2020届北京市中考数学学科试题分析(加精)

合集下载

2020北京中考数学考试题27题答案与解析

2020北京中考数学考试题27题答案与解析

2020北京中考数学考试题27题答案与
解析
姓名:__________
指导:__________
日期:__________
2020北京中考--27
在△ABC中,∠C=90°,ACBC,D是AB的中点,E为直线AC上一动点,连接DE,过点D作DF⊥DE,交直线BC与点F,连接EF。

(1)如图,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式
子表示)
(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明
视频讲解请戳我
【解析】(1)∵D是AB的中点,E是线段AC的中点
∴DE为△ABC的中位线 .DEII BC
∵,∠C=90°,
∴∠DEC=90° ,
∵DF⊥DE
∴,∠EDF=90°
∴四边形DECF为矩形
∴DE=CF=0.5BC
∴BF=CF
∴,DF=CE=0.5AC
∴EF =a +b
(2)过点B作AC的平行线交ED延长线于点G,连接FG ∵BGIIAC
∴∠EAD=∠GBD,∠DEA=∠DGB
∵D是AB的中点
∴AD=BD
∴△ EAD ≌△GBD
∴ED=GB,AE=BG
∵DF⊥DE
∴DF是线段EG的垂直平分线
∴EF=FG
∵∠C=90°,BG∥AC
∴∠GBF=90° 在RT△ BGF中,FG =BG +BF
∴EF =AE +BF
其实此题中点E和点F的位置关系有多种情况,但是基本数量关系是不变的,如下面几幅图所示,仅供大家参考。

不足之处欢迎大家批评指正,共同探讨。

北京市2020年中考数学试题卷含答案解析

北京市2020年中考数学试题卷含答案解析
本试卷为2020年北京市中考数学试题,涵盖了广泛的数学知识点,旨在全面考察学生的数学能力和思维逻辑。试卷从基础题到应用题,难度逐渐提升,要求学生具备扎实的数学基础和灵活的解题技巧。试题内容包括代数、几何、概率等多个领域,注重对学生综合能力的考察。同时,本试卷还配备了详细的答案解析,方便学生在完成试题后进行自我检查和知识巩固。通过本试卷的练习,学生可以更好地了解中考数学试题的出题规律和难度水平,为即将到来的中考做好充分的4年中考的学生,还需结合最新的教学大纲和考试要求进行复习。

2019-2020学年北京市中考数学学科试题分析

2019-2020学年北京市中考数学学科试题分析

北京市中考数学学科试题分析北京市中考数学试题的命制依据教育部制定的《义务教育数学课程标准(2011年版)》和北京教育考试院编写的《2016年北京市高级中等学学校招生考试考试说明》.中考数学试题将学科理念与时代发展需求相融合,通过对学科素养的考查,体现立德树人、育人为本的教育目标和社会发展对人才培养的需求.试卷的整体设计,以“四基”、“核心概念”、“四能”、为主线,注重考查学生的思维,将学生在学校、家庭和社会所学融入其中,贴近学生的实际与生活.一、“四基”的考查1.基础知识的考查对于基础知识的考查,不仅仅局限于对知识应用的考查,还将知识的形成过程、知识之间的联系作为考查的一部分.如第12题(代数式几何意义).认识不同的代数式表示方法之间的关系:ma+mb+mc=m(a+b+c)表示提公因式,m(a+b+c)=ma+mb+m c表示乘法分配率,(ma+mb)+mc=ma+(mb+mc)表示加法结合律,……,进一步理解整式乘法、因式分解、乘法关于加法的分配率等知识的内在联系.又如第13题(频率估计概率).虽然学生对概率刻画随机事件发生可能性的大小有了一定的体会,但是对概率意义的理解容易停留在“比值”层面,而对其反映的随机性的内涵认识不足.让学生经历大量重复试验的过程,在具体的试验过程中,发现频率呈现出一定的稳定性和规律性,对频率与概率之间的关系进行体会,估计事件发生的概率,进一步理解概率的意义.2.基本技能的考查对于基本技能的考查,既考查了对于数学工具的直接使用,又考查利用数学共解决问题过程当中所蕴含的数学原理.例如第1题(度量∠AOB的大小).量角器是数学基本工具之一,度量角也是基本技能操作之一,但在操作之余,还需要了解角度单位的产生过程,理解量角器的构成要件和工作原理,为在使用量角器时,更好掌握操作方法提供帮助.又如第16题(尺规作图:过直线外一点作已知直线的垂线).考查的落脚点不是在尺规作图的操作层面,而是落脚于“为什么这么作”,考查的是技能操作里面蕴含的数学原理.3.基本思想与基本活动经验的考查第26题(根据函数图、表反映的规律探究函数的性质)体现了对抽象、模型两大数学基本思想和基本数学活动经验的考查.函数的学习不能只注重背记定义而不关注它的实质,要理解定义的真正含义,即函数是反映运动变化与联系对应的数学模型.从另一个角度讲,在现实生活中,很多客观事物必须从运动变化的角度进行数量化研究,许多问题中的各种变量是相互联系的,变量之间存在对应关系,而刻画这种关系的数学模型就是函数.通过函数的学习,学生不断地形成、积累对函数的正确认识,即认识函数可以有不同的表示方法,研究函数需要研究自变量的取值范围、对应关系和因变量取值,通过图象反映的规律研究函数的性质,也就是说,学生积累的对函数的最根本的认识就是函数是刻画同一变化过程中两个变量之间的对应关系的模型.2016年的第26题是对2015年第26题(研究函数的基本过程)的继承与发展.学生根据学习函数所积累的经验,利用所给图、表反映出的y与x的对应关系,画出“自己的”函数图象.进一步地,对“自己的”函数进行性质的分析与研究.二、核心概念的考查核心概念是数学课程的重要支撑.例如第2题(对神舟飞船飞行速度进行科学记数),考查学生的数感,体现在对数量关系的感悟.又如第10题(阶梯水价机制制定推断)、第22题(小区居民燃气用量调查)、第24题(北京市文化创意产业发展预测).通过设置学生熟悉的生活背景,考查学生的数据分析观念.在当今信息社会里,数据时一种重要的信息载体,统计所提供的“运用数据进行推断”的思考方法以及从随机性中寻找规律的归纳思想是现代社会一种普遍使用并且强有力的思维方式.重视数据的使用和能够对数据进行适当的处理,已经成为信息时代每一位公民必备的素质.其中,数据分析是统计的核心.数据分析观念包括三个方面的内容:(1)了解在现实生活中有许多问题需要先做调查研究,收集数据,通过分析作出判断,体会数据中蕴含着信息.(2)从大量的数据中提取有效信息,作出判断,进行决策.(3)根据问题的实际背景,选择合适的统计方法,解决实际问题.第22题(小区居民燃气用量调查)通过学生在社会大课堂中所学,设计了贴近学生生活实际的一个调查作业:调查你所住小区居民家庭5月份用气量情况.试题通过展现收集、整理、描述和分析数据得出结论的统计调查的基本过程,体现抽样调查的必要性.在进行抽样调查时,必须明确调查目的,根据对调查背景的分析,抽样获取“好”的数据(所谓“好”的数据是指那些能够更加客观反映实际背景的数据),使得选取的样本必须具备代表性,不偏离调查的目的,最后根据调查的样本推断出总体情况.题目设计的目的是让学生在学习统计的过程中体验收集、整理、描述和分析数据的全过程,有意识的获取一些数据信息.因为随着学生年龄的增长,学生走向社会之后,会遇到各种各样的实际问题,其中“调查类”问题会是学生遇到的最多的实际问题之一,这种让学生感受获取真实数据的过程,分析调查目的的原因、选取调查的对象、设计调查的问题、应从哪些方面设计调查问题等,都是培养学生的应用意识,让学生用统计的眼光解决自己生活的实际问题.第10题(阶梯水价机制制定推断)从频数直方图给出的大量的数据中,提取有效的信息,结合分析数据的统计量(平均数、中位数)的统计意义,推断总体情况,作出推断.题目设计的目的是让学生理解分析数据的统计量(平均数、中位数、众数、方差)的统计意义,如反映了数据哪些方面的特征,各自的特点是什么,如何利用它们获取更多的信息等,将统计的概念、方法和原理统一到数据处理的活动过程中,让学生更好的体会统计的思想,培养学生的统计观念.第24题(北京市文化创意产业发展情况)根据画出的折线图预测2016年北京市文创意产业的发展态势.从教学的角度来说,通过三道试题的设置,引导教学中对于统计学习方式的转变,不能将统计的学习处理成单纯数字计算和绘图技能.三、“四能”的考查“四能”是指发现、提出问题的能力和分析、解决问题的能力.其中发现和提出问题是培养创新意识的基础,独立思考、学会思考是创新的核心.第28题改变了以往试题的呈现形式,进行了一定的创新,将学生课堂研究问题的全过程原汁原味的呈现在试卷当中:发现问题(PA,PM的数量关系)、提出问题(PA=PM),通过交流与讨论,形成了解决问题的三种不同的思路,让学生进行独立思考,发现可以从不同的角度进行分析,并最终选择一种方法解决问题.第28题试图发挥积极的教学导向,学生需要根据已知条件,体验解决问题方法的多样性,尝试从不同角度寻求解决问题的方法,考查学生思维的灵活性和多样性.同时,抛开题目本身来说,学生在平常的学习过程当中,不仅需要注重思维的灵活性与多样性,同时还需要注重思维的深刻性.也就是说,在追求解法多样性的过程当中,一定要善于总结哪个思维出发点解决问题是最优的,既要保持思维的灵活性也要保持思维的深刻性,这样才能不断地提升自身的思辨能力.四、注重思维的考查2016年的试题体现出了“多思少算”的特点.如第14题(利用影长测灯高).题目将测量灯高的实际问题抽象成简单的数学模型,学生通过简单的计算推理能够发现所抽象出的三角形是等腰直角三角形,进而问题得解.另外,2016年的试题加大了对开放性试题和选择性试题的考查.例如上面阐述的第12题(代数式几何意义)、第16题(尺规作图:过直线外一点作已知直线的垂线)、第26题(根据函数图、表反映的规律探究函数的性质)、第24题(北京市文化创意产业发展预测)、第29题(问题思路选择)都是对学生思维的灵活性与多样性的考查,考查学生的思辨能力.五、将中华古代优秀数学思想、社会主义核心价值观、数学美、九年积淀融为一体第15题(澳门百子回归图)是以我国汉代的“九宫图”为背景设计的试题,它的发展经历了几个重要阶段:(1)在中国古代著作《周易》的数表中就产生了古老的组合数学思想的萌芽.(2)汉代的“九宫图”使用九个数字组成的一个方阵,它的各行各列和对角线上的数字之和都是15,这是最早的纵横图,后世称之为“洛书”.纵横图设计数字组合的各种问题,其中已具有初步的组合数学的思想.(3)杨辉的《续古摘奇算法》中收集了20多个纵横图,包括n=3,4,5,…,10的各阶幻方(方形纵横图,即将1到n2中的自然数排列成纵横各有n个数的正方形,使每行每列及两条主对角线n个数的和).澳门回归纪念碑就是一副十阶幻方,中央四数连读即“1999·12·20”,表示澳门回归日.百子回归碑是一部百年的澳门简史,可查阅四百年来导致澳门沧桑巨变的重大历史事件以及有关史地、人文资料等.如“88”年中葡两国互换关于澳门问题的《联合声明》批准书,澳门陆地面积“23·50”平方公里等.在求每行、每列、每条对角线之和时,并不是计算1-100简简单单数字之和,而是体现数学之美,体现了九年的积累(运算法则):1+2+3+…+100=(1+99)+(2+98)+ …(49+51)+50=5050.。

2020年北京中考数学真题及答案

2020年北京中考数学真题及答案

2020年北京市高级中学学校招生考试一、选择题(本题共16分,每小题2分) 1、右图是某几何体的三视图,该几何体是( ) A 、圆柱 B 、圆锥 C 、三棱柱 D 、长方体 2、2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点于距离36000公里的地球同步轨道,将36000用科学计数法表示应为( ) A 、5100.36⨯ B 、5103.6⨯ C 、4103.6⨯ D 、31036⨯ 3、如图,AB 和CD 相交于点O ,则下列结论正确的是( ) A 、21∠=∠ B 、32∠=∠ C 、1∠>54∠+∠ D 、∠2<5∠4、下列图形中,既是中心对称图形也是轴对称图形的是( )A B C D 5、正五边形的外角和为( )A 、180°B 、360°C 、540°D 、720°6、实数a 在数轴上的对应点的位置如图所示,若实数b 满足-a <b <a ,则b 的值可以是( )A 、2B 、-1C 、-2D 、-3 7、不透明的袋子中有两个小球,上面分别写着数“1”,“2”,除数字外两个小球无其他差别,从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( ) A 、41B 、31 C 、21 D 、328、在一个装有水的容器,如图所示,容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( ) A 、正比例函数关系 B 、一次函数关系 B 、二次函数关系 D 、反比例函数关系二、填空题(本题共16分,每小题2分) 9、若代数式7-x 1有意义,则实数x 的取值范围是10、已知关于x 的方程0k 2x x 2=++有两个相等的实数根,则k 的值是11、写出一个比2大且比15小的整数12、方程组⎩⎨⎧=+=7y 3x 1y -x 的解为13、在平面直角坐标系xoy 中,直线y=x 与双曲线xmy =交于A ,B 两点。

2020年北京市中考数学试卷及答案

2020年北京市中考数学试卷及答案

2020年北京市中考数学试卷及答案研究是一件有趣的事情。

以下是2020年北京市中考数学试卷的题目:一、单项选择题:请认真审题,仔细思考,然后选择唯一正确答案。

(本题共16分,每小题2分)1.(2分)如图所示,这是某个几何体的三视图,该几何体是()A。

圆柱体B。

圆锥体C。

三棱柱体D。

长方体2.(2分)2020年6月23日,北斗三号的最后一颗全球组网卫星从XXX发射升空,6月30日成功进入距离地球公里的地球同步轨道。

将用科学记数法表示应为()A。

0.36×105B。

3.6×105C。

3.6×104D。

36×1033.(2分)如图,AB和CD相交于点O,则下列结论正确的是()A。

∠1=∠2B。

∠2=∠3C。

∠1>∠4+∠5D。

∠2<∠54.(2分)以下哪种图形既是中心对称图形又是轴对称图形?()A。

B。

C。

D。

5.(2分)正五边形的外角和为()A。

180°B。

360°C。

540°D。

720°6.(2分)实数a在数轴上的对应点的位置如图所示,若实数b满足﹣a<b<a,则b的值可以是()A。

2B。

﹣1C。

﹣2D。

﹣37.(2分)在一个不透明的袋子里有两个小球,上面分别写着数字“1”和“2”,除了数字之外,两个小球没有其他区别。

从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是()A。

4/1B。

3/1C。

2/1D。

3/28.(2分)有一个装满水的,如图所示,内的水面高度是10cm。

现在开始向内注水并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加。

那么注满水之前,内的水面高度与对应的注水时间满足的函数关系是()A。

正比例函数关系B。

一次函数关系C。

二次函数关系D。

反比例函数关系二、填空题(本题共16分,每小题2分)9.(2分)若代数式1/(x-7)有意义,则实数x的取值范围是______。

2020年北京市中考数学试卷和答案

2020年北京市中考数学试卷和答案

一、选择题(本题共16分, 每小题2分)第1-8题均有四个选项, 符合题意的选项只有一个.
1. (2分)如图是某几何体的三视图, 该几何体是(

A.圆柱
B.圆椎
C.三棱柱
D.长方体
2.(2分)2020年6月23日,北斗三号最后一颗全球组网卫星从西昌卫星发射中心发射升空,6月30日成功定点千距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为(
A. 0.36xl05
B. 3.6xl05
C. 3.6xl04
D.36xl03
3.(2分)如图,AB和CD相交千点o,则下列结论正确的是(
c-1J
A.乙1=乙2
B.乙2=乙3
C.乙l>乙4+乙5
D.乙2<乙5
4. (2分)下列图形中,既是中心对称图形也是轴对称图形的是(
/
eD

D
5. (2分)正五边形的外角和为(
A. 180°
B. 360°
C.540°
D.720°
6.(2分)实数a在数轴上的对应点的位置如图所示,若实数b满足-a<b<a,则b的值可
2020年北京市中考数学试卷
(答案解析在最后)。

2020年北京市中考数学试卷含答案

2020年北京市中考数学试卷含答案

2020年北京市中考数学一.选择题(第1-8题均有四个选项,符合题意的选项只有一个)1.如图是某几何体的三视图,该几何体是( )A. 圆柱B. 圆锥C. 三棱锥D. 长方体2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为( )A. 50.3610⨯B. 53.610⨯C. 43.610⨯D. 43610⨯3.如图,AB 和CD 相交于点O ,则下列结论正确的是( )A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠54.下列图形中,既是中心对称图形也是轴对称图形的是( )A. B.C. D.5.正五边形的外角和为( )A. 180°B. 360°C. 540°D. 720°6.实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A. 2B. -1C. -2D. -37.不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( ) A. 14 B. 13 C. 12 D. 238.有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系二、填空题9.若代数式17x -有意义,则实数x 取值范围是_____.10.已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是______.11.______.12.方程组137x y x y -=⎧⎨+=⎩的解为________. 13.在平面直角坐标系xOy 中,直线y x =与双曲线m y x=交于A ,B 两点.若点A ,B 纵坐标分别为12,y y ,则12y y +的值为_______.14.在ABC 中,AB=AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明ABD∠ACD ,这个条件可以是________(写出一个即可)15.如图所示网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系为:ABC S ______ABD S (填“>”,“=”或“<”)16.如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序的的购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.三、解答题(解答应写出文字说明、演算步骤或证明过程)17.计算:11()|2|6sin 453---︒ 18.解不等式组:5322132x x x x ->⎧⎪-⎨<⎪⎩ 19.已知2510x x --=,求代数式(32)(32)(2)x x x x +-+-的值.20.已知:如图,ABC 为锐角三角形,AB=BC ,CD∠AB .求作:线段BP ,使得点P 在直线CD 上,且∠ABP=12BAC ∠. 作法:∠以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点;∠连接BP .线段BP 就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)(2)完成下面的证明.证明:∠CD∠AB ,∠∠ABP= .∠AB=AC ,∠点B 在∠A 上.又∠∠BPC=12∠BAC ( )(填推理依据) ∠∠ABP=12∠BAC21.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF∠AB ,OG∠EF . (1)求证:四边形OEFG 是矩形;(2)若AD=10,EF=4,求OE 和BG 的长.22.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.23.如图,AB 为∠O 的直径,C 为BA 延长线上一点,CD 是∠O 的切线,D 为切点,OF∠AD 于点E ,交CD 于点F .(1)求证:∠ADC=∠AOF ;(2)若sinC=13,BD=8,求EF 的长.24.小云在学习过程中遇到一个函数21||(1)(2)6y x x x x =-+≥-.下面是小云对其探究的过程,请补充完整: (1)当20x -≤<时,对于函数1||y x =,即1y x =-,当20x -≤<时,1y 随x 的增大而 ,且10y >;对于函数221y x x =-+,当20x -≤<时,2y 随x 的增大而 ,且20y >;结合上述分析,进一步探究发现,对于函数y ,当20x -≤<时,y 随x 的增大而 .(2)当0x ≥时,对于函数y ,当0x ≥时,y 与x 的几组对应值如下表:综合上表,进一步探究发现,当0x ≥时,y 随x 的增大而增大.在平面直角坐标系xOy 中,画出当0x ≥时的函数y 的图象.(3)过点(0,m)(0m >)作平行于x 轴直线l ,结合(1)(2)的分析,解决问题:若直线l 与函数21||(1)(2)6y x x x x =-+≥-的图象有两个交点,则m 的最大值是 . 25.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下: a .小云所住小区5月1日至30日的厨余垃圾分出量统计图:b .小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数) (2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位); (3)记该小区5月1日至10日的厨余垃圾分出量的方差为21,s 5月11日至20日的厨余垃圾分出量的方差的为22s ,5月21日至30日的厨余垃圾分出量的方差为23s .直接写出222123,,s s s 的大小关系.26.在平面直角坐标系xOy 中,1122(,),(,)M x y N x y 为抛物线2(0)y ax bx c a =++>上任意两点,其中12x x <.(1)若抛物线的对称轴为1x =,当12,x x 为何值时,12;y y c ==(2)设抛物线的对称轴为x t =.若对于123x x +>,都有12y y <,求t 的取值范围.27.在ABC 中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF∠DE ,交直线BC 于点F ,连接EF .(1)如图1,当E 是线段AC 的中点时,设,AE a BF b ==,求EF 的长(用含,a b 的式子表示);(2)当点E 在线段CA 的延长线上时,依题意补全图2,用等式表示线段AE ,EF ,BF 之间的数量关系,并证明.28.在平面直角坐标系xOy 中,∠O 半径为1,A ,B 为∠O 外两点,AB=1.给出如下定义:平移线段AB ,得到∠O 的弦A B ''(,A B ''分别为点A ,B 的对应点),线段AA '长度的最小值称为线段AB 到∠O 的“平移距离”.(1)如图,平移线段AB 到∠O 的长度为1的弦12PP 和34PP ,则这两条弦的位置关系是 ;在点1234,,,P P P P 中,连接点A 与点 的线段的长度等于线段AB 到∠O 的“平移距离”;(2)若点A ,B都在直线y =+上,记线段AB 到∠O 的“平移距离”为1d ,求1d 的最小值; (3)若点A 的坐标为32,2⎛⎫ ⎪⎝⎭,记线段AB 到∠O 的“平移距离”为2d ,直接写出2d 的取值范围.的2020年北京市中考数学一.选择题(第1-8题均有四个选项,符合题意的选项只有一个)1.如图是某几何体的三视图,该几何体是( )A. 圆柱B. 圆锥C. 三棱锥D. 长方体【答案】D【解析】【分析】 根据三视图都是长方形即可判断该几何体为长方体.【详解】解:长方体的三视图都是长方形,故选D .【点睛】本题考查了几何体的三视图,解题的关键是熟知基本几何体的三视图,正确判断几何体.2.2020年6月23日,北斗三号最后一颗全球组网卫星从西昌发射中心发射升空,6月30日成功定点于距离地球36000公里的地球同步轨道.将36000用科学记数法表示应为( )A. 50.3610⨯B. 53.610⨯C. 43.610⨯D. 43610⨯【答案】C【解析】【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.当原数绝对值大于1时,n 是正数;当原数绝对值小于1时,n 是负数.【详解】解: 36000=43.610⨯,故选:C .【点睛】本题考查用科学记数法表示绝对值大于1的数,熟练掌握科学记数法的表示形式是解题的关键. 3.如图,AB 和CD 相交于点O ,则下列结论正确的是( )A. ∠1=∠2B. ∠2=∠3C. ∠1>∠4+∠5D. ∠2<∠5【答案】A【解析】【分析】根据对顶角性质、三角形外角性质分别进行判断,即可得到答案.【详解】解:由两直线相交,对顶角相等可知A正确;由三角形的一个外角等于它不相邻的两个内角的和可知B选项为∠2>∠3,C选项为∠1=∠4+∠5,D选项为∠2>∠5.故选:A.【点睛】本题考查了三角形的外角性质,对顶角性质,解题的关键是熟练掌握三角形的外角性质进行判断.4.下列图形中,既是中心对称图形也是轴对称图形是()A. B. 的C. D.【答案】D【解析】【分析】根据中心对称图形以及轴对称图形的定义即可作出判断.【详解】解:A、是轴对称图形,不是中心对称图形,故选项错误;B、不是轴对称图形,也不是中心对称图形,故选项错误;C、不是轴对称图形,是中心对称图形,故选项错误;D、既是轴对称图形,又是中心对称图形,故选项正确.故选:D.【点睛】本题主要考查了中心对称图形和轴对称图形的定义,正确理解定义是关键.5.正五边形的外角和为()A. 180°B. 360°C. 540°D. 720°【答案】B【解析】【分析】根据多边形的外角和定理即可得.【详解】任意多边形的外角和都为360 ,与边数无关故选:B.更多资料请关注微信公众平台:优文微课【点睛】本题考查了多边形的外角和定理,熟记多边形的外角和定理是解题关键.6.实数a 在数轴上的对应点的位置如图所示.若实数b 满足a b a -<<,则b 的值可以是( )A 2B. -1C. -2D. -3 【答案】B【解析】【分析】先根据数轴的定义得出a 的取值范围,从而可得出b 的取值范围,由此即可得.【详解】由数轴的定义得:12a <<21a ∴-<-<-2a ∴<又a b a -<< b ∴到原点的距离一定小于2观察四个选项,只有选项B 符合故选:B .【点睛】本题考查了数轴的定义,熟记并灵活运用数轴的定义是解题关键.7.不透明的袋子中装有两个小球,上面分别写着“1”,“2”,除数字外两个小球无其他差别.从中随机摸出一个小球,记录其数字,放回并摇匀,再从中随机摸出一个小球,记录其数字,那么两次记录的数字之和为3的概率是( ) A. 14 B. 13 C. 12 D. 23【答案】C【解析】【分析】先根据题意画出树状图,再利用概率公式计算即可.【详解】解:画树状图如下:所以共4种情况:其中满足题意的有两种,.更多资料请关注微信公众平台:优文微课所以两次记录的数字之和为3的概率是21.42= 故选C . 【点睛】本题考查的是画树状图求解概率,掌握画树状图求概率是解题的关键.8.有一个装有水的容器,如图所示.容器内的水面高度是10cm ,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm 的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是( )A. 正比例函数关系B. 一次函数关系C. 二次函数关系D. 反比例函数关系【答案】B【解析】【分析】 设水面高度为,hcm 注水时间为t 分钟,根据题意写出h 与t 的函数关系式,从而可得答案.【详解】解:设水面高度为,hcm 注水时间为t 分钟,则由题意得:0.210,h t =+所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,故选B .【点睛】本题考查的是列函数关系式,判断两个变量之间的函数关系,掌握以上知识是解题的关键.二、填空题9.若代数式17x -有意义,则实数x 的取值范围是_____. 【答案】7x ≠【解析】【分析】根据分式有意义的条件列出不等式,解不等式即可.【详解】∠代数式17x -有意义,分母不能为0,可得70x -≠,即7x ≠, 故答案为:7x ≠.【点睛】本题考查的是分式有意义的条件,掌握分式分母不为0是解题的关键.10.已知关于x 的方程220x x k ++=有两个相等的实数根,则k 的值是______.【答案】1【解析】【分析】由一元二次方程根的判别式列方程可得答案.【详解】解:一元二次方程有两个相等的实数根,可得判别式0=,∠440k -=,解得:1k =.故答案为:1.【点睛】本题考查的是一元二次方程根的判别式,掌握根的判别式的含义是解题的关键.11.______.【答案】2(或3)【解析】【分析】【详解】∠1<2,34,∠2或3.故答案为:2(或3)相邻的整数之间是解答此题的关键.12.方程组137x y x y -=⎧⎨+=⎩的解为________. 【答案】21x y =⎧⎨=⎩【解析】【分析】用加减消元法解二元一次方程组即可.【详解】解:两个方程相加可得48x =,∠2x =,将2x =代入1x y -=,可得1y =,故答案为:21x y =⎧⎨=⎩. 【点睛】本题考查解二元一次方程组,熟练掌握加减消元法解二元一次方程组的步骤是解题的关键. 13.在平面直角坐标系xOy 中,直线y x =与双曲线m y x =交于A ,B 两点.若点A ,B 的纵坐标分别为12,y y ,则12y y +的值为_______.【答案】0【解析】【分析】根据“正比例函数与反比例函数的交点关于原点对称”即可求解.【详解】解:∠正比例函数和反比例函数均关于坐标原点O 对称,∠正比例函数和反比例函数的交点亦关于坐标原点中心对称,∠120y y +=,故答案为:0.【点睛】本题考查正比例函数和反比例函数的图像性质,根据正比例函数与反比例函数的交点关于原点对称这个特点即可解题.14.在ABC 中,AB=AC ,点D 在BC 上(不与点B ,C 重合).只需添加一个条件即可证明ABD∠ACD ,这个条件可以是________(写出一个即可)【答案】∠BAD=∠CAD (或BD=CD )【解析】【分析】 证明ABD∠ACD ,已经具备,,AB AC AD AD == 根据选择的判定三角形全等的判定方法可得答案.【详解】解:,,AB AC AD AD ==∴ 要使,ABD ACD ≌则可以添加:∠BAD=∠CAD ,此时利用边角边判定:,ABD ACD ≌或可以添加:,BD CD =此时利用边边边判定:,ABD ACD ≌故答案为:∠BAD=∠CAD 或(.BD CD =)【点睛】本题考查的是三角形全等的判定,属开放性题,掌握三角形全等的判定是解题的关键. 15.如图所示的网格是正方形网格,A ,B ,C ,D 是网格交点,则ABC 的面积与ABD 的面积的大小关系为:ABC S ______ABD S (填“>”,“=”或“<”)【答案】=【解析】【分析】在网格中分别计算出三角形的面积,然后再比较大小即可.【详解】解:如下图所示,设小正方形网格的边长为1个单位,由网格图可得14242ABC S =⨯⨯=个平方单位, 123111=52101513224222⨯---=-⨯⨯-⨯⨯-⨯⨯=ABD S S S S , 故有ABC S =ABD S .故答案为:“=”【点睛】本题考查了三角形的面积公式,在网格中当三角形的底和高不太好求时可以采用割补的方式进行求解,用大的矩形面积减去三个小三角形的面积即得到∠ABD 的面积.16.如图是某剧场第一排座位分布图:甲、乙、丙、丁四人购票,所购票分别为2,3,4,5.每人选座购票时,只购买第一排的座位相邻的票,同时使自己所选的座位之和最小.如果按“甲、乙、丙、丁”的先后顺序购票,那么甲甲购买1,2号座位的票,乙购买3,5,7号座位的票,丙选座购票后,丁无法购买到第一排座位的票.若丙第一购票,要使其他三人都能购买到第一排座位的票,写出一种满足条件的购票的先后顺序______.【答案】丙,丁,甲,乙【解析】【分析】根据甲、乙、丙、丁四人购票,所购票数量分别为2,3,4,5可得若丙第一购票,要使其他三人都能购买到第一排座位的票,那么丙选座要尽可能得小,因此丙先选择:1,2,3,4.丁所购票数最多,因此应让丁第二购票,据此判断即可.【详解】解:丙先选择:1,2,3,4.丁选:5,7,9,11,13.甲选:6,8.乙选:10,12,14.∠顺序为丙,丁,甲,乙.(答案不唯一)【点睛】本题考查有理数的加法,认真审题,理解题意是解题的关键.三、解答题(解答应写出文字说明、演算步骤或证明过程)17.计算:11()|2|6sin 453---︒【答案】5【解析】【分析】分别计算负整数指数幂,算术平方根,绝对值,锐角三角函数,再合并即可得到答案.【详解】解:原式=326+-32=+-5.=【点睛】本题考查的是负整数指数幂,算术平方根,绝对值,锐角三角函数,以及合并同类二次根式,掌握以上的知识是解题的关键.18.解不等式组:5322132x x x x ->⎧⎪-⎨<⎪⎩ 【答案】12x <<【解析】【分析】分别解每一个不等式,然后即可得出解集.【详解】解:5322132x x x x ->⎧⎪⎨-<⎪⎩①② 解不等式∠得:1x >,解不等式∠得:2x <,∠此不等式组的解集为12x <<.【点睛】本题考查了解一元一次不等式组,掌握不等式的解法是解题关键.19.已知2510x x --=,求代数式(32)(32)(2)x x x x +-+-的值.【答案】21024x x --,-2【解析】【分析】先按照整式的混合运算化简代数式,注意利用平方差公式进行简便运算,再把2510x x --=变形后,整体代入求值即可.【详解】解:原式=22942x x x -+-2102 4.x x =--∠2510x x --=,∠251x x -=,∠21022x x -=,∠原式=242-=-.【点睛】本题考查是整式化简求值,掌握利用平方差公式进行简便运算,整体代入求值是解题的关键. 20.已知:如图,ABC 为锐角三角形,AB=BC ,CD∠AB .求作:线段BP ,使得点P 在直线CD 上,且∠ABP=12BAC ∠. 作法:∠以点A 为圆心,AC 长为半径画圆,交直线CD 于C ,P 两点;∠连接BP .线段BP 就是所求作线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹)(2)完成下面的证明.证明:∠CD∠AB ,∠∠ABP= .∠AB=AC ,∠点B 在∠A 上.又∠∠BPC=12∠BAC ( )(填推理依据) ∠∠ABP=12∠BAC 的【答案】(1)见解析;(2)∠BPC ,在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半【解析】【分析】(1)按照作法的提示,逐步作图即可;(2)利用平行线的性质证明:,ABP BPC ∠=∠ 再利用圆的性质得到:∠BPC=12∠BAC ,从而可得答案. 【详解】解:(1)依据作图提示作图如下:(2)证明:∠CD∠AB ,∠∠ABP= BPC ∠ .∠AB=AC ,∠点B 在∠A 上.又∠∠BPC=12∠BAC (在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半. )(填推理依据) ∠∠ABP=12∠BAC 故答案为:∠BPC ;在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.【点睛】本题考查的是作图中复杂作图,同时考查了平行线的性质,圆的基本性质:在同圆或等圆中同弧所对的圆周角等于它所对圆心角的一半.掌握以上知识是解题的关键.21.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,E 是AD 的中点,点F ,G 在AB 上,EF∠AB ,OG∠EF . (1)求证:四边形OEFG 是矩形;(2)若AD=10,EF=4,求OE 和BG 的长.【答案】(1)见解析;(2)OE=5,BG=2.【解析】【分析】(1)先证明EO 是∠DAB 的中位线,再结合已知条件OG∠EF ,得到四边形OEFG 是平行四边形,再由条件EF∠AB ,得到四边形OEFG 是矩形;(2)先求出AE=5,由勾股定理进而得到AF=3,再由中位线定理得到OE=12AB=12AD=5,得到FG=5,最后BG=AB -AF -FG=2.【详解】解:(1)证明:∠四边形ABCD 为菱形,∠点O 为BD 的中点,∠点E 为AD 中点,∠OE 为∠ABD 的中位线,∠OE∠FG ,∠OG∠EF ,∠四边形OEFG 为平行四边形∠EF∠AB ,∠平行四边形OEFG 为矩形.(2)∠点E 为AD 的中点,AD=10, ∠AE=152AD = ∠∠EFA=90°,EF=4,∠在Rt∠AEF 中,3==AF . ∠四边形ABCD 为菱形,∠AB=AD=10, ∠OE=12AB=5, ∠四边形OEFG 为矩形,∠FG=OE=5,∠BG=AB -AF -FG=10-3-5=2.故答案为:OE=5,BG=2.【点睛】本题考查了矩形的性质和判定,菱形的性质、勾股定理等知识点,特殊四边形的性质和判定属于中考常考题型,需要重点掌握.22.在平面直角坐标系xOy 中,一次函数(0)y kx b k =+≠的图象由函数y x =的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当1x >时,对于x 的每一个值,函数(0)y mx m =≠的值大于一次函数y kx b =+的值,直接写出m 的取值范围.【答案】(1)1y x =+;(2)2m ≥【解析】【分析】(1)根据一次函数(0)y kx b k =+≠由y x =平移得到可得出k 值,然后将点(1,2)代入y x b =+可得b 值即可求出解析式;(2)由题意可得临界值为当1x =时,两条直线都过点(1,2),即可得出当12x m >>,时,(0)y mx m =≠都大于1y x =+,根据1x >,可得m 可取值2,可得出m 的取值范围.【详解】(1)∠一次函数(0)y kx b k =+≠由y x =平移得到,∠1k =,将点(1,2)代入y x b =+可得1b =,∠一次函数的解析式为1y x =+;(2)当1x >时,函数(0)y mx m =≠的函数值都大于1y x =+,即图象在1y x =+上方,由下图可知:临界值为当1x =时,两条直线都过点(1,2),∠当12x m >>,时,(0)y mx m =≠都大于1y x =+,又∠1x >,∠m 可取值2,即2m =,∠m 取值范围为2m ≥.【点睛】本题考查了求一次函数解析式,函数图像的平移,一次函数的图像,找出临界点是解题关键. 23.如图,AB 为∠O 的直径,C 为BA 延长线上一点,CD 是∠O 的切线,D 为切点,OF∠AD 于点E ,交CD 于点F .(1)求证:∠ADC=∠AOF ;(2)若sinC=13,BD=8,求EF 的长.【答案】(1)见解析;(2)2.【解析】【分析】(1)连接OD ,根据CD 是∠O 的切线,可推出∠ADC+∠ODA=90°,根据OF∠AD ,∠AOF+∠DAO=90°,根据OD=OA ,可得∠ODA=∠DAO ,即可证明;的(2)设半径为r ,根据在Rt∠OCD 中,sin 13C =,可得3OD r OC r ==,,AC=2r ,由AB 为∠O 的直径,得出∠ADB=90°,再根据推出OF∠AD ,OF∠BD ,然后由平行线分线段成比例定理可得12OE OA BD AB ==,求出OE ,34OF OC BD BC ==,求出OF ,即可求出EF . 【详解】(1)证明:连接OD ,∠CD 是∠O 的切线,∠OD∠CD ,∠∠ADC+∠ODA=90°,∠OF∠AD ,∠∠AOF+∠DAO=90°,∠OD=OA ,∠∠ODA=∠DAO ,∠∠ADC=∠AOF ;(2)设半径为r ,在Rt∠OCD 中,1sin 3C =, ∠13OD OC ,∠3OD r OC r ==,,∠OA=r ,∠AC=OC -OA=2r ,∠AB 为∠O 的直径,∠∠ADB=90°, 又∠OF∠AD ,∠OF∠BD , ∠12OE OA BD AB ==, ∠OE=4, ∠34OF OC BD BC ==, ∠6OF =,∠2EF OF OE =-=.【点睛】本题考查了平行线分线段成比例定理,锐角三角函数,切线的性质,直径所对的圆周角是90°,灵活运用知识点是解题关键.24.小云在学习过程中遇到一个函数21||(1)(2)6y x x x x =-+≥-.下面是小云对其探究的过程,请补充完整:(1)当20x -≤<时,对于函数1||y x =,即1y x =-,当20x -≤<时,1y 随x 的增大而 ,且10y >;对于函数221y x x =-+,当20x -≤<时,2y 随x 的增大而 ,且20y >;结合上述分析,进一步探究发现,对于函数y ,当20x -≤<时,y 随x 的增大而 .(2)当0x ≥时,对于函数y ,当0x ≥时,y 与x 的几组对应值如下表:综合上表,进一步探究发现,当0x ≥时,y 随x 的增大而增大.在平面直角坐标系xOy 中,画出当0x ≥时的函数y 的图象.(3)过点(0,m)(0m >)作平行于x 轴的直线l ,结合(1)(2)的分析,解决问题:若直线l 与函数21||(1)(2)6y x x x x =-+≥-的图象有两个交点,则m 的最大值是 . 【答案】(1)减小,减小,减小;(2)见解析;(3)73 【解析】【分析】(1)根据一次函数的性质,二次函数的性质分别进行判断,即可得到答案;(2)根据表格的数据,进行描点,连线,即可画出函数的图像;(3)根据函数图像和性质,当2x =-时,函数有最大值,代入计算即可得到答案.【详解】解:(1)根据题意,在函数1y x =-中,∠10k =-<,∠函数1y x =-在20x -≤<中,1y 随x 的增大而减小; ∠222131()24y x x x =-+=-+, ∠对称轴为:1x =,∠221y x x =-+在20x -≤<中,2y 随x 的增大而减小; 综合上述,21||(1)6y x x x =-+在20x -≤<中,y 随x 的增大而减小; 故答案为:减小,减小,减小;(2)根据表格描点,连成平滑的曲线,如图:(3)由(2)可知,当0x ≥时,y 随x 的增大而增大,无最大值;由(1)可知21||(1)6y x x x =-+在20x -≤<中,y 随x 的增大而减小; ∠在20x -≤<中,有 当2x =-时,73y =, ∠m 的最大值为73; 故答案为:73.【点睛】本题考查了二次函数的性质,一次函数的性质,以及函数的最值问题,解题的关键是熟练掌握题意,正确的作出函数图像,并求函数的最大值.25.小云统计了自己所住小区5月1日至30日的厨余垃圾分出量(单位:千克),相关信息如下: a .小云所住小区5月1日至30日的厨余垃圾分出量统计图:b .小云所住小区5月1日至30日分时段的厨余垃圾分出量的平均数如下:(1)该小区5月1日至30日的厨余垃圾分出量的平均数约为 (结果取整数)(2)已知该小区4月的厨余垃圾分出量的平均数为60,则该小区5月1日至30日的厨余垃圾分出量的平均数约为4月的 倍(结果保留小数点后一位);(3)记该小区5月1日至10日的厨余垃圾分出量的方差为21,s 5月11日至20日的厨余垃圾分出量的方差为22s ,5月21日至30日的厨余垃圾分出量的方差为23s .直接写出222123,,s s s 的大小关系.【答案】(1)173;(2)2.9倍;(3)222123s s s >> 【解析】【分析】(1)利用加权平均数的计算公式进行计算,即可得到答案;(2)利用5月份的平均数除以4月份的平均数,即可得到答案;(3)直接利用点状图和方差的意义进行分析,即可得到答案.【详解】解:(1)平均数:1[(10010)(17010)(25010)]17330⨯⨯+⨯+⨯=(千克); 故答案为:173;(2)17360 2.9÷=倍;故答案为:2.9;(3)方差反应数据的稳定程度,即从点状图中表现数据的离散程度,所以从图中可知:222123s s s >>;【点睛】本题考查了方差的意义,平均数,以及数据的分析处理,解题的关键是熟练掌握题意,正确的分析数据的联系.26.在平面直角坐标系xOy 中,1122(,),(,)M x y N x y 为抛物线2(0)y ax bx c a =++>上任意两点,其中12x x <.(1)若抛物线的对称轴为1x =,当12,x x 为何值时,12;y y c ==(2)设抛物线的对称轴为x t =.若对于123x x +>,都有12y y <,求t 的取值范围.【答案】(1)120,2x x ==;(2)32t ≤【解析】【分析】(1)根据抛物线解析式得抛物线必过(0,c ),因为12y y c ==,抛物线的对称轴为1x =,可得点M ,N 关于1x =对称,从而得到12,x x 的值;(2)根据题意知,抛物线开口向上,对称轴为x t =,分3种情况讨论,情况1:当12,x x 都位于对称轴右侧时,情况2:当12,x x 都位于对称轴左侧时,情况3:当12,x x 位于对称轴两侧时,分别求出对应的t 值,再进行总结即可.【详解】解:(1)当x=0时,y=c ,即抛物线必过(0,c ),∠12y y c ==,抛物线的对称轴为1x =,∠点M ,N 关于1x =对称,又∠12x x <,∠10x =,22x =;(2)由题意知,a >0,∠抛物线开口向上∠抛物线的对称轴为x t =,12x x <∠情况1:当12,x x 都位于对称轴右侧时,即当1x t ≥时,12y y <恒成立情况2:当12,x x 都位于对称轴左侧时,即1x <2,t x t ≤时,12y y <恒不成立情况3:当12,x x 位于对称轴两侧时,即当1x <2,t x t >时,要使12y y <,必有12x t x t -<-,即()()2212x t x t -<- 解得122x x t +>,∠3≥2t , ∠32t ≤ 综上所述,32t ≤. 【点睛】本题考查了二次函数图象的性质.解题的关键是学会分类讨论的思想及数形结合思想. 27.在ABC 中,∠C=90°,AC >BC ,D 是AB 的中点.E 为直线上一动点,连接DE ,过点D 作DF∠DE ,交直线BC 于点F ,连接EF .(1)如图1,当E 是线段AC 的中点时,设,AE a BF b ==,求EF 的长(用含,a b 的式子表示);(2)当点E 在线段CA 的延长线上时,依题意补全图2,用等式表示线段AE ,EF ,BF 之间的数量关系,并证明.【答案】(1;(2)图见解析,222EF AE BF =+,证明见解析.【解析】【分析】(1)先根据中位线定理和线段中点定义可得//DE BC ,12DE BC =,CE AE a ==,再根据平行四边形的性质、矩形的判定与性质可得DE CF =,从而可得CF BF b ==,然后利用勾股定理即可得;(2)如图(见解析),先根据平行线的性质可得EAD GBD ∠=∠,DEA DGB ∠=∠,再根据三角形全等的判定定理与性质可得ED GD =,AE BG =,然后根据垂直平分线的判定与性质可得EF FG =,最后在Rt BGF 中,利用勾股定理、等量代换即可得证.【详解】(1)∠D 是AB 的中点,E 是线段AC 的中点∠DE 为ABC 的中位线,且CE AE a ==∠//DE BC ,12DE BC =∠90C ∠=︒∠18090DEC C ∠=︒-∠=︒∠DF DE ⊥。

2020年北京中考数学试题专家评析

2020年北京中考数学试题专家评析

2020年北京中考数学试题专家评析2020年是北京中考“五选三”考试模式下的最后一年,也是向初中学业水平考试过渡的一年。

今年北京市中考数学试卷在总结近五年命题指导思想基础上,立足于基础的考查,合理把握试题难度,实现由中考向初中学业水平考试的平稳过渡。

一、关注疫情对考生的影响,科学设计试卷,合理把控难度。

疫情打乱了考生的复习节奏,改变了考生的学习方式,影响了考生的复习效果。

命题中充分考虑疫情给考生带来的影响,充分评估考生的知识水平和能力水平。

整体设计试卷,合理把控全卷难度和各知识板块难度。

试题设问方式易于学考生入手,层次分明,适度综合,让不同水平的考生都有充分发挥的空间,增强获得感。

二、立足于“四基”,考查主干知识,体现数学思维,回归知识本质。

试卷重点考查基础知识、基本技能、基本思想和基本活动经验。

在此基础之上,重点考查支撑学科体系的主干知识。

以考查数学思维为核心,注重知识整体性与知识之间内在联系的考查,突出对数学知识形成与发展过程及灵活运用的考查,体现思维深度。

试题立意以核心概念为抓手,以培养数学能力为目标,考查考生对知识本质的理解,从数学的角度思考问题和运用数学知识解决实际问题,引导学习回归知识本质。

1关注“四基”要求体现数学基础试题的命制注重对数与代数、图形与几何、统计与概率等基础知识的考查,在考查的过程中,突出对基本技能、基本思想和基本活动经验的考查。

在基本技能的学习中,考生不仅要掌握技能操作的程序和步骤,还要理解其中蕴含的数学原理。

如尺规作图,不仅要求考生能依据作法准确作出图形,还要求其利用已掌握的数学原理解释尺规作图的原理,这一过程中体现考生的不同思维水平。

如第20题,以“求作线段B,使得点P在直线CD上,且∠ABP=1/2∠BAC”的尺规作图过程为背景,考查尺规作图中依据作法作图、推理论证的完整过程。

2关注过程体现本质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

北京市中考数学学科试题分析
北京市中考数学试题的命制依据教育部制定的《义务教育数学课程标准(2011
年版)》和北京教育考试院编写的《2016年北京市高级中等学学校招生考试考试说明》.
中考数学试题将学科理念与时代发展需求相融合,通过对学科素养的考查,体现立德树人、育人为本的教育目标和社会发展对人才培养的需求.试卷的整体设计,以“四基”、“核心概念”、“四能”、为主线,注重考查学生的思维,将学生在学校、家庭和社会所学融入其中,贴近学生的实际与生活.
一、“四基”的考查
1.基础知识的考查
对于基础知识的考查,不仅仅局限于对知识应用的考查,还将知识的形成过程、知识之间的联系作为考查的一部分.如第12题(代数式几何意义).认识不同的代数式表示方法之间的关系:ma+mb+mc=m(a+b+c)表示提公因式,
m(a+b+c)=ma+mb+m c表示乘法分配率,(ma+mb)+mc=ma+(mb+mc)表示加法结合律,……,进一步理解整式乘法、因式分解、乘法关于加法的分配率等知识的内在联系.又如第13题(频率估计概率).虽然学生对概率刻画随机事件发生可能性的大小有了一定的体会,但是对概率意义的理解容易停留在“比值”层面,而对其反映的随机性的内涵认识不足.让学生经历大量重复试验的过程,在具体的试验过程中,发现频率呈现出一定的稳定性和规律性,对频率与概率之间的关系进行体会,估计事件发生的概率,进一步理解概率的意义.
2.基本技能的考查
对于基本技能的考查,既考查了对于数学工具的直接使用,又考查利用数学共解决问题过程当中所蕴含的数学原理.例如第1题(度量∠AOB的大小).量角器是数学基本工具之一,度量角也是基本技能操作之一,但在操作之余,还需要了解角度单位的产生过程,理解量角器的构成要件和工作原理,为在使用量角器时,更好掌握操作方法提供帮助.又如第16题(尺规作图:过直线外一点作已知直线的垂线).考查的落脚点不是在尺规作图的操作层面,而是落脚于“为什么这么作”,考查的是技能操作里面蕴含的数学原理.
3.基本思想与基本活动经验的考查
第26题(根据函数图、表反映的规律探究函数的性质)体现了对抽象、模型两大数学基本思想和基本数学活动经验的考查.函数的学习不能只注重背记定义而不关注它的实质,要理解定义的真正含义,即函数是反映运动变化与联系对应的数学模型.从另一个角度讲,在现实生活中,很多客观事物必须从运动变化的角度进行数量化研究,许多问题中的各种变量是相互联系的,变量之间存在对应关系,而刻画这种关系的数学模型就是函数.通过函数的学习,学生不断地形成、积累对函数的正确认识,即认识函数可以有不同的表示方法,研究函数需要研究自变量的取值范围、对应关系和因变量取值,通过图象反映的规律研究函数的性质,也就是说,学生积累的对函数的最根本的认识就是函数是刻画同一变化过程中两个变量之间的对应关系的模型.
2016年的第26题是对2015年第26题(研究函数的基本过程)的继承与发展.学生根据学习函数所积累的经验,利用所给图、表反映出的y与x的对应关系,画出“自己的”函数图象.进一步地,对“自己的”函数进行性质的分析与研究.
二、核心概念的考查
核心概念是数学课程的重要支撑.例如第2题(对神舟飞船飞行速度进行科学记数),考查学生的数感,体现在对数量关系的感悟.
又如第10题(阶梯水价机制制定推断)、第22题(小区居民燃气用量调查)、第24题(北京市文化创意产业发展预测).通过设置学生熟悉的生活背景,考查学生的数据分析观念.在当今信息社会里,数据时一种重要的信息载体,统计所提供的“运用数据进行推断”的思考方法以及从随机性中寻找规律的归纳思想是现代社会
一种普遍使用并且强有力的思维方式.重视数据的使用和能够对数据进行适当的处理,已经成为信息时代每一位公民必备的素质.其中,数据分析是统计的核心.数据分析观念包括三个方面的内容:(1)了解在现实生活中有许多问题需要先做调查研究,收集数据,通过分析作出判断,体会数据中蕴含着信息.(2)从大量的数据中提取有效信息,作出判断,进行决策.(3)根据问题的实际背景,选择合适的统计方法,解决实际问题.
第22题(小区居民燃气用量调查)通过学生在社会大课堂中所学,设计了贴近学生生活实际的一个调查作业:调查你所住小区居民家庭5月份用气量情况.试题通过展现收集、整理、描述和分析数据得出结论的统计调查的基本过程,体现抽样调查的必要性.在进行抽样调查时,必须明确调查目的,根据对调查背景的分析,抽样获取“好”的数据(所谓“好”的数据是指那些能够更加客观反映实际背景的数据),使得选取的样本必须具备代表性,不偏离调查的目的,最后根据调查的样本推断出总体情况.题目设计的目的是让学生在学习统计的过程中体验收集、整理、描述和分析数据的全过程,有意识的获取一些数据信息.因为随着学生年龄的增长,学生走向社会之后,会遇到各种各样的实际问题,其中“调查类”问题会是学生遇到的最多的实际问题之一,这种让学生感受获取真实数据的过程,分析调查目的的原因、选取调查的对象、设计调查的问题、应从哪些方面设计调查问题等,都是培养学生的应用意识,让学生用统计的眼光解决自己生活的实际问题.
第10题(阶梯水价机制制定推断)从频数直方图给出的大量的数据中,提取有效的信息,结合分析数据的统计量(平均数、中位数)的统计意义,推断总体情
况,作出推断.题目设计的目的是让学生理解分析数据的统计量(平均数、中位数、众数、方差)的统计意义,如反映了数据哪些方面的特征,各自的特点是什么,如何利用它们获取更多的信息等,将统计的概念、方法和原理统一到数据处理的活动过程中,让学生更好的体会统计的思想,培养学生的统计观念.第24题(北京市文化创意产业发展情况)根据画出的折线图预测2016年北京市文创意产业的发展态势.
从教学的角度来说,通过三道试题的设置,引导教学中对于统计学习方式的转变,不能将统计的学习处理成单纯数字计算和绘图技能.
三、“四能”的考查
“四能”是指发现、提出问题的能力和分析、解决问题的能力.其中发现和提出问题是培养创新意识的基础,独立思考、学会思考是创新的核心.
第28题改变了以往试题的呈现形式,进行了一定的创新,将学生课堂研究问题的全过程原汁原味的呈现在试卷当中:发现问题(PA,PM的数量关系)、提出问题(PA=PM),通过交流与讨论,形成了解决问题的三种不同的思路,让学生进行独立思考,发现可以从不同的角度进行分析,并最终选择一种方法解决问题.
第28题试图发挥积极的教学导向,学生需要根据已知条件,体验解决问题方法的多样性,尝试从不同角度寻求解决问题的方法,考查学生思维的灵活性和多样性.同时,抛开题目本身来说,学生在平常的学习过程当中,不仅需要注重思维的灵活性与多样性,同时还需要注重思维的深刻性.也就是说,在追求解法多样性的过程当中,一定要善于总结哪个思维出发点解决问题是最优的,既要保持思维的灵活性也要保持思维的深刻性,这样才能不断地提升自身的思辨能力.
四、注重思维的考查
2016年的试题体现出了“多思少算”的特点.如第14题(利用影长测灯高).题目将测量灯高的实际问题抽象成简单的数学模型,学生通过简单的计算推理能够发现所抽象出的三角形是等腰直角三角形,进而问题得解.另外,2016年的试题加大了对开放性试题和选择性试题的考查.例如上面阐述的第12题(代数式几何意义)、第16题(尺规作图:过直线外一点作已知直线的垂线)、第26题(根据函数图、表反映的规律探究函数的性质)、第24题(北京市文化创意产业发展预测)、第29题(问题思路选择)都是对学生思维的灵活性与多样性的考查,考查学生的思辨能力.
五、将中华古代优秀数学思想、社会主义核心价值观、数学美、九年积淀融为一体
第15题(澳门百子回归图)是以我国汉代的“九宫图”为背景设计的试题,它的发展经历了几个重要阶段:(1)在中国古代著作《周易》的数表中就产生了古老的组合数学思想的萌芽.(2)汉代的“九宫图”使用九个数字组成的一个方阵,它的各行各列和对角线上的数字之和都是15,这是最早的纵横图,后世称之为“洛书”.纵横图设计数字组合的各种问题,其中已具有初步的组合数学的思想.(3)杨辉的《续古摘奇算法》中收集了20多个纵横图,包括n=3,4,5,…,10的各阶幻方(方形纵横图,即将1到n2中的自然数排列成纵横各有n个数的正方形,使每行每列及两条主对角线n个数的和).澳门回归纪念碑就是一副十阶幻方,中央四数连读即“1999·12·20”,表示澳门回归日.百子回归碑是一部百年的澳门简史,可查阅四百年来导致澳门沧桑巨变的重大历史事件以及有关史地、人文资料等.如“88”年中葡两国互换关于澳门问题的《联合声明》批准书,澳门陆地面积“23·50”平方公里等.在求每行、每列、每条对角线之和时,并不是计算1-100简简单单数字之和,而是体现数学之美,体现了九年的积累(运算法则):1+2+3+…+100=(1+99)+(2+98)+ …(49+51)+50=5050.。

相关文档
最新文档