A′,抛物线与线段AB交于点P,且13BPAP时,△D′OE与△ABC是否相似?说明理由;(3)若E与原点O重合,抛物线与射线OA的另一个交点为点M,过M作MN⊥y轴,垂足为N:①求a,b,m满足的关系式;②当m为定值,抛物线与四边形ABCD有公共点,线段MN的最大值为10,请你探究a的取值范围.21.(6分)一个不透明的袋子中装有3个标号分别为1、2、3的完全相同的小球,随机地摸出一个小球不放回,再随机地摸出一个小球.采用树状图或列表法列出两次摸出小球出现的所有可能结果;求摸出的两个小球号码之和等于4的概率.22.(8分)某纺织厂生产的产品,原来每件出厂价为80元,成本为60元.由于在生产过程中平均每生产一件产品有0.53m的污水排出,现在为了保护环境,需对污水净化处理后再排出.已知每处理13m污水的费用为2元,且每月排污设备损耗为8000元.设现在该厂每月生产产品x件,每月纯利润y元:(1)求出y与x的函数关系式.(纯利润=总收入-总支出)(2)当y=106000时,求该厂在这个月中生产产品的件数.23.(8分)某品牌牛奶供应商提供A,B,C,D四种不同口味的牛奶供学生饮用.某校为了了解学生对不同口味的牛奶的喜好,对全校订牛奶的学生进行了随机调查,并根据调查结果绘制了如下两幅不完整的统计图.根据统计图的信息解决下列问题:本次调查的学生有多少人?补全上面的条形统计图;扇形统计图中C对应的中心角度数是;若该校有600名学生订了该品牌的牛奶,每名学生每天只订一盒牛奶,要使学生能喝到自己喜欢的牛奶,则该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约多少盒?24.(10分)如图,在平行四边形ABCD中,E,F为BC上两点,且BE=CF,AF=DE求证:(1)△ABF≌△DCE;四边形ABCD是矩形.25.(10分)如图,在电线杆CD上的C处引拉线CE、CF固定电线杆,拉线CE和地面所成的角∠CED=60°,在离电线杆6米的B处安置高为1.5米的测角仪AB,在A处测得电线杆上C处的仰角为30°,求拉线CE 的长(结果保留小数点后一位,参考数据:2 1.41,?3 1.73≈≈).26.(12分)甲、乙两组工人同时开始加工某种零件,乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)之间的函数图象如下图所示.求甲组加工零件的数量y与时间x之间的函数关系式.求乙组加工零件总量a的值.27.(12分)我们定义:如果一个三角形一条边上的高等于这条边,那么这个三角形叫做“等高底”三角形,这条边叫做这个三角形的“等底”.(1)概念理解:如图1,在△ABC中,AC=6,BC=3,∠ACB=30°,试判断△ABC是否是”等高底”三角形,请说明理由.(1)问题探究:如图1,△ABC是“等高底”三角形,BC是”等底”,作△ABC关于BC所在直线的对称图形得到△A'BC,连结AA′交直线BC于点D.若点B是△AA′C的重心,求ACBC的值.(3)应用拓展:如图3,已知l1∥l1,l1与l1之间的距离为1.“等高底”△ABC的“等底”BC在直线l1上,点A在直线l1上,有一边的长是BC的2倍.将△ABC绕点C按顺时针方向旋转45°得到△A'B'C,A′C所在直线交l1于点D.求CD的值.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.【详解】解:根据有理数比较大小的方法,可得-2<-1<1<1,∴在1、-1、1、-2这四个数中,最大的数是1.故选C.【点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.D【解析】分析:根据平移变换只改变图形的位置不改变图形的形状与大小对各选项分析判断后利用排除法求解:A、y=3x2的图象向上平移2个单位得到y=3x2+2,故本选项错误;B、y=3x2的图象向右平移1个单位得到y=3(x﹣1)2,故本选项错误;C、y=3x2的图象向右平移1个单位,向上平移2个单位得到y=3(x﹣1)2+2,故本选项错误;D、y=3x2的图象平移不能得到y=2x2,故本选项正确.故选D.3.D【解析】【分析】从图中可以看出,线段AB扫过的图形面积为一个环形,环形中的大圆半径是AC,小圆半径是BC,圆心角是60度,所以阴影面积=大扇形面积-小扇形面积.【详解】阴影面积=() 603616103603π⨯-=π.故选D.【点睛】本题的关键是理解出,线段AB扫过的图形面积为一个环形.4.B【解析】试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G 四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB 于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F 分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.考点:四边形综合题.5.D【解析】【分析】根据多边形的外角和是360°,以及多边形的内角和定理即可求解.【详解】设多边形的边数是n,则(n−2)⋅180=3×360,解得:n=8.故选D.【点睛】此题考查多边形内角与外角,解题关键在于掌握其定理.6.D【解析】试题分析:根据有四个三角形的面,且有8条棱,可知是四棱锥.而三棱柱有两个三角形的面,四棱柱没有三角形的面,三棱锥有四个三角形的面,但是只有6条棱.故选D考点:几何体的形状7.D【解析】【分析】根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心进行分析即可.【详解】解:A、不是中心对称图形,故此选项错误;B、不是中心对称图形,故此选项错误;C、不是中心对称图形,故此选项错误;D、是中心对称图形,故此选项正确;故选:D.【点睛】此题主要考查了中心对称图形,关键是掌握中心对称图形的定义.8.B【解析】【分析】【详解】试题解析:在方程4x2﹣2x+ =0中,△=(﹣2)2﹣4×4×14=0,∴一元二次方程4x2﹣2x+14=0有两个相等的实数根.故选B.考点:根的判别式.9.C【解析】试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形,②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,综上所述,它的周长是4.故选C.考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.10.D【解析】【分析】利用合并同类项法则,单项式乘以单项式法则,同底数幂的乘法、除法的运算法则逐项进行计算即可得.【详解】A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误,故选D.【点睛】本题考查了合并同类项、单项式乘以单项式、同底数幂的乘除法,熟练掌握各运算的运算法则是解题的关键.11.B【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a 时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数. 【详解】解:5550=5.55×1. 故选B . 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 12.B 【解析】 【分析】 根据S △ABE =12S 矩形ABCD =1=12•AE•BF ,先求出AE ,再求出BF 即可. 【详解】 如图,连接BE .∵四边形ABCD 是矩形,∴AB=CD=2,BC=AD=1,∠D=90°, 在Rt △ADE 中,22AD DE +2231+10,∵S △ABE =12S 矩形ABCD =1=12•AE•BF , ∴310 故选:B . 【点睛】本题考查矩形的性质、勾股定理、三角形的面积公式等知识,解题的关键是灵活运用所学知识解决问题,学会用面积法解决有关线段问题,属于中考常考题型. 二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.y=2x 2﹣6x+2 【解析】 【分析】由AAS 证明△DHE ≌△AEF ,得出DE=AF=x ,DH=AE=1-x ,再根据勾股定理,求出EH 2,即可得到y 与x 之间的函数关系式.【详解】如图所示:∵四边形ABCD 是边长为1的正方形,∴∠A=∠D=20°,AD=1.∴∠1+∠2=20°,∵四边形EFGH 为正方形,∴∠HEF=20°,EH=EF .∴∠1+∠1=20°,∴∠2=∠1,在△AHE 与△BEF 中23D A EH EF ∠∠⎧⎪∠∠⎨⎪⎩===,∴△DHE ≌△AEF (AAS ),∴DE=AF=x ,DH=AE=1-x ,在Rt △AHE 中,由勾股定理得:EH 2=DE 2+DH 2=x 2+(1-x )2=2x 2-6x+2;即y=2x 2-6x+2(0<x <1),故答案为y=2x 2-6x+2.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、勾股定理,本题难度适中,求出y 与x 之间的函数关系式是解题的关键.14.90o【解析】【分析】 先根据非负数的性质求出1sinA 2=,1cosB 2=,再由特殊角的三角函数值求出A ∠与B ∠的值,根据三角形内角和定理即可得出结论.【详解】Q 在ABC V 中,211sinA (cosB )022-+-=, 1sinA 2∴=,1cosB 2=, A 30∠∴=o ,B 60o ∠=,C 180306090∠∴=--=o o o o ,故答案为:90o .【点睛】本题考查了非负数的性质以及特殊角的三角函数值,熟练掌握特殊角的三角函数值是解题的关键. 15.1.【解析】【分析】根据反比例函数的性质可判断点A 与点B 关于原点对称,则S △BOC =S △AOC ,再利用反比例函数k 的几何意义得到S △AOC =3,则易得S △ABC =1.【详解】∵双曲线y=与正比例函数y=kx 的图象交于A ,B 两点,∴点A 与点B 关于原点对称,∴S △BOC =S △AOC ,∵S △AOC =×1=3,∴S △ABC =2S △AOC =1.故答案为1.16.32或94【解析】【详解】①点A 落在矩形对角线BD 上,如图1,∵AB=4,BC=3,∴BD=5,根据折叠的性质,AD=A′D=3,AP=A′P ,∠A=∠PA′D=90°,∴BA′=2,设AP=x ,则BP=4﹣x ,∵BP 2=BA′2+PA′2,∴(4﹣x )2=x 2+22,解得:x=32,∴AP=32; ②点A 落在矩形对角线AC 上,如图2,根据折叠的性质可知DP ⊥AC ,∴△DAP ∽△ABC , ∴AD AB AP BC =, ∴AP=AD BC AB g =334⨯=94. 故答案为32或94.17.4π﹣1【解析】分析:连结OC ,根据勾股定理可求OC 的长,根据题意可得出阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积,依此列式计算即可求解.详解:连接OC ∵在扇形AOB 中∠AOB=90°,正方形CDEF 的顶点C 是»AB 的中点,∴∠COD=45°,∴22,∴阴影部分的面积=扇形BOC 的面积-三角形ODC 的面积=22451(42)43602π⨯⨯-⨯=4π-1. 故答案是:4π-1.点睛:考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.18.x=13【解析】【分析】解分式方程的步骤:①去分母;②求出整式方程的解;③检验;④得出结论.【详解】2154x =-, 去分母,可得x ﹣5=8,解得x=13,经检验:x=13是原方程的解.【点睛】本题主要考查了解分式方程,解分式方程时,去分母后所得整式方程的解有可能使原方程中的分母为0,所以应检验.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)线段AB 与线段CA 的长度之比为13;(2)线段AB 与线段CA 的长度之比为13;(3)1. 【解析】试题分析:(1)由题意把y=2代入两个反比例函数的解析式即可求得点B 、C 的横坐标,从而得到AB 、AC 的长,即可得到线段AB 与AC 的比值;(2)由题意把y=a 代入两个反比例函数的解析式即可求得用“a”表示的点B 、C 的横坐标,从而可得到AB 、AC 的长,即可得到线段AB 与AC 的比值;(3)由(1)可知,AB:AC=1:3,由此可得AB:BC=1:4,利用OA=2和平行线分线段成比例定理即可求得CD 的长,从而可由梯形的面积公式求出四边形AODC 的面积.试题解析:(1)∵A (0,2),BC ∥x 轴,∴B (﹣1,2),C (3,2),∴AB=1,CA=3,∴线段AB 与线段CA 的长度之比为13; (2)∵B 是函数y=﹣2x (x <0)的一点,C 是函数y=6x(x >0)的一点, ∴B (﹣2a ,a ),C (6a,a ), ∴AB=2a ,CA=6a, ∴线段AB 与线段CA 的长度之比为13; (3)∵AB AC =13, ∴AB BC =14, 又∵OA=a ,CD ∥y 轴, ∴14OA AB CD BC ==,∴CD=4a ,∴四边形AODC 的面积为=12(a+4a )×6a=1. 20.(1)45;(m ,﹣m );(2)相似;(3)①1b am =--;②114a ≤≤. 【解析】试题分析:(1)由B 与C 的坐标求出OB 与OC 的长,进一步表示出BC 的长,再证三角形AOB 为等腰直角三角形,即可求出所求角的度数;由旋转的性质得,即可确定出A′坐标;(2)△D′OE ∽△ABC .表示出A 与B 的坐标,由13BP AP =,表示出P 坐标,由抛物线的顶点为A′,表示出抛物线解析式,把点E 坐标代入即可得到m 与n 的关系式,利用三角形相似即可得证;(3)①当E 与原点重合时,把A 与E 坐标代入2y ax bx c =++,整理即可得到a ,b ,m 的关系式; ②抛物线与四边形ABCD 有公共点,可得出抛物线过点C 时的开口最大,过点A 时的开口最小,分两种情况考虑:若抛物线过点C (3m ,0),此时MN 的最大值为10,求出此时a 的值;若抛物线过点A (2m ,2m ),求出此时a 的值,即可确定出抛物线与四边形ABCD 有公共点时a 的范围.试题解析:(1)∵B (2m ,0),C (3m ,0),∴OB=2m ,OC=3m ,即BC=m ,∵AB=2BC ,∴AB=2m=0B ,∵∠ABO=90°,∴△ABO 为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m ,即A′(m ,﹣m );故答案为45;m ,﹣m ;(2)△D′OE ∽△ABC ,理由如下:由已知得:A (2m ,2m ),B (2m ,0),∵13BP AP =,∴P (2m ,12m ),∵A′为抛物线的顶点,∴设抛物线解析式为2()y a x m m =--,∵抛物线过点E (0,n ),∴2(0)n a m m =--,即m=2n ,∴OE :OD′=BC :AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE ∽△ABC ; (3)①当点E 与点O 重合时,E (0,0),∵抛物线2y ax bx c =++过点E ,A ,∴20{n am bm n m =++=-,整理得:1am b +=-,即1b am =--;②∵抛物线与四边形ABCD 有公共点,∴抛物线过点C 时的开口最大,过点A 时的开口最小,若抛物线过点C (3m ,0),此时MN 的最大值为10,∴a (3m )2﹣(1+am )•3m=0,整理得:am=12,即抛物线解析式为21322y x x m =-,由A (2m ,2m ),可得直线OA 解析式为y=x ,联立抛物线与直线OA 解析式得:2{1322y x y x x m ==-,解得:x=5m ,y=5m ,即M (5m ,5m ),令5m=10,即m=2,当m=2时,a=14; 若抛物线过点A (2m ,2m ),则2(2)(1)22a m am m m --⋅=,解得:am=2,∵m=2,∴a=1,则抛物线与四边形ABCD 有公共点时a 的范围为114a ≤≤. 考点:1.二次函数综合题;2.压轴题;3.探究型;4.最值问题.21.(1)见解析;(2)1 3 .【解析】【分析】(1)画树状图列举出所有情况;(2)让摸出的两个球号码之和等于4的情况数除以总情况数即为所求的概率.【详解】解:(1)根据题意,可以画出如下的树形图:从树形图可以看出,两次摸球出现的所有可能结果共有6种.(2)由树状图知摸出的两个小球号码之和等于4的有2种结果,∴摸出的两个小球号码之和等于4的概率为=.【点睛】本题要查列表法与树状图法求概率,列出树状图得出所有等可能结果是解题关键.22.(1)y=19x-1(x>0且x是整数) (2)6000件【解析】【分析】(1)本题的等量关系是:纯利润=产品的出厂单价×产品的数量-产品的成本价×产品的数量-生产过程中的污水处理费-排污设备的损耗,可根据此等量关系来列出总利润与产品数量之间的函数关系式;(2)根据(1)中得出的式子,将y的值代入其中,求出x即可.【详解】(1)依题意得:y=80x-60x-0.5x•2-1,化简得:y=19x-1,∴所求的函数关系式为y=19x-1.(x>0且x是整数)(2)当y=106000时,代入得:106000=19x-1,解得x=6000,∴这个月该厂生产产品6000件.【点睛】本题是利用一次函数的有关知识解答实际应用题,可根据题意找出等量关系,列出函数式进行求解.23.(1)150人;(2)补图见解析;(3)144°;(4)300盒.【解析】【分析】(1)根据喜好A口味的牛奶的学生人数和所占百分比,即可求出本次调查的学生数.(2)用调查总人数减去A、B、D三种喜好不同口味牛奶的人数,求出喜好C口味牛奶的人数,补全统计图.再用360°乘以喜好C口味的牛奶人数所占百分比求出对应中心角度数.(3)用总人数乘以A、B口味牛奶喜欢人数所占的百分比得出答案.【详解】解:(1)本次调查的学生有30÷20%=150人;(2)C类别人数为150﹣(30+45+15)=60人,补全条形图如下:(3)扇形统计图中C对应的中心角度数是360°×=144°故答案为144°(4)600×()=300(人),答:该牛奶供应商送往该校的牛奶中,A,B口味的牛奶共约300盒.【点睛】本题考查了条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得出必要的信息是解题的关键.24.(1)见解析;(2)见解析.【解析】【分析】(1)根据等量代换得到BE=CF,根据平行四边形的性质得AB=DC.利用“SSS”得△ABF≌△DCE.(2)平行四边形的性质得到两边平行,从而∠B+∠C=180°.利用全等得∠B=∠C,从而得到一个直角,问题得证.【详解】(1)∵BE=CF,BF=BE+EF,CE=CF+EF,∴BF=CE.∵四边形ABCD是平行四边形,∴AB=DC.在△ABF和△DCE中,∵AB=DC,BF=CE,AF=DE,∴△ABF≌△DCE.(2)∵△ABF≌△DCE,∴∠B=∠C.∵四边形ABCD是平行四边形,∴AB∥CD.∴∠B+∠C=180°.∴∠B=∠C=90°.∴平行四边形ABCD是矩形.25.5.7米.【解析】试题分析:由题意,过点A作AH⊥CD于H.在Rt△ACH中,可求出CH,进而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的长.试题解析:解:如答图,过点A作AH⊥CD,垂足为H,由题意可知四边形ABDH为矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6.在Rt△ACH中,CH=AH•tan∠CAH=6tan30°=6×323=,∵DH=1.5,∴CD=23+1.5.在Rt△CDE中,∵∠CED=60°,∴CE=23 1.55.7sin603CD+=≈︒(米).答:拉线CE的长约为5.7米.考点:1.解直角三角形的应用(仰角俯角问题);2.锐角三角函数定义;3.特殊角的三角函数值;4.矩形的判定和性质.26.(1)y=60x;(2)300【解析】【详解】(1)由题图可知,甲组的y是x的正比例函数.设甲组加工的零件数量y与时间x的函数关系式为y=kx.根据题意,得6k=360,解得k=60.所以,甲组加工的零件数量y 与时间x 之间的关系式为y=60x.(2)当x=2时,y=100.因为更换设备后,乙组工作效率是原来的2倍. 所以a-100100=24.8-2.82⨯,解得a=300. 27.(1)△ABC 是“等高底”三角形;(1)132;(3)CD 的值为2103,12,1. 【解析】【分析】(1)过A 作AD ⊥BC 于D ,则△ADC 是直角三角形,∠ADC=90°,根据30°所对的直角边等于斜边的一半可得:132AD AC ==,根据“等高底”三角形的概念即可判断. (1)点B 是'AA C V 的重心,得到2BC BD =,设BD x =,则23AD BC x CD x ===,, 根据勾股定理可得13AC x =,即可求出它们的比值.(3)分两种情况进行讨论:①当2AB BC =时和②当2AC BC =时.【详解】(1)△ABC 是“等高底”三角形;理由:如图1,过A 作AD ⊥BC 于D ,则△ADC 是直角三角形,∠ADC=90°,∵∠ACB=30°,AC=6,∴132AD AC ==, ∴AD=BC=3,即△ABC 是“等高底”三角形;(1)如图1,∵△ABC 是“等高底”三角形,BC 是“等底”,∴AD BC =,∵△ABC 关于BC 所在直线的对称图形是'A BC V ,∴∠ADC=90°,∵点B 是'AA C V 的重心,∴2BC BD =,设BD x =,则23AD BC x CD x ===,, 由勾股定理得13AC x =, ∴1313.22AC x BC x == (3)①当2AB BC =时,Ⅰ.如图3,作AE ⊥BC 于E ,DF ⊥AC 于F ,∵“等高底”△ABC 的“等底”为BC ,l 1∥l 1,l 1与l 1之间的距离为1,2AB BC =. ∴222BC AE AB ,,===∴BE=1,即EC=4,∴25AC ,=∵△ABC 绕点C 按顺时针方向旋转45°得到△A'B'C , ∴∠DCF=45°,设DF CF x ==,∵l 1∥l 1,∴ACE DAF ∠=∠,∴1,2DF AE AF CE == 即2AF x =, ∴325AC x ==,∴225,210,33x CD x === Ⅱ.如图4,此时△ABC 等腰直角三角形,∵△ABC 绕点C 按顺时针方向旋转45°得到''A B C V ,∴ACD V 是等腰直角三角形, ∴222CD AC ==. ②当2AC BC =时,Ⅰ.如图5,此时△ABC 是等腰直角三角形,∵△ABC 绕点C 按顺时针方向旋转45°得到△A'B'C ,∴1'A C l ⊥,∴2CD AB BC ===;Ⅱ.如图6,作AE BC ⊥于E ,则AE BC =,∴22AC BC ==,∴45ACE ∠=︒,∴△ABC 绕点C 按顺时针方向旋转45°,得到''A B C V 时,点A'在直线l 1上, ∴'A C ∥l 1,即直线'A C 与l 1无交点,综上所述,CD 210,22,2.3【点睛】属于新定义问题,考查对与等底高三角形概念的理解,勾股定理,等腰直角三角形的性质等,掌握等底高三角形的性质是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
咸阳市名校2020年中考数学教学质量调研试卷一、选择题1.下列计算正确的是()A.2×3=6B.2+3=5C.8=42D.4﹣2=22.如图,矩形ABCD中,AB=3,BC=5,点P是BC边上的一个动点(点P不与点B、C重合),现将△PCD沿直线PD折叠,使点C落到点C′处;作∠BPC′的角平分线交AB于点E.设BP=x,BE=y,则下列图象中,能表示y与x的函数关系的图象大致是()A. B.C. D.3.如图,若二次函数y=ax2+bx+c(a≠0)图象的对称轴为x=1,与y轴交于点C,与x轴交于点A、点B(﹣1,0),则:①二次函数的最大值为a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④当y>0时,﹣l <x<3,其中正确的是()A.①②④B.②④C.①④D.②③4.下列代数运算正确的是()A.x3•x2=x5B.(x3)2=x5C.(3x)2=3x2D.(x﹣1)2=x2﹣15.下列图案中,是中心对称图形的为()A.B.C.D.6.在质地和颜色都相同的三张卡片的正面分别写有-2,-1,1,将三张卡片背面朝上洗匀,从中抽出一张,并记为x,然后从余下的两张中再抽出一张,记为y,则点(x,y)在直线y=-x-1上的概率为()A.12B.13C.23D.17.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是( )A .中位数B .平均数C .众数D .方差8.从甲地到乙地,先是一段平路,然后是一段上坡路,小明骑车从甲地出发,到达乙地后立即返回甲地,途中休息了一段时间,假设小明骑车在平路、上坡、下坡时分别保持匀速前进,已知小明骑车上坡的速度比在平路上的速度每小时少5km ,下坡的速度比在平路上的速度每小时多5km .设小明出发xh 后,到达离甲地ykm 的地方,图中的折线OABCDE 表示y 与x 之间的函数关系.①小明骑车在平路上的速度为15km/h ②小明途中休息了0.1h ; ③小明从甲地去乙地来回过程中,两次经过距离甲地5.5km 的地方的时间间隔为0.15h则以上说法中正确的个数为( )A .0B .1C .2D .3 9.下列运算正确的是( )A .2m×3m=6mB .(m 3)2=m 6C .(﹣2m )3=﹣2m 3D .m 2+m 2=m 4 10.对于反比例函数6y x =-,当10x -<„时,y 的取值范围是( ) A .6y …B .60y -≤<C .06y <„D .6y <-11.如图,矩形纸片ABCD ,AD =4,AB =3,如果点E 在边BC 上,将纸片沿AE 折叠,使点B 落在点F 处,联结FC ,当△EFC 是直角三角形时,那么BE 的长为( )A .1.5B .3C .1.5或3D .有两种情况以上12.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的整数解为( )A .﹣1,0,1B .﹣1,0C .0,1D .﹣1,1二、填空题13.如图,在每个边长都为1的小正方形组成的网格中,为格点,,为小正方形的中点.(Ⅰ)线段的长为______; (Ⅱ)在线段上存在一个点,使得点满足,请你借助给定的网格,用无刻度...的直尺作出,并简要说明你是怎么找到点的______.14.已知A (m ,3)、B (﹣2,n )在同一个反比例函数图象上,则m n=_____. 15.如图,在⊙O 中,弦AB ,CD 相交于点P .若∠A =40°,∠APD =75°,则∠B =_____.16.如图,▱ABCD 中,AD =2AB ,AH ⊥CD 于点H ,N 为BC 中点,若∠D =68°,则∠NAH =_____.17.有一个底面为正方形的棱柱(如图),底面边长为20cm ,棱柱高50cm ,现沿着它底面的内切圆进行加工,切掉原来的三条侧棱后,形成的几何体如图所示,其俯视图如图所示,则该几何体的表面积为_____2cm ,体积为____3cm .(柱体的体积=底面积×高)18.观察下列关于自然数的式子:4×12﹣12,4×22﹣32,4×32﹣52,……,根据上述规律,则第2019个式子的值为_____三、解答题19.如图,在方格纸中每个小正方形的边长均为l ,线段AB 的端点在小正方形的顶点上,(所画图形顶点必须在小正方形的顶点上).(1)在如图中画一个以AB 为边的四边形ABCD 是中心对称图形,且四边形面积是12;(2)在如图中画一个以AB 为边的四边形ABMN 是轴对称图形,且只有一个角是直角,面积为15.20.(1)计算:|1﹣3|+(12)﹣1﹣2tan60° (2)先化简,再求值:22121()242x x x x x x -++÷-++,其中x =2﹣1. 21.近年来,体育分数在中招考试中占分比重越来越大,不少家长、考生也越来越重视;某中学计划购买一批足球、跳绳供学生们考前日常练习使用,负责此次采购的老师从商场了解到:购买7个足球和4条跳绳共需510元;购买3个足球比购买5条跳绳少50元.(1)求足球和跳绳的单价;(2)按学校规划,准备购买足球和跳绳共200件,且足球的数量不少于跳绳的数量的12,请设计出最省钱的购买方案,并说明理由.22.我国古代有一道著名的算术题,原文为:吾问开店李三公,众客都来到店中,一房七客多七客,一房九客一房空,问几房几客?意为:一批客人来到李三的旅店住宿,如果每个房间住7人,那么有7位客人没房住;如果每个房间住9人,那么有1间空房,问共有多少位客人?多少间房?请你用初中数学知识方法求出上述问题的解. 23.如图,在平面直角坐标系xOy 中有矩形OABC ,()()A 40C 02,,,,将矩形OABC 绕原点O 逆时针旋转得到矩形OA′B′C′.(Ⅰ)如图1,当点A′首次落在BC 上时,求旋转角;(Ⅱ)在(Ⅰ)的条件下求点B′的坐标;(Ⅲ)如图2,当点B ′首次落在x?轴上时,直接写出此时点A′的坐标.24.某市居民用水实行以户为单位的三级阶梯收费办法:第一级:居民每户每月用水18吨以内含18吨,每吨收水费a 元;第二级:居民每户每月用水超过18吨但不超过25吨,未超过18的部分按照第一级标准收费,超过部分每吨收水费b 元;第三级:居民每户每月用水超过25吨,未超过25吨的部分按照第一、二级标准收费,超过部分每吨收水费c 元;设一户居民月用水x 吨,应缴水费y 元,y 与x 之间的函数关系如图所示,(Ⅰ)根据图象直接作答:a =___________,b =_______________,c =_______________; (Ⅱ)求当25x ≥时,y 与x 之间的函数关系式;(Ⅲ)把上述水费阶梯收费办法称为方案①,假设还存在方案②;居民每户月用水一律按照每吨4元的标准缴费.当居民用户月用水超过25吨时,请你根据居民每户月用水量的大小设计出对居民缴费最实惠的方案.25.如图,在Rt △ABC 中,∠ACB =90°.(1)请用直尺和圆规作∠ABC 的平分线,交AC 于点D (保留作图痕迹,不要求写作法和证明);(2)在(1)作出的图形中,若∠A =30°,BC =3,则点D 到AB 的距离等于 .【参考答案】一、选择题题号 1 2 3 4 5 6 7 8 9 10 11 12答案 A D C A C B A D B AC C 二、填空题13.; 取格点,连接得点;连接,交线段于点;则点即为所求. 14.32-15.35°.16.34°17.9001200π+, 37505000π+.18.8075三、解答题19.(1)见解析;(2)见解析;【解析】【分析】(1)根据平行四边形的底边为4,高为3,进行画图;(2)以AB为直角边、点A为直角顶点构建等腰直角三角形,再依据轴对称图形且面积为15可得.【详解】解:(1)如图所示,平行四边形ABCD即为所求;(2)如图2,四边形ABMN即为所求四边形;【点睛】本题主要考查了利用图形的轴对称变换和中心变换进行作图,作图时需要运用平行四边形的性质及勾股定理进行计算.注意:平行四边形是中心对称图形.20.(13+1;(212-.【解析】【分析】(1)根据绝对值、负整数指数幂、特殊角的三角函数值可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x的值代入化简后的式子即可解答本题.【详解】(1)|13|+(12)﹣1﹣2tan60°31+23 31+2﹣3 3;(2)22121() 242 x x xxx x-++÷-++=21(2)(21) 222x x x xx x-+-+÷++()()=2212 22221 x xx x x x-+++--g()()=211211 xx x-+-g()()()=12(1)xx-+,当x ﹣1=12. 【点睛】 本题考查分式的化简求值、绝对值、负整数指数幂、特殊角的三角函数值,解答本题的关键是明确它们各自的计算方法.21.(1)足球的单价为50元/个,跳绳的单价为40元/条;(2)最省钱的购买方案是:购买足球67个,跳绳133条.【解析】【分析】(1)设足球的单价为x 元/个,跳绳的单价为y 元/条,根据题意可列出二元一次方程组745105350x y y x +=⎧⎨-=⎩,解方程即可得出答案. (2)设购买足球m 个,总费用为w 元,则购买跳绳(200﹣m )条,依题意,得:5040200108000w m m m =++(﹣)= .由足球的数量不少于跳绳的数量的12, 可得:1(200)2m m ≥- ,解得:2003m ≥ .再利用一次函数的性质即可解决最值问题. 【详解】解:(1)设足球的单价为x 元/个,跳绳的单价为y 元/条,依题意,得:745105350x y y x +=⎧⎨-=⎩, 解得:5040x y =⎧⎨=⎩. 答:足球的单价为50元/个,跳绳的单价为40元/条.(2)设购买足球m 个,总费用为w 元,则购买跳绳(200﹣m )条,依题意,得:5040200108000w m m m =++(﹣)= . ∵足球的数量不少于跳绳的数量的12, ∴1(200)2m m ≥- , 解得:2003m ≥. ∵m 为整数,∴m≥67.∵10>0,∴w 值随m 值的增大而增大,∴当m =67时,w 取得最小值,此时200﹣m =133.答:最省钱的购买方案是:购买足球67个,跳绳133条.【点睛】本题主要考查了二元一次方程的应用,一元一次不等式以及一次函数的最值问题,找准等量关系,正确列出方程和不等式是解题关键.22.共有63位客人,8间房.【解析】【分析】根据题意设出房间数,进而表示出总人数得出等式方程求出即可.【详解】解:设有x 间房,则7x+7=9(x ﹣1),x =8,所以7x+7=63(人)答:共有63位客人,8间房.【点睛】本题考查了一元一次方程的应用,解题的关键是找到关键描述语,列出等量关系.23.(Ⅰ)旋转角为30°;(Ⅱ)B′的坐标为(231,23)-+;(Ⅲ)点A′的坐标为8545,⎛⎫-⎪ ⎪⎝⎭ 【解析】【分析】(Ⅰ)过点'A 作A D x '⊥,垂足为D ,由旋转的性质及A 、C 坐标可得OA=OA′=4,A′D=A′B′=OC=2,由A′D=12OA′可得30A OD ∠='︒,即可得答案;(Ⅱ)过点'B 作B′E⊥BC ,垂足为E ,根据矩形的性质可得30OA C A OA ∠∠''==︒,可得60B A E ∠︒='',即可求出A′C、A′E、B′E 的长,进而可得B′点坐标;(Ⅲ)过点'A 作A F x '⊥轴,垂足为F ,可证明''~'BAO AFO V V ,利用勾股定理可求出OB′的长,根据相似三角形的性质可求出OF 的长,进而可得A′F 的长,即可得点A′坐标.【详解】(Ⅰ)如图a ,过点'A 作A D x '⊥,垂足为D ,∵()()4002A C ,,,, ∴42OA OA A D B A OC ''''=====,.在'Rt OAD V 中,1''2A D OA =, ∴30A OD ∠='︒,即旋转角为30︒.(Ⅱ)如图b ,过点'B 作B E BC '⊥,垂足为E ,∵BC AO P∴30OA C A OA ∠∠''==︒.∴60,23B A E A C ∠︒''=='.∴1,3A E B E ''==∴'B 的坐标为(231,23+.(Ⅲ)如图c ,过点'A 作A F x '⊥轴,垂足为F ,∵A′B′=2,A′O=4, ∴B′O=2242+=25,∵90''B A O AF BO ∠=︒⊥'',,∠A′OB′=∠A′OB′,∴'''BAO AFO V V ∽.∴'''OB OA OA OF=. ∴855OF =. ∴45'A F =. ∴点'A 的坐标为854555⎛⎫- ⎪ ⎪⎝⎭,.【点睛】本题考查旋转的性质、相似三角形的判定与性质,正确得出对应边与对应角是解题关键.24.(Ⅰ)346,,;(Ⅱ)668y x =-;(Ⅲ)当2534x <<时,选择缴费方案①更实惠;当34x =时,选择两种缴费方案费用相同;当34x >时,选择缴费方案②更实惠.【解析】【分析】(1)根据单价=总价÷数量,即可求出a ,b ,c 的值;(2)观察函数图象,找出点的坐标,利用待定系数法即可求出当x≥25时y 与x 之间的函数关系;(3)由总价=单价×数量可找出选择缴费方案②需交水费y (元)与用水数量x (吨)之间的函数关系式,分别找出当6x-68<4x ,6x-68=4x ,6x-68>4x 时x 的取值范围(x 的值),选择费用低的方案即可得出结论.【详解】解:(Ⅰ)a=54÷18=3,b=(82-54)÷(25-18)=4.c=(142-82)÷(35-25)=6.故答案为:3,,4,6;(Ⅱ)设当x≥25时,y 与x 之间的函数关系式为y=mx+n (m≠0),将(25,82),(35,142)代入y=mx+n ,得:25m n 8235m n 142+=⎧⎨+=⎩, 解得:m 6n 68=⎧⎨=-⎩, ∴当x 25≥时,y 与x 之间的函数关系式为y 6x 68=-.(Ⅲ)选择缴费方案②需交水费y (元)与用水量x (吨)之间的函数关系式为y 4x =.当6x 684x -<时,x 34<;当6x 684x -=时,x 34=;当6x 684x ->,x 34>.∴当25x 34<<时,选择缴费方案①更实惠;当x 34=时,选择两种缴费方案费用相同;当x 34>时,选择缴费方案②更实惠.【点睛】本题考查了此题主要考查了一次函数应用、待定系数法求一次函数解析式以及解一元一次不等式(方程),解题的关键是:(1)根据数量之间的关系,列式计算;(2)观察函数图象找出点的坐标,利用待定系数法求出y 与x 之间的函数关系式;(3)通过解不等式(方程),找出费用低的缴费方案.25.(1)作图见解析;(2)1.【解析】【分析】(1)根据角平分线的尺规作图可得;(2)作DE ⊥AB 于E ,设DE =DC =x ,由∠A =30°,BC =3知AD =2DE =2x ,AB =2BC =23,由BC 2+AC 2=AB 2得到关于x 的方程,解之可得.【详解】(1)如图所示,BD 即为所求;(2)设DC =x ,过点D 作DE ⊥AB 于E ,则∠DEB =∠C =90°,∵BD 平分∠ABC ,∴DE =DC =x ,∵∠A =30°,BC 3∴AD =2DE =2x ,AB =2BC =23,由BC 2+AC 2=AB 232+(3x )2=(32,解得:x =1(负值舍去),∴DE =1,即点D 到AB 的距离等于1,故答案为:1.【点睛】本题主要考查作图﹣复杂作图,解题的关键是掌握角平分线的尺规作图、角平分线的性质、含30°角的直角三角形的性质及勾股定理等知识点.。